Applications of Chitosan Composites in Pharmaceutical and Food Sectors
Rabinarayan Parhi
Despite of many advantages including biocompatibility, biodegradability and nono-toxicity, chitosan alone suffered in terms of application in pharmaceutical and biomedical fields because of low mechanical strength and poor thermal stability. Therefore, more attention is being given to chitosan based composites to improve above mentioned properties and to modify its drug release potential; chitosan is being blended with other natural or synthetic polymers or by incorporating nano-fillers to either obtain simple composites or nanocomposites. More importantly, these composite materials based on chitosan can be moulded into various shapes and forms such as hydrogel, films, fibers, microspheres, nanospheres, scaffold, beads, sponges and solution to suit different pharmaceutical and biomedical applications including drug delivery systems, tissue engineering and wound healing, and food packaging.
Keywords
Chitosan, Composite, Biodegradable, Biocompatable, Microsphere, Scaffold
Published online 4/20/2020, 50 pages
Citation: Rabinarayan Parhi, Applications of Chitosan Composites in Pharmaceutical and Food Sectors, Materials Research Foundations, Vol. 73, pp 86-135, 2020
DOI: https://doi.org/10.21741/9781644900772-4
Part of the book on Advanced Applications of Polysaccharides and their Composites
References
[1] M. Fazeli, J. Florez, R. Simão, Improvement in adhesion of cellulose fibers to the thermoplastic starch matrix by plasma treatment modification, Composites Part B: Eng. 163 (2018) 207-216. https://doi.org/10.1016/j.compositesb.2018.11.048
[2] Y. Shi, S. Jiang, K. Zhou, C. Bao, B. Yu, X. Qian, B. Wang, N. Hong, P. Wen, Z. Gui, Y. Hu, R.K. Yuen, Influence of g-C3N4 nanosheets on thermal stability and mechanical properties of biopolymer electrolyte nanocomposite films: A novel investigation, ACS Appl. Mater. Interfac. 6 (2014) 429-437. https://doi.org/10.1021/am4044932
[3] Y.X. Xu, K.M. Kim, M.A. Hanna, D. Nag, Chitosan-starch composite film: Preparation and characterization, Ind. Crops Prod. 21 (2005) 185-192. https://doi.org/10.1016/j.indcrop.2004.03.002
[4] X. Wang, B. Xing, Importance of structural makeup of biopolymers for organic contaminant sorption, Environ. Sci. Technol. 41 (2007) 3559–3565. https://doi.org/10.1021/es062589t
[5] J.K. Park, M.J. Chung, H.N. Choi, Y.I. Park, Effects of the molecular weight and the degree of deacetylation of chitosan oligosaccharides on antitumor activity, Int. J. Mol. Sci. 12 (2011) 266–277. https://doi.org/10.3390/ijms12010266
[6] Y.S. Puvvada, S. Vankayalapati, S. Sukhavasi, Extraction of chitin from chitosan from exoskeleton of shrimp for application in the pharmaceutical industry, Int. Curr. Pharm. J. 1 (2012) 258–263. https://doi.org/10.3329/icpj.v1i9.11616
[7] E. Khor, L.Y. Lim, Implantable applications of chitin and chitosan, Biomaterials. 24 (2003) 2339–2349. https://doi.org/10.1016/S0142-9612(03)00026-7
[8] R. Jayakumar, K.P. Chennazhi, S. Srinivasan, S.V. Nair, T. Furuike, H. Tamura, Chitin scaffolds in tissue engineering, Int. J. Mol. Sci. 12 (2011) 1876–1887. https://doi.org/10.3390/ijms12031876
[9] I.Y. Kim, S.J. Seo, H.S. Moon, M.K. Yoo, I.Y. Park, B.C. Kim, C.S. Cho, Chitosan and its derivatives for tissue engineering applications, Biotechnol Adv. 26 (2008) 1-21. https://doi.org/10.1016/j.biotechadv.2007.07.009
[10] M. Rinaudo, Chitin and chitosan: properties and applications, Prog. Polym. Sci. 31 (2006) 603–632. https://doi.org/10.1016/j.progpolymsci.2006.06.001
[11] K. Kiene, F. Porta, B. Topacogullari, P. Detampel, J. Huwyler, Self-assembling chitosan hydrogel: A drug-delivery device enabling the sustained release of proteins, J. Appl. Polym. Sci. 135(1) (2018) 45638. https://doi.org/10.1002/app.45638
[12] M.C.G. Pellá, M.K. Lima-Tenório, E.T. Tenório-Neto, M.R. Guilherme, E.C. Muniz, A.F. Rubira, Chitosan-based hydrogels: From preparation to biomedical applications, Carbohydr. Polym. 196 (2018) 233–245. https://doi.org/10.1016/j.carbpol.2018.05.033
[13] P. Sacco, M. Borgogna, A. Travan, E. Marsich, S. Paoletti, F. Asaro, I. Donati, Polysaccharide-based networks from homogeneous chitosan-tripolyphosphate hydrogels: Synthesis and characterization, Biomacromol. 15 (2014) 3396–3405. https://doi.org/10.1021/bm500909n
[14] P. Sacco, S. Paoletti, M. Cok, F. Asaro, M. Abrami, M. Grassi, I. Donati, Insight into the ionotropic gelation of chitosan using tripolyphosphate and pyrophosphate as cross-linkers, Int. J. Biol. Macromol. 92 (2016) 476–483. https://doi.org/10.1016/j.ijbiomac.2016.07.056
[15] J. Venkatesan, P.A. Vinodhini, P.N. Sudha, S.K. Kim, Chitin and chitosan composites for bone tissue regeneration, Adv. Food Nutr. Res. 73 (2014) 59–81. https://doi.org/10.1016/B978-0-12-800268-1.00005-6
[16] L. Tan, J. Hu, H. Huang, J. Han, H. Hu, Study of multi-functional electrospun composite nanofibrous mats for smart wound healing. Int. J. Biol. Macromol. 79 (2015) 469–476. https://doi.org/10.1016/j.ijbiomac.2015.05.014
[17] J.K. Vasir, K. Tambwekar, S. Garg, Bioadhesive microspheres as a controlled drug delivery system, Int. J. Pharm. 255 (2003) 13–32. https://doi.org/10.1016/S0378-5173(03)00087-5
