Starch-Based Composites and Their Applications
E.G. Okonkwo, V.S. Aigbodion, E.T. Akinlabi, C.C. Daniel-Mkpume
One of the major breakthroughs in biodegradable polymer composites is in the area of starch reinforced composites; materials with still-to-be explored potentials. Starch is a low cost biodegradable polymer with distinctive properties and shortcomings. Blending with other polymers have led to the development of an enhanced composite material with more advanced properties and varied areas of application. This paper aims at looking at the processing, applications and trend in the development of starch and starch blended composites. The effect of various additives and different class of polymers will be discussed while highlighting future trend in its developmental course.
Keywords
Starch, Composites, Starch-blend, Green Composites, Mechanical Properties, Microstructure, Application
Published online 4/20/2020, 44 pages
Citation: E.G. Okonkwo, V.S. Aigbodion, E.T. Akinlabi, C.C. Daniel-Mkpume, Starch-Based Composites and Their Applications, Materials Research Foundations, Vol. 73, pp 198-241, 2020
DOI: https://doi.org/10.21741/9781644900772-7
Part of the book on Advanced Applications of Polysaccharides and their Composites
References
[1] C.C. Daniel-Mkpume, E.G. Okonkwo, V.S. Aigbodion, P.O. Offor, K.C. Nnakwo, Silica sand modified aluminium composite : An empirical study of the physical, mechanical and morphological properties, Mater. Res. Express. 6 (2019) 2–11. https://doi.org/doi.org/10.1088/2053-1591/ab14c6
[2] C.C. Daniel-Mkpume, C. Ugochukwu, E.G. Okonkwo, O.S.I. Fayomi, S.M. Obiorah, Effect of Luffa cylindrica fiber and particulate on the mechanical properties of epoxy, Int. J. Adv. Manuf. Technol. 101 (2019) 3439–3444. https://doi.org/https://doi.org/10.1007/s00170-019-03422-w
[3] S.I. Durowaye, G.I. Lawal, O.I. Sekunowo, E.G. Okonkwo, Synthesis and characterisation of hybrid polyethylene terephthalate matrix composites reinforced with Entada Mannii fibre particles and almond shell particles, J. King Saud Univ. – Eng. Sci. (2017) 1–9. https://doi.org/10.1016/j.jksues.2017.09.006
[4] B.C. Kandpal, R. Chaurasia, V. Khurana, Recent Advances in Green Composites – A Review, Int. J. Technol. Res. Eng. 2 (2015) 742–747
[5] N.L. Garcı´a, L. Ribba, A. Dufresne, M.I. Aranguren, S. Goyanes, Physico-Mechanical Properties of Biodegradable Starch Nanocomposites, Macromol. Mater. Eng. 294 (2009) 169–177. https://doi.org/10.1002/mame.200800271
[6] A. Dufresne, J. Castano, Polysaccharide nanomaterial reinforced starch nanocomposites : A review, Starch. 68 (2016) 1–19. https://doi.org/10.1002/star.201500307
[7] R. Shanks, I. Kong, Thermoplastic Starch, in: Thermoplast. Elastomers, 2012: pp. 95–116
[8] M.L. Tanaka, N. Vest, C.M. Ferguson, P. Gatenholm, Comparison of Biomechanical Properties of Native Menisci and Bacterial Cellulose Implant, Int. J. Polym. Mater. Polym. Biomater. 63 (2014) 891–897. https://doi.org/10.1080/00914037.2014.886226
[9] J.M. Rajwade, K.M. Paknikar, J. V Kumbhar, Applications of bacterial cellulose and its composites in biomedicine, Appl Microbiol Biotechnol. (2015) 1–21. https://doi.org/10.1007/s00253-015-6426-3
