Polysaccharides for Drug Delivery
Kamla Pathak, Rishabha Malviya
Polysaccharides are complex versatile biomaterial, which are generally biocompatible, biodegradable and non-toxic in nature. Since their affirmed position as valuable pharmaceutical excipients for development of a plethora of dosage forms, these have been extensively explored as carriers for drug delivery. The chapter elaborates the applications of polysaccharides and their derivatives for sustained/targeted delivery of various categories of therapeutic agents. Patents have also been listed to emphasize commercial sustainability of the polysaccharide based drug delivery systems. Furthermore, newer applications namely polysaccharide anchored liposomes, auto- associated ampiphilic polysaccharides, electrospun polysaccharides, polyelectrolyte complexes, polysaccharide based systems namely aerogel, nanocomposites, nanogels, quantum dots, nanoparticles and micelles have also been described. The drug release kinetics from the polysaccharidic systems has been detailed.
Keywords
Polysaccharides, Drug Carriers, Advancements, Drug Release Kinetics
Published online 4/20/2020, 38 pages
Citation: Kamla Pathak, Rishabha Malviya, Polysaccharides for Drug Delivery, Materials Research Foundations, Vol. 73, pp 27-64, 2020
DOI: https://doi.org/10.21741/9781644900772-2
Part of the book on Advanced Applications of Polysaccharides and their Composites
References
[1] A.M. Patten, D.G. Vassao, M.P. Wolcott, L.B. Davin, N.G. Lewis, Trees: a remarkable biochemical bounty. In Comprehensive Natural Products II: Chemistry and Biology, Elsevier Ltd. 2010, pp. 1173-1296. https://doi.org/10.1016/B978-008045382-8.00083-6
[2] V.D. Prajapati, G.K. Jani, N.G. Moradiya, N.P. Randeria, Pharmaceutical applications of various natural gums, mucilages and their modified forms, Carbohydr Polym. 92(2013) 1685-99. https://doi.org/10.1016/j.carbpol.2012.11.021
[3] J. Joseph, S.N. Kanchalochana, G. Rajalakshmi, V. Hari, R.D. Durai, Tamarind seed polysaccharide: A promising natural excipient for pharmaceuticals, Int J Green Pharm. 6 (2012) 270-278. https://doi.org/10.4103/0973-8258.108205
[4] A.L. Harvey, Natural products in drug discovery, Drug Discov Today. 13(2008) 894-901. https://doi.org/10.1016/j.drudis.2008.07.004
[5] V. Rana, P. Rai, A.K. Tiwari, R.S. Singh, J.F. Kenedy, C.J. Knill, Modified gums: approaches and application in drug delivery, Carbohydr Polym. 83 (2011) 1031-1047. https://doi.org/10.1016/j.carbpol.2010.09.010
[6] R. Khathuriya, T. Nayyar, S. Sabharwal, U.K. Jain, R. Taneja, Recent aproaches and pharmaceutical applications of Natural Polysaccharides: A Review, Int. J. Pharm. Sci. Res. 6 (2015) 4904-4919.
