NASICON Electrodes for Sodium-Ion Batteries
Rekha Sharma, Sapna, Kritika S. Sharma and Dinesh Kumar
The incessantly growing demand for energy storage is attracting the researcher’s attention to develop consistent, effective, and ecologically harmless electrochemical systems for energy storage. Sodium‐ion batteries (SIBs) are emergent as one of the utmost efficient large‐scale systems for energy storage due to the great accessibility of raw sodium resources and their cost-effective assets. Sodium Super Ionic Conductor (NASICON) electrodes-based materials have offered an opportunity precisely for SIBs as a next-generation energy storage device because of their unique properties. NASICON electrodes have been extensively proven to demonstrate enhanced and miscellaneous features for SIBs in terms of high rate competence, flexible battery structures, long cycling life, and high specific capacity, due to their outstanding characteristics such as high charge carrier mobility, excellent mechanical strength, high theoretical ability, high electronic conductivity, and large surface area. This chapter summarizes the important advancement accomplished on NASICON-based electrodes for application in SIBs, including both cathodes and anodes over the past decade. Furthermore, this chapter also focuses on the new challenges and commercial demand for SIBs and some perspectives on the use of NASICON-based electrodes for future SIB applications.
Keywords
NASICON, Electrodes, Energy Storage, SIBs, Cathodes, Anodes
Published online 5/20/2020, 30 pages
Citation: Rekha Sharma, Sapna, Kritika S. Sharma and Dinesh Kumar, NASICON Electrodes for Sodium-Ion Batteries, Materials Research Foundations, Vol. 76, pp 1-30, 2020
DOI: https://doi.org/10.21741/9781644900833-1
Part of the book on Sodium-Ion Batteries
References
[1] W. Sun, Y. Wang, Graphene-based nanocomposite anodes for lithium-ion batteries, Nanoscale 6 (2014) 11528-11552. https://doi.org/10.1039/C4NR02999B
[2] V. Etacheri, R. Marom, R. Elazari, G. Salitra, D. Aurbach, Challenges in the development of advanced Li-ion batteries: A review, Energy Environ. Sci. 4 (2011) 3243-3262. https://doi.org/10.1039/c1ee01598b
[3] B. Scrosati, J. Garche, Lithium batteries: Status, prospects and future, J. Power Sources 195 (2010) 2419-2430. https://doi.org/10.1016/j.jpowsour.2009.11.048
[4] H. Pan, Y.S. Hu, L. Chen, Room-temperature stationary sodium-ion batteries for large-scale electric energy storage, Energy Environ. Sci. 6 (2013) 2338-2360. https://doi.org/10.1039/c3ee40847g
[5] J.B. Goodenough, K.S. Park, The Li-ion rechargeable battery: A perspective, J. Am. Chem. Soc. 135 (2013) 1167-1176. https://doi.org/10.1021/ja3091438
[6] S. Chen, L. Shen, P.A. Van Aken, J. Maier, Y. Yu, Dual‐functionalized double carbon shells coated silicon nanoparticles for high performance lithium‐ion batteries, Adv. Mater. 29 (2017) 1605650. https://doi.org/10.1002/adma.201605650
[7] L. Fu, K. Tang, K. Song, P.A. Van Aken, Y. Yu, J. Maier, Nitrogen doped porous carbon fibres as anode materials for sodium ion batteries with excellent rate performance, Nanoscale 6 (2014) 1384-1389. https://doi.org/10.1039/C3NR05374A
[8] M.D. Slater, D. Kim, E. Lee, C.S. Johnson, Sodium‐ion batteries, Adv. Funct. Mater. 23 (2013) 947-958. https://doi.org/10.1002/adfm.201200691
[9] Y. Wen, K. He, Y. Zhu, F. Han, Y. Xu, I. Matsuda, Y. Ishii, J. Cumings, C. Wang, Expanded graphite as superior anode for sodium-ion batteries, Nat. Commun. 5 (2014) 4033. https://doi.org/10.1038/ncomms5033
[10] S.P. Ong, V.L. Chevrier, G. Hautier, A. Jain, C. Moore, S. Kim, X. Ma, G. Ceder, Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials, Energy Environ. Sci. 4 (2011) 3680-3688. https://doi.org/10.1039/c1ee01782a
[11] C. Wu, P. Kopold, P.A. Van Aken, J. Maier, Y. Yu, MOF‐derived hollow Co9S8 nanoparticles embedded in graphitic carbon nanocages with superior Li‐ion storage, Small 12 (2016) 2354-2364. https://doi.org/10.1002/smll.201503821
[12] A. Ponrouch, E. Marchante, M. Courty, J.M. Tarascon, M.R. Palacin, In search of an optimized electrolyte for Na-ion batteries, Energy Environ. Sci. 5 (2012) 8572-8583. https://doi.org/10.1039/c2ee22258b
[13] D. Su, G. Wang, Single-crystalline bilayered V2O5 nanobelts for high-capacity sodium-ion batteries, ACS Nano 7 (2013) 11218-11226. https://doi.org/10.1021/nn405014d
[14] X. Wang, G. Liu, T. Iwao, M. Okubo, A. Yamada, Role of ligand-to-metal charge transfer in O3-type NaFeO2–NaNiO2 solid solution for enhanced electrochemical properties, J. Phys. Chem. C, 118 (2014) 2970-2976. https://doi.org/10.1021/jp411382r