[10] A. Svensson, E. Nicklasson, T. Harrah, B. Panilaitis, D.L. Kaplan, M. Brittberg, P. Gatenholm, Bacterial cellulose as a potential scaffold for tissue engineering of cartilage, Biomaterials. 26 (2005) 419–431. https://doi.org/10.1016/j.biomaterials.2004.02.049
[11] N.H. Zakaria, N. Muhammad, M.M.A.B. Abdullah, Potential of Starch Nanocomposites for Biomedical Applications, IOP Conf. Ser. Mater. Sci. Eng. 209 (2017) 1–7. https://doi.org/10.1088/1757-899X/209/1/012087
[12] O.A. El Seoud, H. Nawaz, E.P.G. Arêas, Chemistry and Applications of Polysaccharide Solutions in Strong Electrolytes/Dipolar Aprotic Solvents: An Overview, Molecules. 18 (2013) 1270–1313. https://doi.org/10.3390/molecules18011270
[13] R. Colussi, V. Zanella, S. Lisie, M. El, B. Biduski, L. Prietto, D. Dufech, R. Zavareze, A. Renato, G. Dias, Acetylated rice starches films with different levels of amylose : Mechanical , water vapor barrier , thermal , and biodegradability properties, Food Chem. 221 (2017) 1614–1620. https://doi.org/10.1016/j.foodchem.2016.10.129
[14] S.T. Sam, M.A. Nuradibah, K.M. Chin, N. Hani, Current Application and Challenges on Packaging Industry Based on Natural Polymer Blending, in: Nat. Polym., 2016: pp. 163–184. https://doi.org/10.1007/978-3-319-26414-1
[15] R.F.N. Quadrado, A.R. Fajardo, Microparticles based on carboxymethyl starch / chitosan polyelectrolyte complex as vehicles for drug delivery systems, Arab. J. Chem. (2018) 1–12. https://doi.org/10.1016/j.arabjc.2018.04.004
[16] H. Cornell, The Functionality of wheat starch, in: Starch Food, n.d.: pp. 211–240
[17] S. Yoon, Y. Deng, Clay – Starch Composites and Their Application in Papermaking, J. Appl. Polym. Sci. 100 (2006) 1032–1038. https://doi.org/10.1002/app.23007
[18] V.S. Waghmare, R.P. Wadke, S. Dyawanapelly, A. Deshpande, J. Ratnesh, P. Dandekar, Starch based nanofibrous scaffolds for wound healing applications, Bioact. Mater. 3 (2018) 255–266. https://doi.org/10.1016/j.bioactmat.2017.11.006
[19] A. Al-muhtaseb, W.A.. Mcminn, T.R.. Magee, Shrinkage , density and porosity variations during the convective drying of potato starch gel, in: Dry. 2004, 2004: pp. 1604–1611
[20] V.S. Naik, S.S. Prabhakara, S. Raghavendra, Mechanical properties of sisal fiber reinforced starch based bio composites, AIP Conf. Proc. 020019 (2019) 1–7. https://doi.org/10.1063/1.5085590
[21] N. Singh, J. Singh, L. Kaur, N.S. Sodhi, B.S. Gill, Morphological , thermal and rheological properties of starches from different botanical sources, Food Chem. 81 (2003) 219–231
[22] M. Sujka, U. Pankiewicz, R. Kowalski, K. Nowosad, A. Noszczyk-nowak, Porous starch and its application in drug delivery systems, Polim Med. 48 (2018) 25–29. https://doi.org/10.17219/pim/99799
[23] N.H. Zakaria, N. Muhammad, M.M.A.B. Abdullah, I.G. Sandu, C.L. Mei Wan, Characteristics of Thermoplastic Potato Starch / Bentonite Nanocomposite Film, IOP Conf. Ser. Mater. Sci. Eng. 374 (2018) 1–5. https://doi.org/10.1088/1757-899X/374/1/012025