[7] J. Joseph, S.N. Kanchalochana, G. Rajalakshmi, V. Hari, R.D. Durai, Tamarind seed polysaccharide: A promising natural excipient for pharmaceuticals, Int. J. Green Pharm. 6(4) (2012) 270-278. https://doi.org/10.4103/0973-8258.108205
[8] M.K. Chourasia, S.K. Jain, Polysaccharides for colon targeted drug delivery, Drug Deliv. 11(2) (2004) 129-48. https://doi.org/10.1080/10717540490280778
[9] E. Alpizar-Reyes, H. Carrillo-Navas, R. Romero-Romero, V. Varela-Guerrero, J. Alvarez-Ramírez, C. Pérez-Alonso, Thermodynamic sorption properties and glass transition temperature of tamarind seed mucilage (Tamarindusindica L.), Food and Bioprod. Process. 101 (2017) 166-176. https://doi.org/10.1016/j.fbp.2016.11.006
[10] J.D. Smart, Buccal drug delivery, Expert Opin Drug Deliv. 2(3) (2005) 507-17. https://doi.org/10.1517/17425247.2.3.507
[11] O. Felt, P. Buri, R. Gurny, Chitosan: a unique polysaccharide for drug delivery, Drug Dev. Ind. Pharm. 24(11) (1998) 979-993. https://doi.org/10.3109/03639049809089942
[12] F. Acarturk, Mucoadhesive vaginal drug delivery systems, Recent Pat. Drug Deliv. Formul. 3(3) (2009) 193-205. https://doi.org/10.2174/187221109789105658
[13] A.K. Nayak, D. Pal, Tamarind seed polysaccharide: An emerging excipient for pharmaceutical use, Indian J. Pharm. Educ. Res. 51 (2017) S136-46. https://doi.org/10.5530/ijper.51.2s.60
[14] M.L. Bruschi, O. de Freitas, Oral bioadhesive drug delivery systems, Drug Dev. Ind. Pharm. 31(3) (2005) 293-310. https://doi.org/10.1081/DDC-52073
[15] D.H. Patel, M.P. Patel, M.M. Patel, Formulation and evaluation of drug-free ophthalmic films prepared by using various synthetic polymers, J. Young Pharm. 1(2) (2009) 116-120. https://doi.org/10.4103/0975-1483.55742
[16] Y. Ting-Ting, C. Yuan-Zheng, Q. Meng, W. Yong-Hong, Yu. Hong-Li, W. An-Lin, Z. Wei-Fen. Thermosensitive chitosan hydrogels containing polymeric microspheres for vaginal drug delivery, BioMed Res. Int. (2017) 12. https://doi.org/10.1155/2017/3564060
[17] C. Valenta, The use of mucoadhesive polymers in vaginal delivery. Adv. Drug Deliv. Rev. 57(11) (2005) 1692-1712. https://doi.org/10.1016/j.addr.2005.07.004
[18] M. Sharma, N. Sharma, A. Sharma. Rizatriptan benzoate loaded natural polysaccharide based microspheres for nasal drug delivery system. Int. J. App. Pharm. 10(5) (2018) 261-269. https://doi.org/10.22159/ijap.2018v10i5.27877
[19] M.N. Jones, Carbohydrate-mediated liposomal targeting and drug delivery, Adv. Drug. Deliv. Rev. 13 (1994) 215-249. https://doi.org/10.1016/0169-409X(94)90013-2
[20] J. Sunamoto, Application of Polysaccharide-coated Liposomes in Chemotherapy and Immunotherapy. In Medical application of liposomes Karger Publishers. 1986, pp. 121-129. https://doi.org/10.1159/000413501
[21] J. Sunamoto, K. Iwamoto, H. Kondo, Liposomal membranes. VII. Fusion and aggregation of egg lecithin liposomes as promoted by polysaccharides, Biochem Biophysic Res Comm. 94 (1980) 1367-1373. https://doi.org/10.1016/0006-291X(80)90570-7
[22] J. Sunamoto, K. Iwamoto,Protein-coated and polysaccharide-coated liposomes as drug carriers, Crit Rev Ther Drug Carrier Syst. 2 (1986)117-136.