[18] K. Vimala, Y.M. Mohan, K. Varaprasad, N.N. Redd, S. Ravindra, N.S. Naidu, K.M. Raju, Fabrication of curcumin encapsulated chitosan-PVA silver nanocomposite films for improved antimicrobial activity, J. Biomater. Nanobiotechnol. 2 (2011) 55–64. https://doi.org/10.4236/jbnb.2011.21008
[19] K. Kofuji, C.J. Qian, M. Nishimura, I. Sugiyama, Y. Murata, S. Kawashima, Relationship between physicochemical characteristics and functional properties of chitosan, Eur. Polym. J. 41 (2005) 2784–2791. https://doi.org/10.1016/j.eurpolymj.2005.04.041
[20] W. Sun, S. Mao, Y. Wang, V.B. Junyaprasert, T. Zhang, L. Na, J. Wang, Bioadhesion and oral absorption of enoxaparin nanocomplexes, Int. J. Pharm. 386 (2010) 275-281. https://doi.org/10.1016/j.ijpharm.2009.11.025
[21] G. Shavi, U. Nayak, M. Reddy, A. Karthik, P.B. Deshpande, A.R. Kumar, N. Udupa, Sustained release optimized formulation of anastrozole-loaded chitosan microspheres: In vitro and in vivo evaluation, Mater. Sci. Mater. Med. 22 (2011) 865-878. https://doi.org/10.1007/s10856-011-4274-y
[22] E. Meng-Lund, C. Muff-Westergaard, C. Sander, P. Madelung, J. Jacobsen, A mechanistic based approach for enhancing buccal mucoadhesion of chitosan. Int J Pharm. 461 (2014) 280–285. https://doi.org/10.1016/j.ijpharm.2013.10.047
[23] A. Jintapattanakit, V.B. Junyaprasert, T.J. Kissel, The role of mucoadhesion of trimethyl chitosan and PEGylated trimethyl chitosan nanocomplexes in insulin uptake, Pharm. Sci. 98 (2009) 4818-30. https://doi.org/10.1002/jps.21783
[24] Saikia C, Gogoi P, T.K. Maji, Chitosan: a promising biopolymer in drug delivery applications, J. Mol. Genet. Med. 6 (2015) 1-10. https://doi.org/10.4172/1747-0862.S4-006
[25] R. Parhi, Chitin and Chitosan in Drug Delivery, in: G. Crini, E. Lichtfouse, (Eds.), Sustainable Agriculture Reviews, Springer, Cham, 2019, pp. 175-239. https://doi.org/10.1007/978-3-030-16581-9_6
[26] S. Gupta, S.P. Vyas, Carbopol/chitosan based pH triggered in situ gelling system for ocular delivery of timolol maleate, Sci. Pharm. 78 (2010) 959-76. https://doi.org/10.3797/scipharm.1001-06
[27] D. Sakloetsakun, J. Hombach, A. Bernkop-Schnurch, In situ gelling properties of chitosan ethioglycolic acid conjugate in the presence of oxidizing agents, Biomater. 30 (2009) 6151-7. https://doi.org/10.1016/j.biomaterials.2009.07.060
[28] J. Malmo, K.M. Vrum, S.P. Strand, Effect of chitosan chain architecture on gene delivery: Comparison of self-branched and linear chitosans, Biomacromol. 12 (2011) 721-9. https://doi.org/10.1021/bm1013525
[29] R. Martien, B. Loretz, M. Thaler, S. Majzoob, A. Bernkop-Schnurch, Chitosanethioglycolic acid conjugate: An alternative carrier for oral nonviral gene delivery, J. Biomed. Mater. Res. A. 82 (2007) 1-9. https://doi.org/10.1002/jbm.a.31135
[30] M. Malhotra, C. Lane, C. Tomaro-Duchesneau, S. Saha, S. Prakash, A novel scheme for synthesis of PEG-graftedchitosan polymer for preparation of nanoparticles and other applications, Int. J. Nanomed. 6 (2011) 485-94.
[31] N.G.M. Schipper, S. Olsson, J.A. Hoogstraate, A.G. deBoer, K.M. Va˚rum, P. Artursson, Chitosans as absorption enhancer for poorly absorbable drugs: 2. Mechanism of absorption enhancement, Pharm. Res. 14 (1997) 923-9. https://doi.org/10.1023/A:1012160102740
[32] P. Shah, V. Jogani, P. Mishra, A.K. Mishra, T. Bagchi, A. Misra, Modulation of ganciclovir intestinal absorption in presence of absorption enhancers, J. Pharm. Sci. 96 (2007) 2710-22. https://doi.org/10.1002/jps.20888
[33] C.E. Kast, A. Bernkop-Schnurch, Influence of the molecular mass on the permeation enhancing effect of different poly(acrylates), STP Pharm. Sci. 6 (2002) 351-6.
[34] L. Zhang, Y. Ma, X. Pan, S. Chen, H. Zhuang, S. Wang, A composite hydrogel of chitosan/heparin/poly (γ-glutamic acid) loaded with superoxide dismutase for wound healing, Carbohydrate Polym. 180 (2018) 168–174. https://doi.org/10.1016/j.carbpol.2017.10.036
[35] G. Rassu, A. Salis, E.P. Porcu, P. Giunchedi, M. Roldo, E. Gavini, Composite chitosan/alginate hydrogel for controlled release of deferoxamine: A system to potentially treat iron dysregulation diseases, Carbohydr. Polym. 136 (2016) 1338–1347. https://doi.org/10.1016/j.carbpol.2015.10.048
[36] E.T. Nicknejad, S.M. Ghoreishi, N. Habibi, Electrospinning of cross-linked magnetic chitosan nanofibers for protein release, AAPS Pharm Sci Tech. 16 (2015) 1480-86. https://doi.org/10.1208/s12249-015-0336-7
[37] R. Sharma, D. Saxena, A.K. Dwivedi, A. Misra, Inhalable microparticles containing drug combinations to target alveolar macrophages for treatment of pulmonary tuberculosis, Pharm. Res. 18 (2001) 1405–1410. https://doi.org/10.1023/A:1012296604685
[38] K. Hirota, T. Hasegawa, T. Nakajima, H. Inagawa, C. Kohchi, G. Soma, K. Makino, H. Terada, Delivery of rifampicin-PLGA microspheres into alveolar macrophages is promising for treatment of tuberculosis, J. Control. Release. 142 (2010) 339–346. https://doi.org/10.1016/j.jconrel.2009.11.020
[39] H. Feng, L. Zhang, C. Zhu, Genipin crosslinked ethyl cellulose–chitosan complex microspheres for anti-tuberculosis delivery, Colloid Surf. B. Biointerf. 103 (2013) 530–537. https://doi.org/10.1016/j.colsurfb.2012.11.007