[24] A. Linton, K. Cato, T. Huang, Y. Chang, J. Ciou, J. Chang, H. Lin, Functional properties of arrowroot starch in cassava and sweet potato composite starches, Food Hydrocoll. 53 (2016) 187–191. https://doi.org/10.1016/j.foodhyd.2015.01.024
[25] A.H.. Abdullah, S. Chalimah, I. Primadona, M.H.. Hanantyo, Physical and chemical properties of corn , cassava , and potato starchs, IOP Conf. Ser. Earth Environ. Sci. 160 (2018) 1–6
[26] B. Jiang, S. Li, Y. Wu, J. Song, S. Chen, X. Li, H. Sun, Preparation and characterization of natural corn starch-based composite films reinforced by eggshell powder, CyTA – J. Food. 16 (2018) 1045–1054. https://doi.org/10.1080/19476337.2018.1527783
[27] A. Amri, I. Ekawati, S. Herman, S.. Yenti, Zultiniar, Y. Aziz, S.. Utami, Bahruddin, Properties enhancement of cassava starch based bioplastics with addition of graphene oxide, IOP Conf. Ser. Mater. Sci. Eng. 345 (2018) 1–13. https://doi.org/10.1088/1757-899X/345/1/012025
[28] K. Vaezi, G. Asadpour, H. Sharifi, Effect of ZnO nanoparticles on the mechanical, barrier and optical properties of thermoplastic cationic starch/montmorillonite biodegradable films, Int. J. Biol. Macromol. (2018) 1–36. https://doi.org/10.1016/j.ijbiomac.2018.11.142
[29] S. Naderizadeh, A. Shakeri, H. Mahdavi, N. Nikfarjam, N.T. Qazvini, Hybrid Nanocomposite Films of Starch , Poly ( vinyl alcohol ) ( PVA ), Starch Nanocrystals ( SNCs ), and Montmorillonite ( Na-MMT ): Structure – Properties Relationship, Starch. 7 (2019) 1–8. https://doi.org/10.1002/star.201800027
[30] C.L. Luchese, J.C. Spada, I.C. Tessaro, Starch content affects physicochemical properties of corn and cassava starch-based films, Ind. Crop. Prod. 109 (2017) 619–626. https://doi.org/10.1016/j.indcrop.2017.09.020
[31] P.R. Chang, P. Zheng, B. Liu, D.P. Anderson, J. Yu, X. Ma, Characterization of magnetic soluble starch-functionalized carbon nanotubes and its application for the adsorption of the dyes, J. Hazard. Mater. 186 (2011) 2144–2150. https://doi.org/10.1016/j.jhazmat.2010.12.119
[32] F.C. Soares, F. Yamashita, C.M.O. Müller, A.T.N. Pires, Effect of cooling and coating on thermoplastic starch / poly ( lactic acid ) blend sheets, Polym. Test. 33 (2014) 34–39. https://doi.org/10.1016/j.polymertesting.2013.11.001
[33] S. Mishra, T. Rai, Morphology and functional properties of corn , potato and tapioca starches, Food Hydrocoll. 20 (2006) 557–566. https://doi.org/10.1016/j.foodhyd.2005.01.001
[34] E.D.M. Teixeira, A.A.S. Curvelo, A.C. Corrêa, J.M. Marconcini, G.M. Glenn, L.H.C. Mattoso, Properties of thermoplastic starch from cassava bagasse and cassava starch and their blends with poly ( lactic acid ), Ind. Crop. Prod. 37 (2012) 61–68. https://doi.org/10.1016/j.indcrop.2011.11.036
[35] M. Kaur, S. Singh, Physicochemical , Morphological , Pasting , and Rheological Properties of Tamarind ( Tamarindus indica L .) Kernel Starch, Int. J. Food Prop. 19 (2016) 2432–2442. https://doi.org/10.1080/10942912.2015.1121495
[36] N.Z. Ngobese, O.C. Wokadala, B. Du Plessis, L.S. Da Silva, A. Hall, S.P. Lepule, M. Penter, M.E.K. Ngcobo, H.C. Swart, Physicochemical and morphological properties of a small granule legume starch with atypical properties from wild mango (Cordyla africana L.) seeds: A comparison to maize, pea and kidney bean starch, (2018) 1–29. https://doi.org/10.1002/star.201700345