[23] J. Moellerfeld, W. Prass, H. Ringsdorf, H. Hamazaki, J. Sunamoto, Improved stability of black lipid membranes by coating with polysaccharide derivatives bearing hydrophobic anchor groups, Biochim Biophys Acta Biomembr. 857 (1986) 265-270. https://doi.org/10.1016/0005-2736(86)90355-X
[24] T. Sato, J. Sunamoto, Recent aspects in the use of liposomes in biotechnology and medicine, Prog Lipid Res. 31 (1992) 345-372. https://doi.org/10.1016/0163-7827(92)90001-Y
[25] M.G. Elferink, J.G. Wit, G. In’t Veld, A. Reichert, A.J. Driessen, H. Ringsdorf, W.N. Konings, The stability and functional properties of proteoliposomes mixed with dextran derivatives bearing hydrophobic anchor groups, Biochim Biophys Acta Biomembr. 1106 (1992) 23-30. https://doi.org/10.1016/0005-2736(92)90217-A
[26] P. Deol, G.K. Khuller, Lung specific stealth liposomes: stability, biodistribution and toxicity of liposomal antitubercular drugs in mice, Biochim Biophys Acta Gen Subj. 1334 (1997) 161-172. https://doi.org/10.1016/S0304-4165(96)00088-8
[27] H. Takeuchi, H. Yamamoto, T. Niwa, T. Hino, Y. Kawashima, Mucoadhesion of polymer-coated liposomes to rat intestine in vitro,Chem. Pharm. Bull. 42 (1994) 1954-1956. https://doi.org/10.1248/cpb.42.1954
[28] H. Takeuchi, H. Yamamoto, T. Niwa, T. Hino, Y. Kawashima, Enteral absorption of insulin in rats from mucoadhesive chitosan-coated liposomes, Pharm Res. 13 (1996) 896-901. https://doi.org/10.1023/A:1016009313548
[29] G. Liang, Z. Jia‐Bi, X. Fei, N. Bin, Preparation, characterization and pharmacokinetics of N‐palmitoyl chitosan anchored docetaxel liposomes, J Pharm Pharmacol. 59 (2007) 661-667. https://doi.org/10.1211/jpp.59.5.0006
[30] Y. Wang, S. Tu, R. Li, X. Yang, L. Liu, Q. Zhang, Cholesterolsuccinyl chitosan anchored liposomes: preparation, characterization, physical stability, and drug release behaviour, Nanomed Nanotechnol Biol Med. 6 (2010) 471-477. https://doi.org/10.1016/j.nano.2009.09.005
[31] H.W. Tan, M. Misran, Polysaccharide-anchored fatty acid liposome, Int J Pharm. 441 (2013) 414-423. https://doi.org/10.1016/j.ijpharm.2012.11.013
[32] G.B. Jiang, D. Quan, K. Liao, H. Wang, Preparation of polymeric micelles based on chitosan bearing a small amount of highly hydrophobic groups, Carbohydr Polym. 66 (2006) 514-520. https://doi.org/10.1016/j.carbpol.2006.04.008
[33] M. Othman, K. Bouchemal, P. Couvreur, R. Gref, Microcalorimetric investigation on the formation of supramolecular nanoassemblies of associative polymers loaded with gadolinium chelate derivatives, Int J Pharm. 379 (2009) 218-225. https://doi.org/10.1016/j.ijpharm.2009.05.061
[34] N. Yerushalmi, R. Margalit, Hyaluronic acid-modified bioadhesive liposomes as local drug depots: effects of cellular and fluid dynamics on liposome retention at target sites, Arch. Biochem. Biophys. 349 (1998) 21-26. https://doi.org/10.1006/abbi.1997.0356
[35] I. Bataille, J. Huguet, G. Muller, G. Mocanu, A. Carpov, Associative behaviour of hydrophobically modified carboxymethyl pullulan derivatives, Int J Biol Macromol. 20 (1997) 179-191. https://doi.org/10.1016/S0141-8130(97)01158-6
[36] K. Glinel, J. Huguet, G. Muller, Comparison of the associating behaviour between neutral and anionic alkyl perfluorinated pullulan derivatives, Polymer. 40 (1999) 7071-7081. https://doi.org/10.1016/S0032-3861(99)00085-3