[40] H. Nazar, D.G. Fatouros, S.M. van der Merwe, N. Bouropoulos, G. Avgouropoulos, J. Tsibouklis, M. Roldo, Thermosensitive hydrogels for nasal drug delivery: the formulation and characterisation of systems based on N-trimethyl chitosan chloride, Eur. J. Pharm. Biopharm. 77 (2011) 225-32. https://doi.org/10.1016/j.ejpb.2010.11.022
[41] Z. Liang, T. Gong, X. Sun, J.Z. Tang, Z. Zhang, Chitosan oligomers as drug carriers for renal delivery of zidovudine, Carbohydr. Polym. 87 (2012) 2284-90. https://doi.org/10.1016/j.carbpol.2011.10.060
[42] P. Shi, Y. Zuo, Q. Zou, J. Shen, L. Zhang, Y. Li, Y.S. Morsi, Improved properties of incorporated chitosan film with ethyl cellulose microspheres for controlled release, Int. J. Pharm. 375 (2009) 67–74. https://doi.org/10.1016/j.ijpharm.2009.04.016
[43] M.S. Freag, W.M. Saleh, O.Y. Abdallah, Laminated chitosan-based composite sponges for transmucosal delivery of novel protamine-decorated tripterine phytosomes: Ex-vivo mucopenetration and in-vivo pharmacokinetic assessments, Carbohydr, Polym. 188 (2018) 108–120. https://doi.org/10.1016/j.carbpol.2018.01.095
[44] N. Rodkate, M. Rutnakornpituk, Multi-responsive magnetic microsphere of poly(N-isopropylacrylamide)/carboxymethylchitosan hydrogel for drug controlled release, Carbohydr. Polym. 151 (2016) 251–259. https://doi.org/10.1016/j.carbpol.2016.05.081
[45] Y. Gong, Q.L. Liu, A.M. Zhu, Q.G. Zhang, One-pot synthesis of poly(N-isopropylacrylamide)/chitosan composite microspheres via microemulsion, Carbohydr. Polym. 90 (2012) 690–695. https://doi.org/10.1016/j.carbpol.2012.05.098
[46] H. Yu, T. Zhu, J. Xie, J. Du, C. Sun, J. Wang, J. Wang, S. Chen, Preparation of inorganic-organic-framework nanoscale carries as a potential platform for drug delivery, Adv. Eng. Mater. 1800626 (2018) 1-9. https://doi.org/10.1002/adem.201800626
[47] E. Pastor, E. Matveeva, A. Valle-Gallego, F.M. Goycoolea, M. Garcia-Fuentes, Protein delivery based on uncoated and chitosan-coated mesoporous silicon microparticles, Colloid Surf. B Biointerf. 88 (2011) 601–609. https://doi.org/10.1016/j.colsurfb.2011.07.049
[48] M. Prabaharan, J.F. Mano, Chitosan-based particles as controlled drug delivery systems, Drug Deliv. 12 (2005) 41–57. https://doi.org/10.1080/10717540590889781
[49] S. Mao, W. Sun, T. Kissel, Chitosan-based formulations for delivery of DNA and siRNA, Adv. Drug Deliv. Rev. 62 (2009) 12–27. https://doi.org/10.1016/j.addr.2009.08.004
[50] T. Sato, T. Ishii, Y. Okahata, In vitro gene delivery mediated by chitosan. Effect of pH, serum, and molecular mass of chitosan on the transfection efficiency, Biomater. 22 (2001) 2075–80. https://doi.org/10.1016/S0142-9612(00)00385-9
[51] J.I. Lee, H.S. Kim, H.S. Yoo, DNA nanogels composed of chitosan and pluronic with thermo-sensitive and photo-crosslinking properties, Int. J. Pharm. 373 (2009) 93–9. https://doi.org/10.1016/j.ijpharm.2009.01.016
[52] O. Ortona, G. D’Errico, G. Mangiapia, D .Ciccarelli, The aggregative behavior of hydrophobically modified chitosans with high substitution degree in aqueous solution, Carbohydr. Polym. 74 (2008) 16–22. https://doi.org/10.1016/j.carbpol.2008.01.009
[53] Y.Z. Du, L. Wang, H. Yuan, F.Q. Hu, Linoleic acid-grafted chitosan oligosaccharide micelles for intracellular drug delivery and reverse drug resistance of tumor cells, Int. J. Biol. Macromol. 48 (2011) 215–222. https://doi.org/10.1016/j.ijbiomac.2010.11.005
[54] S. Ahmed, A.A. Ali, J. Sheikh, A review on chitosan centred scaffolds and their applications in tissue engineering, Int. J. Biol. Macromol. 116 (2018) 849–862. https://doi.org/10.1016/j.ijbiomac.2018.04.176
[55] T.H. Qazi, R. Rai, A.R. Boccaccini, Tissue engineering of electrically responsive tissues using polyaniline based polymers: A review, Biomater. 35 (33) (2014) 9068–9086. https://doi.org/10.1016/j.biomaterials.2014.07.020
[56] H. Mittal, S.S. Raya, B.S. Kaithd, J.K. Bhatiad, Sukritid, J. Sharmad, S.M. Alhassan, Recent progress in the structural modification of chitosan for applications in diversified biomedical fields, Eur. Polym. J. 109 (2018) 402–434. https://doi.org/10.1016/j.eurpolymj.2018.10.013
[57] R.C.F. Cheung, T.B. Ng, J.H. Wong, W.Y. Chan, Chitosan: An Update on Potential Biomedical and Pharmaceutical Applications, Mar. Drugs. 13 (2015) 5156-5186. https://doi.org/10.3390/md13085156
[58] S.D. Baljinder, B.A. Adetola, Current clinical therapies for cartilage repair, their limitation and the role of stem cells, Curr. Stem Cell Res. Ther. 7 (2012) 143–148. https://doi.org/10.2174/157488812799219009
[59] C. Chai, K.W. Leong, Biomaterials approach to expand and direct differentiation of stem cells, Mol. Ther. 15 (2007) 467–480. https://doi.org/10.1038/sj.mt.6300084
[60] Y.J. Seol, J.-Y. Lee, Y.J. Park, Y.-M. Lee, Y. Ku, I.C. Rhyu, S.J. Lee, S.B. Han, C.-P. Chung, Chitosan sponges as tissue engineering scaffolds for bone formation, Biotech. Lett. 26 (2004) 1037–1041. https://doi.org/10.1023/B:BILE.0000032962.79531.fd
[61] J.H. Jang, O. Castano, H.-W. Kim, Electrospun materials as potential platforms for bone tissue engineering, Adv. Drug Deliv. Rev. 61 (2009) 1065–1083. https://doi.org/10.1016/j.addr.2009.07.008
[62] I. Cacciotti, Cationic and anionic substitutions in hydroxyapatite, in: I.V. Antoniac (Ed.), Handbook of Bioceramics and Biocomposites, Springer International Publishing, Cham, 2016, pp. 145–211. https://doi.org/10.1007/978-3-319-12460-5_7