[37] R. Hoover, Composition , molecular structure , and physicochemical properties of tuber and root starches : a review, Carbohydr. Polym. 45 (2001) 253–267
[38] L. Li, H. Chen, M. Wang, X. Lv, Y. Zhao, L. Xia, Development and characterization of irradiated-corn-starch film, Carbohydr. Polym. (2018) 1–24. https://doi.org/10.1016/j.carbpol.2018.04.060
[39] L. Ren, X. Yan, J. Zhou, J. Tong, X. Su, Influence of chitosan concentration on mechanical and barrier properties of corn starch / chitosan films, Int. J. Biol. Macromol. 105 (2017) 1636–1643. https://doi.org/10.1016/j.ijbiomac.2017.02.008
[40] V. Vamadevan, E. Bertoft, Structure-function relationships of starch components, Starch. 67 (2014) 55–68. https://doi.org/10.1002/star.201400188
[41] V.S. Aigbodion, E.G. Okonkwo, E.T. Akinlabi, Eco-friendly Polymer Composite : State-of-Arts , Opportunities and Challenge, in: Sustain. Polym. Compos. Nanocomposite, 2019: pp. 1233–1265
[42] M.K. Dang, R. Yoksan, Morphological characteristics and barrier properties of thermoplastic starch / chitosan blown film, Carbohydr. Polym. 150 (2016) 40–47. https://doi.org/10.1016/j.carbpol.2016.04.113
[43] Y. Zhong, X. Song, Y. Li, Antimicrobial , physical and mechanical properties of kudzu starch – chitosan composite films as a function of acid solvent types, Carbohydr. Polym. 84 (2011) 335–342. https://doi.org/10.1016/j.carbpol.2010.11.041
[44] P. Gonzalez-Seligra, L. Guz, O. Ochoa-Yepes, S. Goyanes, L. Fama, Influence of extrusion process conditions on starch film morphology, LWT – Food Sci. Technol. 84 (2017) 520–528. https://doi.org/10.1016/j.lwt.2017.06.027
[45] M. Combrzyński, L. Mościcki, M. Mitrus, K. Kupryaniuk, A. Oniszczuk, Application of extrusion-cooking technique for foamed starch-based materials, Contemp. Res. Trends Agric. Eng. 10 (2018) 1–6
[46] L. Moscicki, M. Mitrus, A. Wojtowicz, T. Oniszczuk, A. Rejak, Extrusion-Cooking of Starch, in: Adv. Agrophysical Res., 2013: pp. 319–346
[47] C. López de Dicastillo, K. Roa, L. Garrido, A. Pereira, M.J. Galotto, Novel Polyvinyl Alcohol/Starch Electrospun Fibers as a Strategy to Disperse Cellulose Nanocrystals into Poly(lactic acid), Polymers (Basel). 9 (2017) 1–16. https://doi.org/10.3390/polym9040117
[48] H. Kim, S.S. Park, S. Lim, Preparation, characterization and utilization of starch nanoparticles, Colloids Surfaces B Biointerfaces. (2014) 1–14. https://doi.org/10.1016/j.colsurfb.2014.11.011
[49] N. Soykeabkaew, C. Thanomsilp, O. Suwantong, A review: starch-based composite foams, Compos. PART A. 78 (2015) 246–263. https://doi.org/10.1016/j.compositesa.2015.08.014
[50] J.F. Mendes, R.T. Paschoalin, V.B. Carmona, A.R. Sena Neto, A.C.P. Marques, J.M. Marconcini, L.H.C. Mattoso, E.S. Medeiros, J.E. Oliveira, Biodegradable polymer blends based on corn starch and thermoplastic chitosan processed by extrusion, Carbohydr. Polym. 137 (2016) 452–458