[15] C. Deng, S. Zhang, B. Zhao, First exploration of ultrafine Na7V3(P2O7)4 as a high-potential cathode material for sodium-ion battery, Energy Storage Mater. 4 (2016) 71-78. https://doi.org/10.1016/j.ensm.2016.03.001
[16] H. Kabbour, D. Coillot, M. Colmont, C. Masquelier, O. Mentré, α-Na3M2(PO4)3 (M= Ti, Fe): Absolute cationic ordering in NASICON-type phases, J. Am. Chem. Soc. 133 (2011) 11900-11903. https://doi.org/10.1021/ja204321y
[17] C. Masquelier, L. Croguennec, Polyanionic (phosphates, silicates, sulfates) frameworks as electrode materials for rechargeable Li (or Na) batteries, Chem. Rev. 113 (2013) 6552-6591. https://doi.org/10.1021/cr3001862
[18] Y. Ono, Y. Yui, M. Hayashi, K. Asakura, H. Kitabayashi, K.I. Takahashi, Electrochemical properties of NaCuO2 for sodium-ion secondary batteries, ECS Trans. 58 (2014) 33-39. https://doi.org/10.1149/05812.0033ecst
[19] I. Hasa, J. Hassoun, Y.K. Sun, B. Scrosati, Sodium‐ion battery based on an electrochemically converted NaFePO4 cathode and nanostructured tin–carbon anode, Chem. Phys. Chem. 15 (2014) 2152-2155. https://doi.org/10.1002/cphc.201400088
[20] R. Sharma, A. Dhillon, D. Kumar, Biosorbents from agricultural by-products: Updates after 2000s, In bio-and nanosorbents from natural resources, Springer, Cham. 2018, pp. 1-20. https://doi.org/10.1007/978-3-319-68708-7_1
[21] R. Sharma, D. Kumar, Nanocomposites: An approach towards pollution control, Nanocomposites for pollution control, Pan Stanford, 2018, pp. 3-46. https://doi.org/10.1201/b22390-1
[22] R. Sharma, D. Kumar, Nanoadsorbents: An approach towards wastewater treatment, Nanotechnology for sustainable water resources, Wiley-Scrivener Book, 2018, pp. 371-405. https://doi.org/10.1002/9781119323655.ch12
[23] S. Nehra, R. Sharma, D. Kumar, Chitosan-based membranes for wastewater desalination and heavy metal detoxification, Nanoscale materials in water purification, Elsevier, 2019, pp. 799-814. https://doi.org/10.1016/B978-0-12-813926-4.00037-9
[24] R. Sharma, D. Kumar, Adsorption of Cr(III) and Cu(II) on hydrothermally synthesized graphene oxide–calcium–zinc nanocomposite, J. Chem. Eng. Data. 63 (2018) 4560-4572. https://doi.org/10.1021/acs.jced.8b00637
[25] R. Sharma, A. Dhillon, D. Kumar, Mentha-stabilized silver nanoparticles for high-performance colorimetric detection of Al (III) in aqueous systems, Sci. rep. 8 (2018) 5189-5202. https://doi.org/10.1038/s41598-018-23469-1
[26] R. Sharma, S. Raghav, M. Nair, D. Kumar, Kinetics and adsorption studies of mercury and lead by ceria nanoparticles entrapped in tamarind powder, ACS omega 3 (2018) 14606-14619. https://doi.org/10.1021/acsomega.8b01874
[27] R., Joshi, R. Sharma, A. Kuila, Lipase production from Fusarium incarnatum KU377454 and its immobilization using Fe3O4 NPs for application in waste cooking oil degradation, Bioresource Technol. Rep. 5 (2019) 134-140. https://doi.org/10.1016/j.biteb.2019.01.005
[28] S. Nehra, R. Sharma, D. Kumar, Nanomaterials as an emerging opportunity to procure safe drinking water, Biopolymers: Structure, performance and applications, NOVA Science Publishers, 2018, pp. 67-94.
[29] N. Yabuuchi, M. Kajiyama, J. Iwatate, H. Nishikawa, S. Hitomi, R. Okuyama, R. Usui, Y. Yamada, S. Komaba, P2-type Nax [Fe1/2Mn1/2]O2 made from earth-abundant elements for rechargeable Na batteries, Nat. Mater. 11 (2012) 512. https://doi.org/10.1038/nmat3309
[30] Y. Cao, L. Xiao, W. Wang, D. Choi, Z. Nie, J. Yu, L.V. Saraf, Z. Yang, J. Liu, Reversible sodium ion insertion in single crystalline manganese oxide nanowires with long cycle life, Adv. Mater. 23 (2011) 3155-3160. https://doi.org/10.1002/adma.201100904
[31] H. Liu, H. Zhou, L. Chen, Z. Tang, W. Yang, Electrochemical insertion/deinsertion of sodium on NaV6O15 nanorods as cathode material of rechargeable sodium-based batteries, J. Power Sources 196 (2011) 814-819. https://doi.org/10.1016/j.jpowsour.2010.07.062
[32] Sun, H.W. Lee, M. Pasta, Y. Sun, W. Liu, Y. Li, H.R. Lee, N. Liu, Y. Cui, Carbothermic reduction synthesis of red phosphorus-filled 3D carbon material as a high-capacity anode for sodium ion batteries, Energy Storage Mater. 4 (2016) 130-136. https://doi.org/10.1016/j.ensm.2016.04.003
[33] W.J. Li, S.L. Chou, J.Z. Wang, H.K. Liu, S.X. Dou, Simply mixed commercial red phosphorus and carbon nanotube composite with exceptionally reversible sodium-ion storage, Nano Lett. 13 (2013) 5480-5484. https://doi.org/10.1021/nl403053v