[63] S.J. Hollister, Porous scaffold design for tissue engineering, Nat. Mater. 4 (2005) 518–524. https://doi.org/10.1038/nmat1421
[64] H. Seeherman, R. Li, J. Wozney, A review of preclinical program development for evaluating injectable carriers for osteogenic factors, J. Bone Joint Surg. Am. 85A(Suppl 3) (2003) 96–108. https://doi.org/10.2106/00004623-200300003-00016
[65] Y. Zhang, M. Zhang, Synthesis and characterization of macroporous chitosan/ calcium phosphate composite scaffolds for tissue engineering, J. Biomed. Mater. Res. 55 (2001) 304–312. https://doi.org/10.1002/1097-4636(20010605)55:3<304::AID-JBM1018>3.0.CO;2-J
[66] S. Deepthi, J. Venkatesan, Se-Kwon Kim, Joel D. Bumgardner, R. Jayakumar, An overview of chitin or chitosan/nano ceramic composite scaffolds for bone tissue engineering, Int. J. Biol. Macromol. 93 (2016) 1338–1353. https://doi.org/10.1016/j.ijbiomac.2016.03.041
[67] Y. Zhang, M. Zhang, Three-dimensional macroporous calcium phosphate bioceramics with nested chitosan sponges for loadbearing bone implants, J. Biomed. Mater. Res. 61 (2002) 1–8. https://doi.org/10.1002/jbm.10176
[68] Y. Zhang, M. Zhang, Calcium phosphate/chitosan composite scaffolds for controlled in vitro antibiotic drug release, J. Biomed. Mater. Res. 62 (2002) 378–86. https://doi.org/10.1002/jbm.10312
[69] Y. Zhang, M. Ni, M. Zhang, B. Ratner, Calcium phosphatechitosan composite scaffolds for bone tissue engineering, Tissue Eng. 9 (2003) 337–45. https://doi.org/10.1089/107632703764664800
[70] H.H. Xu, J.B. Quinn, S. Takagi, L.C. Chow, Synergistic reinforcement of in situ hardening calcium phosphate composite scaffold for bone tissue engineering, Biomater. 25 (2004) 1029–37. https://doi.org/10.1016/S0142-9612(03)00608-2
[71] F. Zhao, Y. Yin, W.W. Lu, J.C. Leong, W. Zhang, J. Zhang, M. Zhang, K. Yao, Preparation and histological evaluation of biomimetic threedimensional hydroxyapatite/chitosan-gelatin network composite scaffolds, Biomater. 23 (2002) 3227–34. https://doi.org/10.1016/S0142-9612(02)00077-7
[72] S.B. Kim, Y.J. Kim, T.L. Yoon, S.A. Park, I.H. Cho, E.J. Kim, I.A. Kim, J.W. Shin, The characteristics of a hydroxyapatite-chitosan-PMMA bone cement, Biomater. 25 (2004) 5715–23 https://doi.org/10.1016/j.biomaterials.2004.01.022
[73] L. Zhao, E.F. Burguera, H.H. Xu, N. Amin, H. Ryou, D.D. Arola, Fatigue and human umbilical cord stem cell seeding characteristics of calcium phosphate-chitosan-biodegradable fiber scaffolds, Biomater. 31 (2010) 840–7. https://doi.org/10.1016/j.biomaterials.2009.09.106
[74] C. Chang, N. Peng, M. He, Y. Teramoto, Y. Nishio, L. Zhang, Fabrication and properties of chitin/hydroxyapatite hybrid hydrogels as scaffold nano-materials, Carbohydr. Polym. 91 (2013) 7–13 https://doi.org/10.1016/j.carbpol.2012.07.070
[75] S.B. Qasim, S. Husain, Y. Huang, M. Pogorielov, V. Deineka, M. Lyndin, A. Rawlinson, I.U. Rehman, In-vitro and in-vivo degradation studies of freeze gelated porous chitosan composite scaffolds for tissue engineering applications, Polym. Degrad. Stab. 136 (2017) 31–38. https://doi.org/10.1016/j.polymdegradstab.2016.11.018
[76] A. Olad, F. Farshi Azhar, The synergetic effect of bioactive ceramic and nanoclay on the properties of chitosan–gelatin/nanohydroxyapatite–montmorillonite scaffold for bone tissue engineering, Ceram. Int. 40 (7 Part A) (2014) 10061–10072. https://doi.org/10.1016/j.ceramint.2014.04.010
[77] K.R. Mohamed, A.A. Mostafa, Preparation and bioactivity evaluation of hydroxyapatite-titania/chitosan-gelatin polymeric biocomposites, Mater. Sci. Eng. C. 28(7) (2008) 1087–1099. https://doi.org/10.1016/j.msec.2007.04.040
[78] M. Nerantzaki, M. Nerantzaki, I.G. Koliakou, M. Kaloyianni, M. Kaloyianni, D.N. Bikiari, D.N. Bikiaris, New N-(2-carboxybenzyl)chitosan composite scaffolds containing nanoTiO2 or bioglass with enhanced cell proliferation for bone-tissue engineering applications, Int. J. Polym. Mater. 66(2) (2016) 71-81. https://doi.org/10.1080/00914037.2016.1182913
[79] M. Peter, N.S. Binulal, S.V. Nair, N. Selvamurugan, H. Tamura, R. Jayakumar, Novel biodegradable chitosan–gelatin/nano-bioactive glass ceramic composite scaffolds for alveolar bone tissue engineering, Chem. Eng. J. 158 (2010) 353–361. https://doi.org/10.1016/j.cej.2010.02.003
[80] J. Venkatesan, B. Ryu, P.N. Sudha, S.K. Kim, Preparation and characterization of chitosancarbon nanotube scaffolds for bone tissue engineering, Int. J. Biol. Macromol. 50 (2012) 393–402. https://doi.org/10.1016/j.ijbiomac.2011.12.032
[81] L. Yang, Q. Wang, L. Peng, H. Yue, Z. Zhang, Vascularization of repaired limb bone defects using chitosan-β-tricalcium phosphate composite as a tissue engineering bone scaffold, Mol. Med. Rep. 12 (2015) 2343–2347. https://doi.org/10.1016/j.ijbiomac.2011.12.032
[82] Y. Wang, J. Qian, N. Zhao, T. Liu, W. Xu, A. Suo, Novel hydroxyethyl chitosan/cellulose scaffolds with bubble-like porous structure for bone tissue engineering, Carbohydr. Polym. 167 (2017) 44–51. https://doi.org/10.1016/j.carbpol.2017.03.030
[83] M.L. Alves da Silva, A. Crawford, J.M. Mundy, V.M. Correlo, P. Sol, M. Bhattacharya, P.V. Hatton, R.L. Reis, N.M. Neves, Chitosan/polyester-based scaffolds for cartilage tissue engineering: Assessment of extracellular matrix formation, Acta Biomater. 6 (2010) 1149–1157. https://doi.org/10.1016/j.actbio.2009.09.006