[51] L.A. Toro-márquez, D. Merino, T.J. Gutiérrez, Bionanocomposite Films Prepared from Corn Starch With and Without Nanopackaged Jamaica ( Hibiscus sabdariffa ) Flower Extract, Food Bioprocess Technol. (2018) 1–19. https://doi.org/10.1007/s11947-018-2160-z
[52] R.P.H. Brandelero, M.V.E. Grossmann, F. Yamashita, Effect of the method of production of the blends on mechanical and structural properties of biodegradable starch films produced by blown extrusion, Carbohydr. Polym. 86 (2011) 1344–1350. https://doi.org/10.1016/j.carbpol.2011.06.045
[53] L. Quiles-Carrillo, N. Montanes, F. Pineiro, A. Jorda-Vilaplana, S. Torres-Giner, Ductility and Toughness Improvement of Injection-Molded Compostable Pieces of Polylactide by Melt Blending with Poly(ε-caprolactone) and Thermoplastic Starch, Materials (Basel). 11 (2018) 1–20. https://doi.org/10.3390/ma11112138
[54] C.M.O. Müller, J. Borges, F. Yamashita, Composites of thermoplastic starch and nanoclays produced by extrusion and thermopressing, Carbohydr. Polym. 89 (2012) 504–510. https://doi.org/10.1016/j.carbpol.2012.03.035
[55] J. Bonilla, L. Atarés, M. Vargas, A. Chiralt, Properties of wheat starch film-forming dispersions and films as affected by chitosan addition, J. Food Eng. 114 (2013) 303–312. https://doi.org/10.1016/j.jfoodeng.2012.08.005
[56] N.H. Zakaria, N. Muhammad, A. V Sandu, M.M.A.B. Abdullah, Effect of Mixing Temperature on Characteristics of Thermoplastic Potato Starch Film, IOP Conf. Ser. Mater. Sci. Eng. 374 (2018) 1–6. https://doi.org/10.1088/1757-899X/374/1/012083
[57] A.L. Da Rόz, M.D. Zambon, A.A.S. Curvelo, A.J.F. Carvalho, Thermoplastic starch modified during melt processing with organic acids : The effect of molar mass on thermal and mechanical properties, Ind. Crops Prod. 33 (2011) 152–157. https://doi.org/10.1016/j.indcrop.2010.09.015
[58] M. Thunwall, A. Boldizar, M. Rigdahl, Compression Molding and Tensile Properties of Thermoplastic Potato Starch Materials, Biomacromolecules. 7 (2006) 981–986
[59] R. Ortega-toro, I. Morey, P. Talens, A. Chiralt, Active bilayer films of thermoplastic starch and polycaprolactone obtained by compression molding, Carbohydr. Polym. 127 (2015) 282–290. https://doi.org/10.1016/j.carbpol.2015.03.080
[60] O. V Lopez, F. Versino, M.A. Villar, M.A. Garcia, Agro-industrial residue from starch extraction of Pachyrhizus ahipa as filler of thermoplastic corn starch films, Carbohydr. Polym. 134 (2015) 324–332. https://doi.org/10.1016/j.carbpol.2015.07.081
[61] Z. Liu, J. He, Polyvinyl alcohol / starch composite nanofibers by bubble electrospinning, Therm. Sci. 18 (2014) 1473–1475. https://doi.org/10.2298/TSCI1405473L
[62] Y. Wu, M. Ji, Q. Qi, Y. Wang, L. Zhang, Preparation , Structure , and Properties of Starch / Rubber Composites Prepared by Co-Coagulating Rubber Latex and Starch Paste, Macromol. Rapid Commun. 25 (2004) 565–570. https://doi.org/10.1002/marc.200300125
[63] R.J. Wanter, D. Mangindaan, Preparation of Indonesian taro starch particles via precipitation process, IOP Conf. Ser. Earth Environ. Sci. 195 (2018) 1–3. https://doi.org/10.1088/1755-1315/195/1/012059