[34] X. Xie, S. Chen, B. Sun, C. Wang, G. Wang, 3D Networked tin oxide/graphene aerogel with a hierarchically porous architecture for high‐rate performance sodium‐ion batteries, ChemSusChem 8 (2015) 2948-2955. https://doi.org/10.1002/cssc.201500149
[35] X. Xie, D. Su, J. Zhang, S. Chen, A.K. Mondal, G. Wang, A comparative investigation on the effects of nitrogen-doping into graphene on enhancing the electrochemical performance of SnO2/graphene for sodium-ion batteries, Nanoscale 7 (2015) 3164-3172. https://doi.org/10.1039/C4NR07054B
[36] J. Wang, C. Luo, T. Gao, A. Langrock, A.C. Mignerey, C. Wang, An advanced MoS2/carbon anode for high‐performance sodium‐ion batteries, Small 11 (2015) 473-481. https://doi.org/10.1002/smll.201401521
[37] Q. Sun, Q.Q. Ren, H. Li, Z.W. Fu, High capacity Sb2O4 thin film electrodes for rechargeable sodium battery, Electrochem. Commun. 13 (2011) 1462-1464. https://doi.org/10.1016/j.elecom.2011.09.020
[38] Y. Wang, D. Su, C. Wang, G. Wang, SnO2@ MWCNT nanocomposite as a high capacity anode material for sodium-ion batteries, Electrochem. Commun. 29 (2013) 8-11. https://doi.org/10.1016/j.elecom.2013.01.001
[39] H. Xiong, M.D. Slater, M. Balasubramanian, C.S. Johnson, T. Rajh, Amorphous TiO2 nanotube anode for rechargeable sodium ion batteries, J. Phys. Chem. Lett. 2 (2011) 2560-2565. https://doi.org/10.1021/jz2012066
[40] X. Xie, Z. Ao, D. Su, J. Zhang, G. Wang, MoS2/Graphene composite anodes with enhanced performance for sodium‐ion batteries: The role of the two‐dimensional heterointerface, Adv. Funct. Mater. 25 (2015) 1393-1403. https://doi.org/10.1002/adfm.201404078
[41] C. Chen, Y. Wen, X. Hu, X. Ji, M. Yan, L. Mai, P. Hu, B. Shan, Y. Huang, Na+ intercalation pseudo capacitance in graphene-coupled titanium oxide enabling ultra-fast sodium storage and long-term cycling, Nat. Commun. 6 (2015) 6929. https://doi.org/10.1038/ncomms7929
[42] X. Xie, D. Su, S. Chen, J. Zhang, S. Dou, G. Wang, SnS2 Nanoplatelet@graphene nanocomposites as high‐capacity anode materials for sodium‐ion batteries, Chem. Asian J. 9 (2014) 1611-1617. https://doi.org/10.1002/asia.201400018
[43] J. Fullenwarth, A. Darwiche, A. Soares, B. Donnadieu, L. Monconduit, NiP3: A promising negative electrode for Li-and Na-ion batteries, J. Mater. Chem. A 2 (2014) 2050-2059. https://doi.org/10.1039/C3TA13976J
[44] C. Wu, P. Kopold, Y.L. Ding, P.A. Van Aken, J. Maier, Y. Yu, Synthesizing porous NaTi2(PO4)3 nanoparticles embedded in 3D graphene networks for high-rate and long cycle-life sodium electrodes, ACS Nano 9 (2015) 6610-6618. https://doi.org/10.1021/acsnano.5b02787
[45] G. Pang, C. Yuan, P. Nie, B. Ding, J. Zhu, X. Zhang, Synthesis of NASICON-type structured NaTi2(PO4)3–graphene nanocomposite as an anode for aqueous rechargeable Na-ion batteries, Nanoscale 6 (2014) 6328-6334. https://doi.org/10.1039/C3NR06730K
[46] J.M. Fan, J.J. Chen, Q. Zhang, B.B. Chen, J. Zang, M.S. Zheng, Q.F. Dong, An amorphous carbon nitride composite derived from ZIF‐8 as anode material for sodium‐ion batteries, ChemSusChem 8 (2015) 1856-1861. https://doi.org/10.1002/cssc.201500192
[47] W. Luo, Z. Jian, Z. Xing, W. Wang, C. Bommier, M.M. Lerner, X. Ji, Electrochemically expandable soft carbon as anodes for Na-ion batteries, ACS Cent. Sci. 1 (2015) 516-522. https://doi.org/10.1021/acscentsci.5b00329
[48] S. Komaba, Y. Matsuura, T. Ishikawa, N. Yabuuchi, W. Murata, S. Kuze, Redox reaction of Sn-polyacrylate electrodes in aprotic Na cell, Electrochem. Commun. 21 (2012) 65-68. https://doi.org/10.1016/j.elecom.2012.05.017
[49] M. He, K. Kravchyk, M. Walter, M.V. Kovalenko, Monodisperse antimony nanocrystals for high-rate Li-ion and Na-ion battery anodes: Nano versus bulk, Nano Lett. 14 (2014) 1255-1262. https://doi.org/10.1021/nl404165c
[50] B. Farbod, K. Cui, W.P. Kalisvaart, M. Kupsta, B. Zahiri, A. Kohandehghan, E.M. Lotfabad, Z. Li, E.J. Luber, D. Mitlin, Anodes for sodium ion batteries based on tin–germanium–antimony alloys, ACS Nano 8 (2014) 4415-4429. https://doi.org/10.1021/nn4063598
[51] L. Baggetto, J.K. Keum, J.F. Browning, G.M. Veith, Germanium as negative electrode material for sodium-ion batteries, Electrochem. Commun. 34 (2013) 41-44. https://doi.org/10.1016/j.elecom.2013.05.025
[52] P.R. Abel, M.G. Fields, A. Heller, C.B. Mullins, Tin–Germanium alloys as anode materials for sodium-ion batteries, ACS Appl. Mater. Interfaces 6 (2014) 15860-15867. https://doi.org/10.1021/am503365k
[53] Y.M. Lin, P.R. Abel, A. Gupta, J.B. Goodenough, A. Heller, C.B. Mullins, Sn–Cu nanocomposite anodes for rechargeable sodium-ion batteries, ACS Appl. Mater. Interfaces 5 (2013) 8273-8277. https://doi.org/10.1021/am4023994