[84] H. Park, B. Choi, J. Hu, M. Lee, Injectable chitosan hyaluronic acid hydrogels for cartilage tissue engineering, Acta Biomater. 9 (2013) 4779–4786. https://doi.org/10.1016/j.actbio.2012.08.033
[85] W.A. Li, B.Y. Lu, L. Gu, Y. Choi, J. Kim, D.J. Mooney, The effect of surface modification of mesoporous silica micro-rod scaffold on immune cell activation and infiltration, Biomater. 83 (2016) 249–256. https://doi.org/10.1016/j.biomaterials.2016.01.026
[86] C.Y. Kuo, C.H. Chen, C.Y. Hsiao, J.P. Chen, Incorporation of chitosan in biomimetic gelatin/chondroitin-6-sulfate/hyaluronan cryogel for cartilage tissue engineering, Carbohydr. Polym. 117 (2015) 722–730. https://doi.org/10.1016/j.carbpol.2014.10.056
[87] N.S. Sambudi, M. Sathyamurthy, G.M. Lee, S.B. Park, Electrospun chitosan/poly (vinyl alcohol) reinforced with CaCO3 nanoparticles with enhanced mechanical properties and biocompatibility for cartilage tissue engineering, Compos. Sci. Technol. 106 (2015) 76–84. https://doi.org/10.1016/j.compscitech.2014.11.003
[88] G. Lu, B. Sheng, Y. Wei, G. Wang, L. Zhang, Q. Ao, Y. Gong, X. Zhang, Collagen nanofiber-covered porous biodegradable carboxymethyl chitosan microcarriers for tissue engineering cartilage, Eur. Polym. J. 44 (2008) 2820–2829. https://doi.org/10.1016/j.eurpolymj.2008.06.021
[89] K. Song, L. Li, W. Li, Y. Zhu, Z. Jiao, M. Lim, M. Fang, F. Shi, L. Wang, T. Liu, Three-dimensional dynamic fabrication of engineered cartilage based on chitosan/ gelatin hybrid hydrogel scaffold in a spinner flask with a special designed steel frame, Mater. Sci. Eng. C. 55 (2015) 384–392. https://doi.org/10.1016/j.msec.2015.05.062
[90] A. Lahiji, A. Sohrabi, D.S. Hungerford, C.G. Frondoza, Chitosan supports the expression of extracellular matrix proteins in human osteoblasts and chondrocytes, J. Biomed. Mater. Res. 51 (2000) 586–595. https://doi.org/10.1002/1097-4636(20000915)51:4<586::AID-JBM6>3.0.CO;2-S
[91] J.K. Francis Suh, H.W.T. Matthew, Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: A review, Biomater. 21 (2000) 2589–2598. https://doi.org/10.1016/S0142-9612(00)00126-5
[92] M. Sittinger, D.W. Hutmacher, M.V. Risbud, Current strategies for cell delivery in cartilage and bone regeneration, Curr. Opin. Biotechnol. 15 (2004) 411–418. https://doi.org/10.1016/j.copbio.2004.08.010
[93] A. Di Martino, M. Sittinger, M.V. Risbud, Chitosan: A versatile biopolymer for orthopaedic tissue-engineering, Biomater. 26 (2005) 5983–5990. https://doi.org/10.1016/j.biomaterials.2005.03.016
[94] X. Liang, X. Wang, Q. Xu, Y. Lu, Y. Zhang, H. Xia, A. Lu, L. Zhang, Rubbery chitosan/carrageenan hydrogels constructed through an electroneutrality system and their potential application as cartilage scaffolds, Biomacromol. 19 (2018) 340–352. https://doi.org/10.1021/acs.biomac.7b01456
[95] S.H. Hsu, S.W. Whu, S.C. Hsieh, C.L. Tsai, D.C. Chen, T.S. Tan, Evaluation of chitosan–alginate–hyaluronate complexes modified by an RGD-containing protein as tissue-engineering scaffolds for cartilage regeneration, Artif. Organs. 28 (2004) 693–703. https://doi.org/10.1111/j.1525-1594.2004.00046.x
[96] S. Chameettachal, S. Murab, R. Vaid, S. Midha, S. Ghosh, Effect of visco-elastic silk-chitosan microcomposite scaffolds on matrix deposition and biomechanical functionality for cartilage tissue engineering, J. Tissue Eng. Regen. Med. 11 (2017) 1212-1229. https://doi.org/10.1002/term.2024
[97] R.S. Tigli, M. Gumusderelioglu, Evaluation of alginatechitosan semi IPNs as cartilage scaffolds, J. Mater. Sci. Mater. Med. 20 (2009) 699–709. https://doi.org/10.1007/s10856-008-3624-x
[98] T. Freier, R. Montenegro, H. Shan Koh, M.S. Shoichet, Chitin-based tubes for tissue engineering in the nervous system, Biomater. 26 (2005) 4624–4632. https://doi.org/10.1016/j.biomaterials.2004.11.040
[99] C.A. Heath, G.E. Rutkowski, The development of bioartificial nerve grafts for peripheral-nerve regeneration, Trends Biotechnol. 16 (1998) 163–168. https://doi.org/10.1016/S0167-7799(97)01165-7
[100] G. Ciardelli, V. Chiono, Materials for peripheral nerve regeneration, Macromol. Biosci. 6 (2006) 13–26. https://doi.org/10.1002/mabi.200500151
[101] M. Dash, F. Chiellini, R.M. Ottenbrite, E. Chiellini, Chitosan-A versatile semi-synthetic polymer in biomedical applications, Progress in Polym. Sci. 36 (2011) 981–1014. https://doi.org/10.1016/j.progpolymsci.2011.02.001
[102] C. Mingyu, G. Kai, L. Jiamou, G. Yandao, Z. Nanming, Z. Xiufang, Surface modification and characterization of chitosan film blended with poly-L-lysine, J. Biomater. Appl. 19 (2004) 59–75. https://doi.org/10.1177/0885328204043450
[103] Z. Zheng, Y. Wei, G. Wang, A.W.Q. Ao, Y. Gong, X. Zhang, Surface properties of chitosan films modified with polycations and their effects on the behavior of PC12 cells, J. Bioact. Compat. Polym. 24 (2009) 63–82. https://doi.org/10.1177/0883911508099653
[104] M. Cheng, J. Deng, F. Yang, Y. Gong, N. Zhao, X. Zhang, Study on physical properties and nerve cell affinity of composite films from chitosan and gelatin solutions, Biomater. 24 (2003) 2871–80. https://doi.org/10.1016/S0142-9612(03)00117-0