[64] A.M. Amini, S. Mohammad, A. Razavi, S.A. Mortazavi, Morphological , physicochemical , and viscoelastic properties of sonicated corn starch, Carbohydr. Polym. 122 (2015) 282–292. https://doi.org/10.1016/j.carbpol.2015.01.020
[65] F. Askari, E. Sadeghi, R. Mohammadi, M. Rouhi, M. Taghizadeh, M.H. Shirgardoun, M. Kariminejad, The physicochemical and structural properties of psyllium gum / modified starch composite edible film, J. Food Process. Preserv. 42 (2018) 1–9. https://doi.org/10.1111/jfpp.13715
[66] H. Li, X. Gao, Y. Wang, X. Zhang, Z. Tong, Comparison of chitosan / starch composite film properties before and after ceoss-linking, Int. J. Biol. Macromol. 52 (2013) 275–279. https://doi.org/10.1016/j.ijbiomac.2012.10.016
[67] H.P.S. Abdul Khalil, S.W. Yap, F.A.T. Owolabi, M.K.M. Haafiz, M.R. Fazita, D.A. Gopakumar, M. Hasan, S. Rizal, Techno-functional Properties of Edible Packaging Films at Different Polysaccharide Blends, J. Phys. Sci. 30 (2019) 23–41
[68] R.A. Garalde, R. Thipmanee, P. Jariyasakoolroj, A. Sane, The effects of blend ratio and storage time on thermoplastic starch / poly ( butylene adipate- co -terephthalate ) films, Heliyon. 5 (2019) 1–20. https://doi.org/10.1016/j.heliyon.2019.e01251
[69] K. Katerinopoulou, A. Giannakas, N. Barkoula, A. Ladavos, Preparation , characterization and biodegradability assessment of Maize starch-(PVOH)/Clay nanocomposite films, Starch. 71 (2019) 1–8. https://doi.org/10.1002/star.201800076
[70] A. More, C. Sen, M. Das, A Comparative Study of Glutaraldehyde and Citric Acid As a Crosslinking Agent in Starch- Polyvinyl Alcohol Based Biodegradable Film, in: Int. Conf. Emerg. Technol. Agric. Eng. IIT Kharagpur, 2019: pp. 1–6
[71] R. Kumar, G. Ghoshal, M. Goyal, Synthesis and functional properties of gelatin / CA – starch composite film : excellent food packaging material Synthesis and functional properties of gelatin / CA – starch composite film : excellent food packaging material, J. Food Sci. Technol. 56 (2019) 1954–1965. https://doi.org/10.1007/s13197-019-03662-4
[72] S. Kumar, S.K. Samal, S. Mohanty, S.K. Nayak, Synthesis and Characterization of Nanoclay-Reinforced Trifunctional “ Bioresin-Modified ” Epoxy Blends Enhanced with Mechanical and Thermal Properties, ChemistrySelect. 2 (2017) 11445–11455. https://doi.org/10.1002/slct.201702041
[73] P.S. Garcia, F.R.B. Turbiani, A.M. Baron, G.L. Brizola, M.A. Tavares, F. Yamashita, D. Eiras, M.V.E. Grossmann, Sericin as compatibilizer in starch / polyester blown films, Polimeros. (2018) 1–6. https://doi.org/https://doi.org/10.1590/0104-1428.05117
[74] S. Sukhija, S. Singh, C.S. Riar, Development and characterization of biodegradable films from whey protein concentrate, psyllium husk and oxidized, crosslinked, dual-modified lotus rhizome starch composite, J. Sci. Food Agric. 99 (2019) 3398–3409. https://doi.org/10.1002/jsfa.9557
[75] M.G.A. Vieira, M. Altenhofen da Silva, L. Oliveira dos Santos, M.M. Beppu, Natural-based plasticizers and biopolymer films : A review, Eur. Polym. J. 47 (2011) 254–263. https://doi.org/10.1016/j.eurpolymj.2010.12.011