[54] S. Li, J. Qiu, C. Lai, M. Ling, H. Zhao, S. Zhang, Surface capacitive contributions: Towards high rate anode materials for sodium ion batteries, Nano Energy 12 (2015) 224-230. https://doi.org/10.1016/j.nanoen.2014.12.032
[55] S.H. Lee, P. Liu, C.E. Tracy, D.K. Benson, All‐solid‐state rocking chair lithium battery on a flexible al substrate, Electrochem. Solid State Lett. 2 (1999) 425-427. https://doi.org/10.1149/1.1390859
[56] M. Sawicki, L.L. Shaw, Advances and challenges of sodium ion batteries as post lithium ion batteries, RSC Adv. 5 (2015) 53129-53154. https://doi.org/10.1039/C5RA08321D
[57] N. Anantharamulu, K.K. Rao, G. Rambabu, B. Vijaya Kumar, V. Radha, M. Vithal, A wide-ranging review on NASICON type materials, J. Mater. Sci. 46 (2011) 2821-2837. https://doi.org/10.1007/s10853-011-5302-5
[58] S. Patoux, G. Rousse, J.B. Leriche, C. Masquelier, Structural and electrochemical studies of rhombohedral Na2TiM(PO4)3 and Li1.6Na0.4TiM (PO4)3 (M= Fe, Cr) phosphates, Chem. Mater. 15 (2003) 2084-2093. https://doi.org/10.1021/cm020479p
[59] Q. Sun, Q.Q. Ren, Z.W. Fu, NASICON-type Fe2(MoO4)3 thin film as cathode for rechargeable sodium ion battery, Electrochem. Commun. 23 (2012) 145-148. https://doi.org/10.1016/j.elecom.2012.07.023
[60] C. Zhu, P. Kopold, P.A. Van Aken, J. Maier, Y. Yu, High power–high energy sodium battery based on threefold interpenetrating network, Adv. Mater. 28 (2016) 2409-2416. https://doi.org/10.1002/adma.201505943
[61] W. Song, X. Ji, Z. Wu, Y. Zhu, Y. Yang, J. Chen, M. Jing, F. Li, C.E. Banks, First exploration of Na-ion migration pathways in the NASICON structure Na3V2(PO4)3, J. Mater. Chem. A, 2 (2014) 5358-5362. https://doi.org/10.1039/c4ta00230j
[62] H.P. Hong, Crystal structures and crystal chemistry in the system Na1+xZr2SixP3− xO12, Mater. Res. Bull. 11 (1976) 173-182. https://doi.org/10.1016/0025-5408(76)90073-8
[63] J.B. Goodenough, Y. Kim, Challenges for rechargeable Li batteries, Chem. Mater. 22 (2009) 587-603. https://doi.org/10.1021/cm901452z
[64] K.D. Kreuer, H. Kohler, J. Maier, In high conductivity solid ionic conductors: Recent trends and applications (Ed. T. Takahashi), Singapore (1989) 242. https://doi.org/10.1142/9789814434294_0011
[65] J. Maier, U. Warhus, Thermodynamic investigations of Na2ZrO3 by electrochemical means, J. Chem. Thermodyn. 18 (1986) 309-316. https://doi.org/10.1016/0021-9614(86)90075-3
[66] J. Maier, Point-defect thermodynamics and size effects, Solid State Ionics 131 (2000) 13-22. https://doi.org/10.1016/S0167-2738(00)00618-4
[67] J. Maier, Thermodynamics of electrochemical lithium storage, Angew. Chem. Int. Ed. 52 (2013) 4998-5026. https://doi.org/10.1002/anie.201205569
[68] J. Maier, Mass transport in the presence of internal defect reactions—concept of conservative ensembles: I, chemical diffusion in pure compounds, J. Am. Ceram. Soc. 76 (1993) 1212-1217. https://doi.org/10.1111/j.1151-2916.1993.tb03743.x
[69] P.P. Prosini, M. Lisi, D. Zane, M. Pasquali, Determination of the chemical diffusion coefficient of lithium ion LiFePO4, Solid State Ionics 148(2002) 45-51. https://doi.org/10.1016/S0167-2738(02)00134-0
[70] X.H. Rui, N. Yesibolati, S.R. Li, C.C. Yuan, C.H. Chen, Determination of the chemical diffusion coefficient of Li+ in intercalation-type Li3V2(PO4)3 anode material, Solid State Ionics 187 (2011) 58-63. https://doi.org/10.1016/j.ssi.2011.02.013
[71] D.H. Lee, J. Xu, Y.S. Meng, An advanced cathode for Na-ion batteries with high rate and excellent structural stability, Phys. Chem. Chem. Phys. 15 (2013) 3304-3312. https://doi.org/10.1039/c2cp44467d
[72] P. Hu, J. Ma, T. Wang, B. Qin, C. Zhang, C. Shang, J. Zhao, G. Cui, NASICON-structured NaSn2(PO4)3 with excellent high-rate properties as anode material for lithium ion batteries, Chem. Mater. 27 (2015) 6668-6674. https://doi.org/10.1021/acs.chemmater.5b02471
[73] W. Shen, H. Li, C. Wang, Z. Li, Q. Xu, H. Liu, Y. Wang, Improved electrochemical performance of the Na3V2(PO4)3 cathode by B-doping of the carbon coating layer for sodium-ion batteries, J. Mater. Chem. A, 3 (2015) 15190-15201. https://doi.org/10.1039/C5TA03519H
[74] F. Sagane, Synthesis of NaTi2(PO4)3 Thin-film electrodes by sol-gel method and study on the kinetic behavior of Na+-ion insertion/extraction reaction in aqueous solution, J. Electrochem. Soc. 163 (2016) A2835-A2839. https://doi.org/10.1149/2.0161614jes
[75] E. de la Llave, V. Borgel, K.J. Park, J.Y. Hwang, Y.K. Sun, P. Hartmann, F.F. Chesneau, D. Aurbach, Comparison between Na-Ion and Li-Ion cells: Understanding the critical role of the cathode’s stability and the anodes pretreatment on the cells behavior, ACS Appl. Mater. Interfaces 8 (2016) 1867-1875. https://doi.org/10.1021/acsami.5b09835