[105] A. Karimi, S. Karbasi, S. Razavi, E.N. Zargar, Poly(hydroxybutyrate)/chitosan aligned electrospun scaffold as a novel substrate for nerve tissue engineering, Adv. Biomed. Res. 7 (2018) 44. https://doi.org/10.4103/abr.abr_277_16
[106] H. Xu, Y. Yan, S. Li, PDLLA/chondroitin sulfate/chitosan/NGF conduits for peripheral nerve regeneration, Biomater. 32 (2011) 4506–4516. https://doi.org/10.1016/j.biomaterials.2011.02.023
[107] J.M. Gimble, F. Guilak, Differentiation potential of adipose derived adult stem (ADAS) cells, Curr. Top. Dev. Biol. 58 (2003) 137–160. https://doi.org/10.1016/S0070-2153(03)58005-X
[108] L. Aust, B. Devlin, S.J. Foster, Y.D. Halvorsen, K. Hicok, T. du Laney, A. Sen, G.D. Willingmyre, J.M. Gimble, Yield of human adipose-derived adult stem cells from liposuction aspirates, Cytotherapy. 6 (2004) 7–14. https://doi.org/10.1080/14653240310004539
[109] N.-C. Cheng, W.J. Lin, T.Y. Ling, T.H. Young, Sustained release of adipose-derived stem cells by thermosensitive chitosan/gelatin hydrogel for therapeutic angiogenesis, Acta Biomater. 51 (2017) 258–267. https://doi.org/10.1016/j.actbio.2017.01.060
[110] Y.H. Cheng, S.H. Yang, F.H. Lin, Thermosensitive chitosan-gelatin-glycerolphosphate hydrogel as a controlled release system of ferulic acid for nucleus pulposus regeneration, Biomater. 32 (2011) 6953–6961. https://doi.org/10.1016/j.biomaterials.2011.03.065
[111] N.C. Cheng, H.H. Chang, Y.K. Tu, T.H. Young, Efficient transfer of human adipose-derived stem cells by chitosan/gelatin blend films, J. Biomed. Mater. Res. B: Appl. Biomater. 100 (5) (2012) 1369–1377. https://doi.org/10.1002/jbm.b.32706
[112] A.M. Martins, G. Eng, S.G. Caridade, J.F. Mano, R.L. Reis, G. Vunjak-Novakovic, Electrically conductive chitosan/carbon scaffolds for cardiac tissue engineering. Biomacromol. 15 (2014) 635−643. https://doi.org/10.1021/bm401679q
[113] S. Saravanan, N. Sareen, E. Abu-El-Rub, H. Ashour, G.L. Sequiera, H.I. Ammar, V. Gopinath, A.A. Shamaa, S.S.E. Sayed, M. Moudgil, J. Vadivelu, S. Dhingra, Graphene oxide-gold nanosheets containing chitosan scaffold improves ventricular contractility and function after implantation into infarcted heart, Sci. Rep. 8(15069) (2018), 1-13. https://doi.org/10.1038/s41598-018-33144-0
[114] J. Li, J. Pan, L. Zhang, X. Guo, Y. Yu, Culture of primary rat hepatocytes within porous chitosan scaffolds, J. Biomed. Mater. Res. Part A 67A (3) (2003) 938–943. https://doi.org/10.1002/jbm.a.10076
[115] X.H. Wang, D.P. Li, W.J. Wang, Q.L. Feng, F.Z. Cui, Y.X. Xu, X.H. Song, Mark van der Werf. Crosslinked collagen/chitosan matrix for artificial livers, Biomater. 24 (2003) 3213–3220. https://doi.org/10.1016/S0142-9612(03)00170-4
[116] F. Chen, M. Tian, D. Zhang, J. Wang, Q. Wang, X. Yu, X. Zhang, C. Wan, Preparation and characterization of oxidized alginate covalently cross-linked galactosylated chitosan scaffold for liver tissue engineering, Mater. Sci. Eng. C. 32(2) (2012) 310–320. https://doi.org/10.1016/j.msec.2011.10.034
[117] S.J. Seo, I.Y. Kim, Y.J. Choi, T. Akaike, C.S. Cho, Enhanced liver functions of hepatocytes cocultured with NIH 3T3 in the alginate/galactosylated chitosan scaffold, Biomater. 27 (2006) 1487–1495. https://doi.org/10.1016/j.biomaterials.2005.09.018
[118] Z. She, C. Jin, Z. Huang, B. Zhang, Q. Feng, Y. Xu, Silk fibroin/chitosan scaffold: Preparation, characterization, and culture with HepG2 cell, J. Mater. Sci. Mater. Med. 19 (12) (2008) 3545–3553. https://doi.org/10.1007/s10856-008-3526-y
[119] S. Zhending, L. Weiqiang, F. Qingling, Self-assembly model, hepatocytes attachment and inflammatory response for silk fibroin/chitosan scaffolds, Biomed. Mater. 4 (4) (2009) 045014. https://doi.org/10.1088/1748-6041/4/4/045014
[120] F.A. Shah, M. Trobos, P. Thomsen, A. Palmquist, Commercially pure titanium(cp-Ti) versus titanium alloy (Ti6Al4 V) materials as bone anchored implants-is one truly better than the other, Mater. Sci. Eng. C. 1 (2016) 960–6. https://doi.org/10.1016/j.msec.2016.01.032
[121] L. Zhang, K. Wu, W. Song, H. Xu, R. An, L. Zhao, B. Liu, Y. Zhang, Chitosan/siCkip-1 biofunctionalized titanium implant for improved osseointegration in the osteoporotic condition, Sci. Rep. 5 (2015) 10860. https://doi.org/10.1038/srep10860
[122] D.D. Divakar, N.T. Jastaniyah, H.G. Altamimi, Y.O. Alnakhli, A.A. Muzaheed, A.S. Haleem, Enhanced antimicrobial activity of naturally derived bioactive molecule chitosan conjugated silver nanoparticle against dental implant pathogens, Int. J. Biol. Macromol. 108 (2018) 790–797. https://doi.org/10.1016/j.ijbiomac.2017.10.166
[123] T. Sovány, A. Csüllög, E.Å. Benkå, G. Regdon Jr, K. Pintye-Hódi, Comparison of the properties of implantable matrices prepared from degradable and non-degradable polymers for bisphosphonate delivery, Int. J. Pharm. 533 (2017) 364–72. https://doi.org/10.1016/j.ijpharm.2017.07.023
[124] Z. Shariatinia, Pharmaceutical applications of chitosan, Adv. Colloid Inter. Sci. 263 (2019) 131–194. https://doi.org/10.1016/j.cis.2018.11.008
[125] K.C. Rani, R. Primaharinastiti, E. Hendradi, Preparation and evaluation of ciprofloxacin implants using bovine hydroxyapatite-chitosan composite and glutaraldehyde for osteomyelitis, Int. J. Pharm. Sci. 8 (2016) 45-51.