[76] G. Madhumitha, J. Fowsiya, S.M. Roopan, V.K. Thakur, Recent advances in starch – clay nanocomposites, Int. J. Polym. Anal. Charact. 23 (2018) 331–345. https://doi.org/10.1080/1023666X.2018.1447260
[77] S. Ismail, N. Mansor, Z. Man, A Study on Thermal Behaviour of Thermoplastic Starch Plasticized by [ Emim ] Ac and by [ Emim ] Cl, Procedia Eng. 184 (2017) 567–572. https://doi.org/10.1016/j.proeng.2017.04.138
[78] N.H. Zakaria, N. Muhammad, M. Mustafa, A. Bakri, Effect of glycerol content on mechanical , microstructure and physical properties of thermoplastic potato starch film, AIP Conf. Proc. 2030 (2018) 1–5. https://doi.org/10.1063/1.5066871
[79] A. Ekielski, T. Zelanzinski, V. Vladut, E. Tulska, Impact of bioethanol additive on the properties of stretchable starch films, Ann. Warsaw Univ. Life Sci. – SGGW. 69 (2017) 79–88. https://doi.org/10.22630/AAFE.2017.9
[80] A.H. Mohd Zain, A.W.M. Kahar, N.Z. Noriman, Chemical-Mechanical Hydrolysis Technique of Modified Thermoplastic Starch for Better Mechanical Performance, Procedia Chem. 19 (2016) 638–645. https://doi.org/10.1016/j.proche.2016.03.064
[81] Y. Wang, M.A. Rodriguez-Perez, R.L. Reis, J.F. Mano, Thermal and Thermomechanical Behaviour of Polycaprolactone and Starch / Polycaprolactone Blends for Biomedical Applications, Macromol. Mater. Eng. 290 (2005) 792–801. https://doi.org/10.1002/mame.200500003
[82] M.L. Sanyang, R.A. Ilyas, S.M. Sapuan, R. Jumaidin, Sugar Palm Starch-Based Composites for Packaging Applications, in: Bionanocomposites Packag. Appl., 2018: pp. 125–147. https://doi.org/10.1007/978-3-319-67319-6
[83] D. Lin, Y. Kuang, G. Chen, Q. Kuang, C. Wang, P. Zhu, C. Peng, Z. Fang, Enhancing moisture resistance of starch-coated paper by improving the film forming capability of starch film, Ind. Crop. Prod. 100 (2017) 12–18. https://doi.org/10.1016/j.indcrop.2017.02.013
[84] C. Liza, B. Soegijono, E. Budianto, Syuhada, D. Rusmana, Photodegradation Effect of Structure of Linear Low Density Polyethylene – Starch – Clay Nanocomposite Film, IOP Conf. Ser. Mater. Sci. Eng. 395 (2018) 1–7. https://doi.org/10.1088/1757-899X/395/1/012019
[85] O. Moreno, L. Atarés, A. Chiralt, Effect of the incorporation of antimicrobial / antioxidant proteins on the properties of potato starch films, Carbohydr. Polym. 133 (2015) 353–364. https://doi.org/10.1016/j.carbpol.2015.07.047
[86] S.C. Mendes, R.L. Reis, Y.P. Bovell, A.M. Cunha, C.A. Van Blitterswijk, J.D. De Bruijn, Biocompatibility testing of novel starch-based materials with potential application in orthopaedic surgery : a preliminary study, Biomaterials. 22 (2001) 2057–2064
[87] S. Lefnaoui, N. Moulai-mostefa, Synthesis and evaluation of the structural and physicochemical properties of carboxymethyl pregelatinized starch as a pharmaceutical excipient, Saudi Pharm. J. 23 (2015) 698–711. https://doi.org/10.1016/j.jsps.2015.01.021
[88] A. Rodrigues, M. Emeje, Recent applications of starch derivatives in nanodrug delivery, Carbohydr. Polym. 87 (2012) 987–994. https://doi.org/10.1016/j.carbpol.2011.09.044
[89] S.H.M. Najafi, M. Baghaie, A. Ashori, Preparation and characterization of acetylated starch nanoparticles as drug carrier : Ciprofloxacin as a model, Int. J. Biol. Macromol. 87 (2016) 48–54. https://doi.org/10.1016/j.ijbiomac.2016.02.030