[76] S. Song, H.M. Duong, A.M. Korsunsky, N. Hu, L. Lu, A Na+ superionic conductor for room-temperature sodium batteries, Sci. Rep. 6 (2016) 32330. https://doi.org/10.1038/srep32330
[77] M.W. Verbrugge, B.J. Koch, Modeling lithium intercalation of single‐fiber carbon microelectrodes, J. Electrochem. Soc. 143 (1996) 600-608. https://doi.org/10.1149/1.1836486
[78] Y. Niu, M. Xu, Y. Zhang, J. Han, Y. Wang, C.M. Li, Detailed investigation of a NaTi2(PO4)3 anode prepared by pyro-synthesis for Na-ion batteries, RSC Adv. 6 (2016) 45605-45611. https://doi.org/10.1039/C6RA06533C
[79] D.J. Kim, R. Ponraj, A.G. Kannan, H.W. Lee, R. Fathi, R. Ruffo, C.M. Mari, D.K. Kim, Diffusion behavior of sodium ions in Na0.44MnO2 in aqueous and non-aqueous electrolytes, J. Power Sources 244 (2013) 758-763. https://doi.org/10.1016/j.jpowsour.2013.02.090
[80] K. Zhong, R. Hu, G. Xu, Y. Yang, J.M. Zhang, Z. Huang, Adsorption and ultrafast diffusion of lithium in bilayer graphene ab initio and kinetic Monte Carlo simulation study, (2019). https://doi.org/10.1103/PhysRevB.99.155403
[81] S. Guo, J. Yi, Y. Sun, H. Zhou, Recent advances in titanium-based electrode materials for stationary sodium-ion batteries, Energy Environ. Sci. 9 (2016) 2978-3006. https://doi.org/10.1039/C6EE01807F
[82] P. Yu, B.N. Popov, J.A. Ritter, R.E. White, Determination of the lithium ion diffusion coefficient in graphite, J. Electrochem. Soc. 146 (1999) 8-14. https://doi.org/10.1149/1.1391556
[83] D. Wang, Q. Liu, C. Chen, M. Li, X. Meng, X. Bie, Y. Wei, Y. Huang, F. Du, C. Wang, G. Chen, NASICON-structured NaTi2(PO4)3@C nanocomposite as the low operation-voltage anode material for high-performance sodium-ion batteries, ACS Appl. Mater. Interfaces 8 (2016) 2238-2246. https://doi.org/10.1021/acsami.5b11003
[84] N. Böckenfeld, A. Balducci, Determination of sodium ion diffusion coefficients in sodium vanadium phosphate, J. Solid State Electrochem. 18 (2014) 959-964. https://doi.org/10.1007/s10008-013-2342-6
[85] Y. Zhu, Y. Xu, Y. Liu, C. Luo, C. Wang, Comparison of electrochemical performances of olivine NaFePO4 in sodium-ion batteries and olivine LiFePO4 in lithium-ion batteries, Nanoscale 5 (2013) 780-787. https://doi.org/10.1039/C2NR32758A
[86] R. Amin, P. Balaya, J. Maier, Anisotropy of electronic and ionic transport in LiFePO4 single crystals, Electrochem. Solid State Lett. 10 (2007) A13-A16. https://doi.org/10.1149/1.2388240
[87] J.Y. Shin, D. Samuelis, J. Maier, Sustained lithium‐storage performance of hierarchical, nanoporous anatase TiO2 at high rates: Emphasis on interfacial storage phenomena, Adv. Funct. Mater. 21 (2011) 3464-3472. https://doi.org/10.1002/adfm.201002527
[88] J. Sheng, H. Zang, C. Tang, Q. An, Q. Wei, G. Zhang, L. Chen, C. Peng, L. Mai, Graphene wrapped NASICON-type Fe2(MoO4)3 nanoparticles as an ultra-high rate cathode for sodium ion batteries, Nano Energy 24 (2016) 130-138. https://doi.org/10.1016/j.nanoen.2016.04.021
[89] S.A. Novikova, R.V. Larkovich, A.A. Chekannikov, T.L. Kulova, A.M. Skundin, A.B. Yaroslavtsev, Electrical conductivity and electrochemical characteristics of Na3V2(PO4)3-based NASICON-type materials, Inorg. Mater. 54 (2018) 794-804. https://doi.org/10.1134/S0020168518080149
[90] Q. Zheng, H. Yi, X. Li, H. Zhang, Progress and prospect for NASICON-type Na3V2(PO4)3 for electrochemical energy storage, J. Energy Chem. (2018). https://doi.org/10.1016/j.jechem.2018.05.001
[91] W. Song, Z. Wu, J. Chen, Q. Lan, Y. Zhu, Y. Yang, C. Pan, H. Hou, M. Jing, X. Ji, High-voltage NASICON sodium ion batteries: Merits of fluorine insertion, Electrochim. Acta 146 (2014) 142-150. https://doi.org/10.1016/j.electacta.2014.09.068
[92] H. Zhang, B. Qin, D. Buchholz, S. Passerini, High-efficiency sodium-ion battery based on NASICON electrodes with high power and long lifespan, ACS Appl. Energy Mater. 1 (2018) 6425-6432. https://doi.org/10.1021/acsaem.8b01390
[93] S.A. Needham, G.X. Wang, H.K. Liu, Synthesis of NiO nanotubes for use as negative electrodes in lithium ion batteries, J. Power Sources 159 (2006) 254-257. https://doi.org/10.1016/j.jpowsour.2006.04.025
[94] J.Z. Wang, L. Lu, M. Lotya, J.N. Coleman, S.L. Chou, H.K. Liu, A.I. Minett, J. Chen, Development of MoS2–CNT composite thin film from layered MoS2 for lithium batteries, Adv. Energy Mater. 3 (2013) 798-805. https://doi.org/10.1002/aenm.201201000