[126] S. Stefan, Combination of serum eye drops with hydrogels bandage contact lenses in the treatment of persistent epithelial defects, Graefes Arch. Clin. Exp. Ophthalmol. 244 (2006) 1345–9. https://doi.org/10.1007/s00417-006-0257-y
[127] S. Xin-Yuan, T. Tian-Wei, New contact lens based on chitosan/gelatin composites, J. Bioact. Compat. Polym. 19 (2004) 467-479. https://doi.org/10.1177/0883911504048410
[128] A. Bachhuka, J. Hayball, L.E. Smith, K. Vasilev, Effect of surface chemical functionalities on collagen deposition by primary human dermal fibroblasts, ACS Appl. Mater. Interfaces. 7 (2015) 23767–75. https://doi.org/10.1021/acsami.5b08249
[129] I. Kohsari, Z. Shariatinia, S.M. Pourmortazavi, Antibacterial electrospun chitosanpolyethylene oxide nanocomposite mats containing ZIF-8 nanoparticles, Int. J. Biol. Macromol. 91 (2016) 778–88. https://doi.org/10.1016/j.ijbiomac.2016.06.039
[130] Z. Shariatinia, A.M. Jalali, Chitosan-based hydrogels: Preparation, properties and applications, Int. J. Biol. Macromol. 115 (2018) 194–220. https://doi.org/10.1016/j.ijbiomac.2018.04.034
[131] I. Kohsari, Z. Shariatinia, S.M. Pourmortazavi, Antibacterial electrospun chitosan–polyethylene oxide nanocomposite mats containing bioactive silver nanoparticles, Carbohydr. Polym. 140 (2016) 287–298. https://doi.org/10.1016/j.carbpol.2015.12.075
[132] K. Bankoti, A.P. Rameshbabu, S. Datta, P.P. Maity, P. Goswami, P. Datta, S.K. Ghosh, A. Mitra, S. Dhara, Accelerated healing of full thickness dermal wounds by macroporous waterborne polyurethane-chitosan hydrogel scaffolds, Mater. Sci. Eng. C 81 (2017) 133–143. https://doi.org/10.1016/j.msec.2017.07.018
[133] P.T.S. Kumar, S. Abilash, K. Manzoor, S.V. Nair, H. Tamura, R. Jayakumar, Preparation and characterization of novel -chitin/nano silver composite scaffolds for wound dressing applications, Carbohydr. Polym. 80 (2010) 761–767. https://doi.org/10.1016/j.carbpol.2009.12.024
[134] K. Madhumathi, P.T.S. Kumar, S. Abhilash, V. Sreeja, H. Tamura, K. Manzoor, S.V. Nair, R. Jayakumar, Development of novel chitin/nanosilver composite scaffolds for wound dressing applications, J. Mater. Sci. Mater. Med. 21 (2010) 807–813. https://doi.org/10.1007/s10856-009-3877-z
[135] H.L. Lai, A. Abu’Khalil, D.Q.Craig, The preparation and characterisation of drugloaded alginate and chitosan sponges, Int. J. Pharm. 251 (2003) 175–181. https://doi.org/10.1016/S0378-5173(02)00590-2
[136] H.A. Hazzah, R.M. Farid, M.M.A. Nasra, M.A. EL-Massik, O.Y. Abdallah, Lyophilized sponges loaded with curcumin solid lipid nanoparticles for buccal delivery: Development and characterization, Int. J. Pharm. 492 (2015) 248–257. https://doi.org/10.1016/j.ijpharm.2015.06.022
[137] R. Jayakumar, M. Prabaharan, K.P.T. Sudheesh, S.V. Nair, H. Tamura, Biomaterials based on chitin and chitosan in wound dressing applications, Biotechnol. Adv. 29 (2011) 322–37. https://doi.org/10.1016/j.biotechadv.2011.01.005
[138] X. Wang, D. Zhang, J. Wang, R. Tang, B. Wei, Q. Jiang, Succinyl pullulan-crosslinked carboxymethyl chitosan sponges for potential wound dressing, Int. J. Polym. Mater. Polym. Biomater. 66 (2017) 61–70. https://doi.org/10.1080/00914037.2016.1182912
[139] S.G. Kumbar, K.S. Soppimath, T.M. Aminabhavi, Synthesis and characterization of polyacrylamide‐grafted chitosan hydrogel microspheres for the controlled release of indomethacin, J. App. Polym. Sci. 87 (2003) 1525–1536. https://doi.org/10.1002/app.11552
[140] D. Altiok, E. Altiok, F. Tihminlioglu, Physical, antibacterial and antioxidant properties of chitosan films incorporated with thyme oil for potential wound healing applications, J. Mater. Sci. Mater. Med. 21 (2010) 2227–2236. https://doi.org/10.1007/s10856-010-4065-x
[141] S. Gaysinsky, P. Davidson, D. McClements, J. Weiss, Formulation and characterization of phyto-phenol-carrying antimicrobial micro emulsions, Food Bio. Physics. 3(1) (2008) 54–65. https://doi.org/10.1007/s11483-007-9048-1
[142] X. Li, S. Chen, B. Zhang, M. Li, K. Diao, Z. Zhang, J, Li, Y, Xu, X. Wang, H. Chen, In situ injectable nano-composite hydrogel composed of curcumin, N, O-carboxymethyl chitosan and oxidized alginate for wound healing application, Int. J. Pharm. 437(1–2) (2012) 110–119. https://doi.org/10.1016/j.ijpharm.2012.08.001
[143] D. Zhang, W. Zhou, B. Wei, X. Wang, R. Tanga J. Nie, J. Wang, Carboxyl-modified poly(vinyl alcohol)-crosslinked chitosan hydrogel films for potential wound dressing, Carbohydr. Polym. 125 (2015) 189–199. https://doi.org/10.1016/j.carbpol.2015.02.034
[144] M.J. Galotto, C.L. de Dicastillo, A. Torres, A. Guarda, Thymol: Use in antimicrobial packaging, in: J. Barros-Velázquez (Ed.), Antimicrobial Food Packaging, Academic Press, Cambridge, US, 2016, pp 553–562. https://doi.org/10.1016/B978-0-12-800723-5.00045-0
[145] R. Parhi, T. Panchamukhi, RSM based design and optimization of transdermal film of Ondansetron HCl, J. Pharm. Innov. 2019. https://doi.org/10.1007/s12247-019-09373-9. https://doi.org/10.1007/s12247-019-09373-9
[146] R. Parhi, P. Suresh, Transdermal delivery of Diltiazem HCl from matrix film: Effect of penetration enhancers and study of antihypertensive activity in rabbit model, J. Adv. Res. 7 (2016), 539–550. https://doi.org/10.1016/j.jare.2015.09.001
[147] S.K. Mishra, D.S. Mary, S. Kannan, Copper incorporated microporous chitosan-polyethylene glycol hydrogels loaded with naproxen for effective drug release and anti-infection wound dressing. Int. J. Biol. Macromol. 95 (2017) 928–937. https://doi.org/10.1016/j.ijbiomac.2016.10.080
[148] D. Archana, B.K. Singh, J. Dutta, P.K. Dutta, In vivo evaluation of chitosan–PVP–titanium dioxide nanocomposite as wound dressing material, Carbohydr. Polym. 95 (2013) 530–539. https://doi.org/10.1016/j.carbpol.2013.03.034
[149] P. Agrawal, G.J. Strijkers, K. Nicolay, Chitosan-based systems for molecular imaging, Adv. Drug Deliv. Rev. 62 (2010) 42–58. https://doi.org/10.1016/j.addr.2009.09.007