[37] I. Lalush, H. Bar, I. Zakaria, S. Eichler, E. Shimoni, Utilization of amylose−lipid complexes as molecular nanocapsules for conjugated linoleic acid, Biomacromol. 6(2005) 121-130. https://doi.org/10.1021/bm049644f
[38] H. Ayame, N. Morimoto, K. Akiyoshi, Self-assembled cationic nanogels for intracellular protein delivery, Bioconjugate Chem. 19 (2008) 882-890. https://doi.org/10.1021/bc700422s
[39] Y. Cao, Y. Gu, H. Ma, J. Bai, L. Liu, P. Zhao, H. He, Self-assembled nanoparticle drug delivery systems from galactosylated polysaccharide–doxorubicin conjugate loaded doxorubicin, Int J BiolMacromol. 46 (2010) 245-249. https://doi.org/10.1016/j.ijbiomac.2009.11.008
[40] S. Kwon, J.H. Park, H. Chung, I.C. Kwon, S.Y. Jeong, I.S. Kim, Physicochemical characteristics of self-assembled nanoparticles based on glycol chitosan bearing 5β-cholanic acid, Langmuir. 19 (2003) 10188-10193. https://doi.org/10.1021/la0350608
[41] J. Bodillard, G. Pattappa, P. Pilet, P. Weiss, G. Rethore, Functionalisation of polysaccharides for the purposes of electrospinning: a case study using HPMC and Si-HPMC, Gels. 1 (2015) 44-57. https://doi.org/10.3390/gels1010044
[42] K.Y. Lee, L. Jeong, Y.O. Kang, S.J. Lee, W.H. Park, Electrospinning of polysaccharides for regenerative medicine, Adv. Drug Deliv. Rev. 61 (2009) 1020-1032. https://doi.org/10.1016/j.addr.2009.07.006
[43] W. Zhang, D. Hua, S. Ma, Z. Chen, Y.Wang, F. Zhang,F. Len, X. Pu, Preliminary study for vascular tissue engineering by Electrospinning angelica polysaccharide (ASP)/PLA microfibrous scaffolds, Int. J. Polym. Mater. Po. 63 (2014) 672-679. https://doi.org/10.1080/00914037.2013.854241
[44] A.V. Il’ina, V.P. Varlamov, Chitosan-based polyelectrolyte complexes: A review, Appl Biochem Microbiol. 41 (2005) 5-11. https://doi.org/10.1007/s10438-005-0002-z
[45] Y. Luo, Q. Wang, Recent development of chitosan-based polyelectrolyte complexes with natural polysaccharides for drug delivery, Int J BiolMacromol. 64 (2014) 353-367. https://doi.org/10.1016/j.ijbiomac.2013.12.017
[46] S.K. Motwani, S. Chopra, S. Talegaonkar, K. Kohli, F.J. Ahmad, R.K. Khar, Chitosan–sodium alginate nanoparticles as submicroscopic reservoirs for ocular delivery: Formulation, optimisation and in vitro characterisation, Eur J Pharm Biopharm. 68 (2008) 513-525. https://doi.org/10.1016/j.ejpb.2007.09.009
[47] P. Erbacher, S. Zou, T. Bettinger, A.M. Steffan, J.S. Remy, Chitosan-based vector/DNA complexes for gene delivery: Biophysical characteristics and transfection ability, Pharm Res. 15 (1998) 1332-1339. https://doi.org/10.1023/A:1011981000671
[48] Z. Teng, Y. Luo, Q. Wang, Carboxymethyl chitosan–soy protein complex nanoparticles for the encapsulation and controlled release of vitamin D3, Food Chem. 41 (2013) 524-532. https://doi.org/10.1016/j.foodchem.2013.03.043
[49] H. Wang, M. Roman, Formation and properties of chitosan− cellulose nanocrystal polyelectrolyte− macroion complexes for drug delivery applications, Biomacromol. 12 (2011) 1585-1593. https://doi.org/10.1021/bm101584c
[50] J. Du, R. Sun, S. Zhang, T. Govender, L.F. Zhang, C.D. Xiong, Y.X. Peng, Novel polyelectrolyte carboxymethyl konjac glucomannan–chitosan nanoparticles for drug delivery, Macromol. Rapid Commun. 54 (2004) 954-958. https://doi.org/10.1002/marc.200300314