[95] J. Zheng, L. Liu, G. Ji, Q. Yang, L. Zheng, J. Zhang, Hydrogenated anatase TiO2 as lithium-ion battery anode: Size–reactivity correlation, ACS Appl. Mater. Interfaces, 8 (2016) 20074-20081. https://doi.org/10.1021/acsami.6b05993
[96] M. Yoshio, H. Wang, K. Fukuda, T. Umeno, T. Abe, Z. Ogumi, Improvement of natural graphite as a lithium-ion battery anode material, from raw flake to carbon-coated sphere, J. Mater. Chem. 14 (2004) 1754-1758. https://doi.org/10.1039/b316702j
[97] Y. Zhao, Z. Wei, Q. Pang, Y. Wei, Y. Cai, Q. Fu, F. Du, A. Sarapulova, H. Ehrenberg, B. Liu, G. Chen, NASICON-Type Mg0.5Ti2(PO4)3 Negative electrode material exhibits different electrochemical energy storage mechanisms in Na-ion and Li-ion batteries, ACS Appl. Mater. Interfaces 9 (2017) 4709-4718. https://doi.org/10.1021/acsami.6b14196
[98] V.T. Nguyen, Y.L. Liu, S.A. Hakim, S.Y. Amr Rady Radwan, W. Chen, Synthesis and electrochemical performance of Fe2(MoO4)3/RGO nanocomposite cathode material for sodium-ion batteries, Int. J. Electrochem. Sci. 10 (2015) 10565-10575. https://doi.org/10.1149/2.0011505jss
[99] F. Sauvage, E. Quarez, J.M. Tarascon, E. Baudrin, Crystal structure and electrochemical properties vs. Na+ of the sodium fluorophosphate Na1.5VOPO4F0.5, Solid State Sci. 8 (2006) 1215-1221. https://doi.org/10.1016/j.solidstatesciences.2006.05.009
[100] R. Essehli, I. Belharouak, H. Ben Yahia, K. Maher, A. Abouimrane, B. Orayech, S. Calder, X.L. Zhou, Z. Zhou, Y.K. Sun, Alluaudite Na2Co2Fe(PO4)3 as an electroactive material for sodium ion batteries, Dalton Trans. 44 (2015) 7881-7886. https://doi.org/10.1039/C5DT00971E
[101] J. Isasi, A. Daidouh, Synthesis, structure and conductivity study of new monovalent phosphates with the langbeinite structure, Solid State Ionics 133 (2000) 303-313. https://doi.org/10.1016/S0167-2738(00)00677-9
[102] M. Xu, C.J. Cheng, Q.Q. Sun, S.J. Bao, Y.B. Niu, H. He, Y. Li, J. Song, A 3D porous interconnected NaVPO4F/C network: Preparation and performance for Na-ion batteries, RSC Adv. 5 (2015) 40065-40069. https://doi.org/10.1039/C5RA05161D
[103] S. Zhou, G. Barim, B.J. Morgan, B.C. Melot, R.L. Brutchey, Influence of rotational distortions on Li+-and Na+-intercalation in anti-NASICON Fe2(MoO4)3, Chem. Mater. 28 (2016) 4492-4500. https://doi.org/10.1021/acs.chemmater.6b01806
[104] Y. Qi, L. Mu, J. Zhao, Y.S. Hu, H. Liu, S. Dai, Superior Na‐storage performance of low‐temperature‐synthesized Na3(VO1− xPO4)2F1+ 2x (0≤ x≤ 1) nanoparticles for Na‐ion batteries, Angew. Chem. Int. Ed. 54 (2015) 9911-9916. https://doi.org/10.1002/anie.201503188
[105] J. Zhao, L. Mu, Y. Qi, Y.S. Hu, H. Liu, S. Dai, A phase-transfer assisted solvo-thermal strategy for low-temperature synthesis of Na3(VO1−xPO4)2F1+2x cathodes for sodium-ion batteries, Chem. Commun. 51 (2015) 7160-7163. https://doi.org/10.1039/C5CC01504A
[106] C. Masquelier, C. Wurm, J. Rodríguez-Carvajal, J. Gaubicher, L. Nazar, A powder neutron diffraction investigation of the two rhombohedral NASICON analogues: γ-Na3Fe2(PO4)3 and Li3Fe2(PO4)3, Chem. Mater. 12 (2000) 525-532. https://doi.org/10.1021/cm991138n
[107] D. Li, J. Xue, M. Liu, Synthesis of Fe2(MoO4)3 microspheres by self-assembly and photocatalytic performances, New J. Chem. 39 (2015) 1910-1915. https://doi.org/10.1039/C4NJ01731E
[108] Y. Niu, M. Xu, Reduced graphene oxide and Fe2(MoO4)3 composite for sodium-ion batteries cathode with improved performance, J. Alloy. Compd. 674 (2016) 392-398. https://doi.org/10.1016/j.jallcom.2016.02.223
[109] Y. Song, H. Wang, Z. Li, N. Ye, L. Wang, Y. Liu, Fe2(MoO4)3 nanoparticle-anchored MoO3 nanowires: Strong coupling via the reverse diffusion of heteroatoms and largely enhanced lithium storage properties, RSC Adv. 5 (2015) 16386-16393. https://doi.org/10.1039/C4RA15655B
[110] V. Nguyen, Y. Liu, Y. Li, S.A. Hakim, X. Yang, W. Chen, Synthesis and electrochemical performance of Fe2(MoO4)3/carbon nanotubes nanocomposite cathode material for sodium-ion battery, ECS J. Solid State Sci. Technol. 4 (2015) M25-M29. https://doi.org/10.1149/2.0011505jss
[111] V. Nguyen, Y. Liu, X. Yang, W. Chen, Fe2(MoO4)3/nanosilver composite as a cathode for sodium-ion batteries, ECS Electrochem. Lett. 4 (2015) A29-A32. https://doi.org/10.1149/2.0021503eel
[112] S. Kajiyama, J. Kikkawa, J. Hoshino, M. Okubo, E. Hosono, Assembly of Na3V2 (PO4)3 nanoparticles confined in a one‐dimensional carbon sheath for enhanced sodium‐ion cathode properties, Chem. Eur. J. 20 (2014) 12636-12640. https://doi.org/10.1002/chem.201403126
[113] X. Rui, W. Sun, C. Wu, Y. Yu, Q. Yan, An advanced sodium‐ion battery composed of carbon coated Na3V2(PO4)3 in a porous graphene network, Adv. Mater. 27 (2015) 6670-6676. https://doi.org/10.1002/adma.201502864