[150] C.M. Lee, H.J. Jeong, S.L. Kim, E.M. Kim, D.W. Kim, S.T. Lim, K.Y. Jang, Y.Y. Jeong, J.W. Nah, M.H. Sohn, SPION-loaded chitosan-linoleic acid nanoparticles to target hepatocytes, Int. J. Pharm. 371 (2009) 163–9. https://doi.org/10.1016/j.ijpharm.2008.12.021
[151] Z. Shi, K.G. Neoh, E.T. Kang, B. Shuter, S.C. Wang, C. Poh, W. Wang, (Carboxymethyl) chitosan-modified superparamagnetic iron oxide nanoparticles for magnetic resonance imaging of stem cells, ACS Appl. Mater. Interfaces. 1 (2009) 328–335. https://doi.org/10.1021/am8000538
[152] M. Koping-Hoggard, I. Tubulekas, H. Guan, K. Edwards, M. Nilsson, K.M. Varum, P. Artursson, Chitosan as a nonviral gene delivery system: Structure-property relationships and characteristics compared with polyethylenimine in vitro and after lung administration in vivo, Gene Ther. 8 (2001) 1108–21. https://doi.org/10.1038/sj.gt.3301492
[153] F.L. Mi, S.S. Shyu, C.K. Peng, Y.B. Wu, H.W. Sung, P.S. Wang, C.C. Huang, Fabrication of chondroitin sulfate-chitosan composite artificial extracellular matrix for stabilization of fibroblast growth factor, J. Biomed. Mater. Res. A 76 (2006) 1–15. https://doi.org/10.1002/jbm.a.30298
[154] J.H. Kim, Y.S. Kim, S. Kim, J.H. Park, K. Kim, K. Choi, H. Chung, S.Y. Jeong, R.W. Park, I.S. Kim, Hydrophobically modified glycol chitosan nanoparticles as carriers for paclitaxel, J. Contr. Release. 111 (2006) 228–234. https://doi.org/10.1016/j.jconrel.2005.12.013
[155] S. Naskar, S. Sharma, K. Kuotsu, Chitosan-based nanoparticles: An overview of biomedical applications and its preparation, J. Drug Deliv. Sci. Technol. 49 (2019) 66–81. https://doi.org/10.1016/j.jddst.2018.10.022
[156] J.H. Kim, Y.S. Kim, K. Park, S. Lee, H.Y. Nam, K.H. Min, H.G. Jo, J.H. Park, K. Choi, S.Y. Jeong, Antitumor efficacy of cisplatin-loaded glycol chitosan nanoparticles in tumor-bearing mice, J. Contr. Release. 127 (2008) 41–49. https://doi.org/10.1016/j.jconrel.2007.12.014
[157] S. Mitra, U. Gaur, P.C. Ghosh, A.N. Maitra, Tumour targeted delivery of encapsulated dextran-doxorubicin conjugate using chitosan nanoparticles as carrier, J. Contr. Release. 74 (2001) 317–323. https://doi.org/10.1016/S0168-3659(01)00342-X
[158] Y.J. Son, J.S. Jang, Y.W. Cho, H.C. Chung, R.W. Park, I.C. Kwon, I.S. Kim, J.Y. Park, S.B. Seo, C.R. Park, S.Y. Jeong, Biodistribution and anti-tumor efficacy of doxorubicin loaded glycol-chitosan nanoaggregates by EPR effect, J. Contr. Release. 91 (2003) 135–145. https://doi.org/10.1016/S0168-3659(03)00231-1
[159] S. Parveen, S.K. Sahoo, Evaluation of cytotoxicity and mechanism of apoptosis of doxorubicin using folate-decorated chitosan nanoparticles for targeted delivery to retinoblastoma, Canc. Nano. 1 (2010) 47–62. https://doi.org/10.1007/s12645-010-0006-0
[160] U. Termsarasab, H.-J. Cho, D.H. Kim, S. Chong, S.J. Chung, C.K. Shim, H.T. Moon, D.D. Kim, Chitosan oligosaccharide–arachidic acid-based nanoparticles for anti-cancer drug delivery, Int. J. Pharm. 441 (2013) 373–38. https://doi.org/10.1016/j.ijpharm.2012.11.018
[161] P.J.P. Espitia, W.X. Du, R.D.J. Avena-Bustillos, N.D.F.F. Soares, T.H. Mchugh, Edible films from pectin: Physical-mechanical and antimicrobial properties – a review, Food Hydrocoll. 35 (2014) 287–296. https://doi.org/10.1016/j.foodhyd.2013.06.005
[162] M. Aider, Chitosan application for active bio-based films production and potential in the food industry: Review, LWT-Food Sci. Technol. 43 (2010) 837-842. https://doi.org/10.1016/j.lwt.2010.01.021
[163] G. Kerch, Chitosan films and coatings prevent losses of fresh fruit nutritional quality: A review, Trends in Food Sci. Technol. 46 (2015) 159-166. https://doi.org/10.1016/j.tifs.2015.10.010
[164] F. Shahidi, P. Ambigaipalan, Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects: A review, J. Func. Food. 18 (2015) 820-897. https://doi.org/10.1016/j.jff.2015.06.018
[165] J. Garrido, F. Borges, Wine and grape polyphenols-A chemical perspective, Food Res. Int. 54 (2013) 1844–1858. https://doi.org/10.1016/j.foodres.2013.08.002
[166] D. Kadam, S.S. Lele, Cross-linking effect of polyphenolic extracts of Lepidium sativum seedcake on physicochemical properties of chitosan films. Int. J. Biol. Macromol. 114 (2018) 1240–1247. https://doi.org/10.1016/j.ijbiomac.2018.04.018
[167] H. Yong, X. Wang, R. Bai, Z. Miao, X. Zhang, J. Liu, Development of antioxidant and intelligent pH-sensing packaging films by incorporating purple-fleshed sweet potato extract into chitosan matrix, Food Hydrocoll. 90 (2019) 216–224. https://doi.org/10.1016/j.foodhyd.2018.12.015
[168] J. Liu, S. Liu, Q. Wu, Y. Gu, J. Kan, C. Jin, Effect of protocatechuic acid incorporation on the physical, mechanical, structural and antioxidant properties of chitosan film, Food Hydrocoll. 73 (2017) 90-100. https://doi.org/10.1016/j.foodhyd.2017.06.035
[169] J. Liu, C.g. Meng, S. Liu, J. Kan, C.h. Jin, Preparation and characterization of protocatechuic acid grafted chitosan films with antioxidant activity, Food Hydrocoll. 63 (2017) 457-466. https://doi.org/10.1016/j.foodhyd.2016.09.035
[170] K. Rambabu, G. Bharath, F. Banat, P.L. Show, H.H. Cocoletzi, Mango leaf extract incorporated chitosan antioxidant film for active food packaging, Int. J. Biol. Macromol. 126 (2019) 1234–1243. https://doi.org/10.1016/j.ijbiomac.2018.12.196
[171] A. Riaz, S. Lei, H.Md.S. Akhtar, P. Wan, D. Chen, S. Jabbar, Md. Abid, M.Md. Hashim, X. Zeng, Preparation and characterization of chitosan-based antimicrobial active food packaging film incorporated with apple peel polyphenols, Int. J. Biol. Macromol. 114 (2018) 547–555. https://doi.org/10.1016/j.ijbiomac.2018.03.126
[172] E. Talón, K.T. Trifkovic, M.Vargas, A. Chiralt, C. González-Martínez, Release of polyphenols from starch-chitosan based films containing thyme extract, Carbohydr. Polym. 175 (2017) 122–130. https://doi.org/10.1016/j.carbpol.2017.07.067