[90] C. Calinescu, B. Mondovi, R. Federico, P. Ispas-szabo, M.A. Mateescu, Carboxymethyl starch : Chitosan monolithic matrices containing diamine oxidase and catalase for intestinal delivery, Int. J. Pharm. 428 (2012) 48–56. https://doi.org/10.1016/j.ijpharm.2012.02.032
[91] H. Xiao, T. Yang, Q. Lin, G. Liu, L. Zhang, F. Yu, Y. Chen, Acetylated starch nanocrystals : Preparation and antitumor drug delivery study, Int. J. Biol. Macromol. 89 (2016) 456–464. https://doi.org/10.1016/j.ijbiomac.2016.04.037
[92] Y. Li, X. Zhao, L. Wang, Y. Liu, W. Wu, C. Zhong, Q. Zhang, J. Yang, Preparation , characterization and in vitro evaluation of melatonin-loaded porous starch for enhanced bioavailability, Carbohydr. Polym. 202 (2018) 125–133. https://doi.org/10.1016/j.carbpol.2018.08.127
[93] Y. Benavent-gil, C.M. Rosell, Morphological and physicochemical characterization of porous starches obtained from different botanical sources and amylolytic enzymes, Int. J. Biol. Macromol. 103 (2017) 587–595. https://doi.org/10.1016/j.ijbiomac.2017.05.089
[94] C. Wu, Z. Wang, Z. Zhi, T. Jiang, J. Zhang, S. Wang, Development of biodegradable porous starch foam for improving oral delivery of poorly water soluble drugs, Int. J. Pharm. 403 (2011) 162–169. https://doi.org/10.1016/j.ijpharm.2010.09.040
[95] M.J. Santander-ortega, T. Stauner, B. Loretz, J.L. Ortega-vinuesa, D. Bastos-gonzález, G. Wenz, U.F. Schaefer, C.M. Lehr, Nanoparticles made from novel starch derivatives for transdermal drug delivery, J. Control. Release. 141 (2010) 85–92. https://doi.org/10.1016/j.jconrel.2009.08.012
[96] C. Belingheri, A. Ferrillo, E. Vittadini, Porous starch for flavor delivery in a tomato-based food application, LWT – Food Sci. Technol. 60 (2015) 593–597. https://doi.org/10.1016/j.lwt.2014.09.047
[97] G. Gong, F. Zhang, Z. Cheng, L. Zhou, Facile fabrication of magnetic carboxymethyl starch / poly ( vinyl alcohol ) composite gel for methylene blue removal, Int. J. Biol. Macromol. 81 (2015) 205–211. https://doi.org/10.1016/j.ijbiomac.2015.07.061
[98] L. Yan, P.R. Chang, P. Zheng, Preparation and characterization of starch-grafted multiwall carbon nanotube composites, Carbohydr. Polym. 84 (2011) 1378–1383. https://doi.org/10.1016/j.carbpol.2011.01.042
[99] M. Zubair, N. Jarrah, Ihsanullah, A. Khalid, S.M. Manzar, T.S. Kazeem, M.A. Al-Harthi, Starch-NiFe-layered double hydroxide composites : Efficient removal of methyl orange from aqueous phase, J. Mol. Liq. 249 (2018) 254–264. https://doi.org/10.1016/j.molliq.2017.11.022
[100] C. Yu, X. Tang, S. Liu, Y. Yang, X. Shen, C. Gao, Laponite crosslinked starch / polyvinyl alcohol hydrogels by freezing / thawing process and studying their cadmium ion absorption, Int. J. Biol. Macromol. 117 (2018) 1–6. https://doi.org/10.1016/j.ijbiomac.2018.05.159
[101] J. Wang, S. Yuan, Y. Wang, H. Yu, Synthesis , characterization and application of a novel starch- based flocculant with high flocculation and dewatering properties, Water Res. (2013) 1–6. https://doi.org/10.1016/j.watres.2013.01.050