[114] W. Duan, Z. Zhu, H. Li, Z. Hu, K. Zhang, F. Cheng, J. Chen, Na3V2(PO4)3@C core–shell nanocomposites for rechargeable sodium-ion batteries, J. Mater. Chem. A, 2 (2014) 8668-8675. https://doi.org/10.1039/C4TA00106K
[115] W. Shen, H. Li, C. Wang, Z. Li, Q. Xu, H. Liu, Y. Wang, Improved electrochemical performance of the Na3V2(PO4)3 cathode by B-doping of the carbon coating layer for sodium-ion batteries, J. Mater. Chem. A 3 (2015) 15190-15201. https://doi.org/10.1039/C5TA03519H
[116] J. Liu, K. Tang, K. Song, P.A. Van Aken, Y. Yu, J. Maier, Electrospun Na3V2(PO4)3/C nanofibers as stable cathode materials for sodium-ion batteries, Nanoscale 6 (2014) 5081-5086. https://doi.org/10.1039/c3nr05329f
[117] Q. Liu, D. Wang, X. Yang, N. Chen, C. Wang, X. Bie, Y. Wei, G. Chen, F. Du, Carbon-coated Na3V2(PO4)2F3 nanoparticles embedded in a mesoporous carbon matrix as a potential cathode material for sodium-ion batteries with superior rate capability and long-term cycle life, J. Mater. Chem. A 3 (2015) 21478-21485. https://doi.org/10.1039/C5TA05939A
[118] S. Li, Y. Dong, L. Xu, X. Xu, L. He, L. Mai, Effect of carbon matrix dimensions on the electrochemical properties of Na3V2(PO4)3 nanograins for high‐performance symmetric sodium‐ion batteries, Adv. Mater. 26 (2014) 3545-3553. https://doi.org/10.1002/adma.201305522
[119] J. Geng, F. Li, S. Ma, J. Xiao, M. Sui, First principle study of Na3V2(PO4)2F3 for Na batteries application and experimental investigation, Int. J. Electrochem. Sci. 11 (2016) 3815-3823. https://doi.org/10.20964/110483
[120] J. Fang, S. Wang, Z. Li, H. Chen, L. Xia, L. Ding, H. Wang, Porous Na3V2(PO4)3@C nanoparticles enwrapped in three-dimensional graphene for high performance sodium-ion batteries, J. Mater. Chem. A 4 (2016) 1180-1185. https://doi.org/10.1039/C5TA08869K
[121] W. Shen, H. Li, Z. Guo, C. Wang, Z. Li, Q. Xu, H. Liu, Y. Wang, Y. Xia, Double-nanocarbon synergistically modified Na3V2(PO4)3: An advanced cathode for high-rate and long-life sodium-ion batteries, ACS Appl. Mater. Interfaces 8 (2016) 15341-15351. https://doi.org/10.1021/acsami.6b03410
[122] C. Zhu, K. Song, P.A. Van Aken, J. Maier, Y. Yu, Carbon-coated Na3V2(PO4)3 embedded in porous carbon matrix: an ultrafast Na-storage cathode with the potential of outperforming Li cathodes, Nano Lett. 14 (2014) 2175-2180. https://doi.org/10.1021/nl500548a
[123] W. Song, X. Ji, J. Chen, Z. Wu, Y. Zhu, K. Ye, H. Hou, M. Jing, C.E. Banks, Mechanistic investigation of ion migration in Na3V2(PO4)2F3 hybrid-ion batteries, Phys. Chem. Chem. Phys. 17 (2015) 159-165. https://doi.org/10.1039/C4CP04649H
[124] W. Ren, Z. Zheng, C. Xu, C. Niu, Q. Wei, Q. An, K. Zhao, M. Yan, M. Qin, L. Mai, Self-sacrificed synthesis of three-dimensional Na3V2(PO4)3 nanofiber network for high-rate sodium–ion full batteries, Nano Energy 25 (2016) 145-153. https://doi.org/10.1016/j.nanoen.2016.03.018
[125] W. Shen, C. Wang, Q. Xu, H. Liu, Y. Wang, Nitrogen‐doping‐induced defects of a carbon coating layer facilitate Na‐storage in electrode materials, Adv. Energy Mater. 5 (2015) 1400982. https://doi.org/10.1002/aenm.201400982
[126] W. Song, X. Ji, Z. Wu, Y. Zhu, F. Li, Y. Yao, C.E. Banks, Multifunctional dual Na3V2(PO4)2F3 cathode for both lithium-ion and sodium-ion batteries, RSC Adv. 4 (2014) 11375-11383. https://doi.org/10.1039/C3RA47878E
[127] Y. Jiang, Z. Yang, W. Li, L. Zeng, F. Pan, M. Wang, X. Wei, G. Hu, L. Gu, Y. Yu, Nanoconfined carbon‐coated Na3V2(PO4)3 particles in mesoporous carbon enabling ultralong cycle life for sodium‐ion batteries, Adv. Energy Mater. 5 (2015) 1402104. https://doi.org/10.1002/aenm.201402104
[128] M. Chen, K. Kou, M. Tu, J. Hu, B. Yang, Fabrication of multi-walled carbon nanotubes modified Na3V2(PO4)3/C and its application to high-rate lithium-ion batteries cathode, Solid State Ionics 274 (2015) 24-28. https://doi.org/10.1016/j.ssi.2015.02.021
[129] W. Song, X. Ji, Z. Wu, Y. Yang, Z. Zhou, F. Li, Q. Chen, C.E. Banks, Exploration of ion migration mechanism and diffusion capability for Na3V2(PO4)2F3 cathode utilized in rechargeable sodium-ion batteries, J. Power Sources 256 (2014) 258-263. https://doi.org/10.1016/j.jpowsour.2014.01.025
[130] S. Chen, Z. Ao, B. Sun, X. Xie, G. Wang, Porous carbon nanocages encapsulated with tin nanoparticles for high performance sodium-ion batteries, Energy Storage Mater. 5 (2016) 180-190. https://doi.org/10.1016/j.ensm.2016.07.001
[131] J. Park, J.S. Kim, J.W. Park, T.H. Nam, K.W. Kim, J.H. Ahn, G. Wang, H.J. Ahn, Discharge mechanism of MoS2 for sodium ion battery: Electrochemical measurements and characterization, Electrochim. Acta 92 (2013) 427-432. https://doi.org/10.1016/j.electacta.2013.01.057
[132] X. Xie, K. Kretschmer, J. Zhang, B. Sun, D. Su, G. Wang, Sn@ CNT nanopillars grown perpendicularly on carbon paper: A novel free-standing anode for sodium ion batteries, Nano Energy 13 (2015) 208-217. https://doi.org/10.1016/j.nanoen.2015.02.022
[133] Y. Kim, K.H. Ha, S.M. Oh, K.T. Lee, High‐capacity anode materials for sodium‐ion batteries, Chem. Eur. J. 20 (2014) 11980-11992. https://doi.org/10.1002/chem.201402511
[134] S. Hariharan, K. Saravanan, P. Balaya, α-MoO3: A high performance anode material for sodium-ion batteries, Electrochem. Commun. 31 (2013) 5-9. https://doi.org/10.1016/j.elecom.2013.02.020
[135] M.R. Palacin, Recent advances in rechargeable battery materials: A chemist’s perspective, Chem. Soc. Rev. 38 (2009) 2565-2575. https://doi.org/10.1039/b820555h
[136] F. Lalère, J.B. Leriche, M. Courty, S. Boulineau, V. Viallet, C. Masquelier, V. Seznec, An all-solid state NASICON sodium battery operating at 200 C, J. Power Sources 247 (2014) 975-980. https://doi.org/10.1016/j.jpowsour.2013.09.051
[137] S.I. Park, I. Gocheva, S. Okada, J.I. Yamaki, Electrochemical properties of NaTi2(PO4)3 anode for rechargeable aqueous sodium-ion batteries, J. Electrochem. Soc. 158 (2011) A1067-A1070. https://doi.org/10.1149/1.3611434
[138] Y. Fang, L. Xiao, J. Qian, Y. Cao, X. Ai, Y. Huang, H. Yang, 3D Graphene decorated NaTi2(PO4)3 microspheres as a superior high‐rate and ultracycle‐stable anode material for sodium ion batteries, Adv. Energy Mater. 6 (2016) 1502197. https://doi.org/10.1002/aenm.201502197
[139] P. Senguttuvan, G. Rousse, M.E. Arroyoy de Dompablo, H. Vezin, J.M. Tarascon, M.R. Palacín, Low-potential sodium insertion in a NASICON-type structure through the Ti(III)/Ti(II) redox couple, J. Am. Chem. Soc. 135 (2013) 3897-3903. https://doi.org/10.1021/ja311044t
[140] G. Pang, P. Nie, C. Yuan, L. Shen, X. Zhang, H. Li, C. Zhang, Mesoporous NaTi2(PO4)3/CMK-3 nanohybrid as anode for long-life Na-ion batteries, J. Mater. Chem. A 2 (2014) 20659-20666. https://doi.org/10.1039/C4TA04732J
[141] W. Wang, B. Jiang, L. Hu, S. Jiao, NASICON material NaZr2(PO4)3: A novel storage material for sodium-ion batteries, J. Mater. Chem. A, 2 (2014) 1341-1345. https://doi.org/10.1039/C3TA14310D
[142] I. Hasa, S. Passerini, J. Hassoun, A rechargeable sodium-ion battery using a nanostructured Sb–C anode and P2-type layered Na0.6Ni0.22Fe0.11Mn0.66O2 cathode, RSC Adv. 5 (2015) 48928-48934. https://doi.org/10.1039/C5RA06336A
[143] Y. Zhang, H. Zhao, Y. Du, Symmetric full cells assembled by using self-supporting Na3V2(PO4)3 bipolar electrodes for superior sodium energy storage, J. Mater. Chem. A, 4 (2016) 7155-7159. https://doi.org/10.1039/C6TA02218A
[144] G.B. Xu, L.W. Yang, X.L. Wei, J.W. Ding, J.X. Zhong, P.K. Chu, Hierarchical porous nanocomposite architectures from multi-wall carbon nanotube threaded mesoporous NaTi2(PO4)3 nanocrystals for high-performance sodium electrodes, J. Power Sources 327 (2016) 580-590. https://doi.org/10.1016/j.jpowsour.2016.07.089
[145] Z. Huang, L. Liu, L. Yi, W. Xiao, M. Li, Q. Zhou, G. Guo, X. Chen, H. Shu, X. Yang, X. Wang, Facile solvothermal synthesis of NaTi2(PO4)3/C porous plates as electrode materials for high-performance sodium ion batteries, J. Power Sources 325 (2016) 474-481. https://doi.org/10.1016/j.jpowsour.2016.06.066
[146] Y. Niu, M. Xu, C. Guo, C.M. Li, Pyro-synthesis of a nanostructured NaTi2(PO4)3/C with a novel lower voltage plateau for rechargeable sodium-ion batteries, J. Colloid Interf. Sci. 474 (2016) 88-92. https://doi.org/10.1016/j.jcis.2016.04.021
[147] Z. Jian, Y. Sun, X. Ji, A new low-voltage plateau of Na3V2(PO4)3 as an anode for Na-ion batteries, Chem. Commun. 51 (2015) 6381-6383. https://doi.org/10.1039/C5CC00944H
[148] Q. Zhang, C. Liao, T. Zhai, H. Li, A high rate 1.2 V aqueous sodium-ion battery based on all NASICON structured NaTi2(PO4)3 and Na3V2(PO4)3, Electrochim. Acta 196 (2016) 470-478. https://doi.org/10.1016/j.electacta.2016.03.007
[149] C. Masquelier, Solid electrolytes: Lithium ions on the fast track, Nat. Mater. 10 (2011) 649. https://doi.org/10.1038/nmat3105
[150] H.K. Roh, H.K. Kim, M.S. Kim, D.H. Kim, K.Y. Chung, K.C. Roh, K.B. Kim, In situ synthesis of chemically bonded NaTi2(PO4)3/rGO 2D nanocomposite for high-rate sodium-ion batteries, Nano Res. 9 (2016) 1844-1855. https://doi.org/10.1007/s12274-016-1077-y