[51] G. Pasparakis, N. Bouropoulos, Swelling studies and in vitro release of verapamil from calcium alginate and calcium alginate–chitosan beads, Int J Pharm. 323 (2006) 34-42. https://doi.org/10.1016/j.ijpharm.2006.05.054
[52] J.H. Hamman, Chitosan based polyelectrolyte complexes as potential carrier materials in drug delivery systems, Marine drugs. 8 (2010) 1305-1322. https://doi.org/10.3390/md8041305
[53] H.V. Saether, H.K. Holme, G. Maurstad, O. Smidsrod, B.T. Stokke, Polyelectrolyte complex formation using alginate and chitosan, Carbohydr Polym. 74 (2008) 813-821. https://doi.org/10.1016/j.carbpol.2008.04.048
[54] F. Bigucci, B. Luppi, T. Cerchiara, M. Sorrenti, G. Bettinetti, L. Rodriguez, V. Zecchi, Chitosan/pectin polyelectrolyte complexes: selection of suitable preparative conditions for colon-specific delivery of vancomycin, Eur J Pharm Sci. 35 (2008) 435-441. https://doi.org/10.1016/j.ejps.2008.09.004
[55] C. Tapia, Z. Escobar, E. Costa, J. Sapag-Hagar, F. Valenzuela, C. Basualto, M.N. Gai, M. Yazdani-Pedram, Comparative studies on polyelectrolyte complexes and mixtures of chitosan–alginate and chitosan–carrageenan as prolonged diltiazem clorhydrate release systems, Eur J Pharm Biopharm. 57 (2004) 65-75. https://doi.org/10.1016/S0939-6411(03)00153-X
[56] X.Z. Shu, K.J. Zhu, A novel approach to prepare tripolyphosphate/chitosan complex beads for controlled release drug delivery, Int J Pharm. 201 (2000) 51-58. https://doi.org/10.1016/S0378-5173(00)00403-8
[57] J.S. Maciel, D.A. Silva, H.C. Paula, R.C. De Paula, Chitosan/carboxymethyl cashew gum polyelectrolyte complex: synthesis and thermal stability, Eur Polym J. 41 (2005) 2726-2733. https://doi.org/10.1016/j.eurpolymj.2005.05.009
[58] A. Masotti, F. Bordi, G. Ortaggi, F. Marino, C. Palocci, A novel method to obtain chitosan/DNA nanospheres and a study of their release properties, Nanotechnology. 19 (2008) 055302. https://doi.org/10.1088/0957-4484/19/05/055302
[59] J. Stergar, U. Maver, Review of aerogel-based materials in biomedical applications, J Sol-Gel Sci Technol. 77 (2016) 738-752. https://doi.org/10.1007/s10971-016-3968-5
[60] F. De Cicco, P. Russo, E. Reverchon, C.A. Garcia-Gonzalez, R.P. Aquino, P. Del Gaudio,Prilling and supercritical drying: A successful duo to produce core-shell polysaccharide aerogel beads for wound healing, Carbohydr Polym. 147 (2016) 482-489. https://doi.org/10.1016/j.carbpol.2016.04.031
[61] F. Quignard, R. Valentin, F. Di Renzo, Aerogel materials from marine polysaccharides, New J. Chem. 32 (2008) 1300-1310. https://doi.org/10.1039/b808218a
[62] G. Tkalec, Z. Knez, Z. Novak, Formation of polysaccharide aerogels in ethanol, RSC Adv. 5 (2015) 77362-77371. https://doi.org/10.1039/C5RA14140K
[63] M. Alnaief, M.A. Alzaitoun, C.A. Garcia-Gonzalez, I. Smirnova, Preparation of biodegradable nanoporous microspherical aerogel based on alginate, Carbohydr Polym. 84 (2011) 1011-1018. https://doi.org/10.1016/j.carbpol.2010.12.060
[64] M. Alnaief, I. Smirnova, In situ production of spherical aerogel microparticles, J. Supercrit. Fluid. 55 (2011) 1118-1123. https://doi.org/10.1016/j.supflu.2010.10.006
[65] M. Betz, C.A. Garcia-Gonzalez, R.P. Subrahmanyam, I. Smirnova, U. Kulozik, Preparation of novel whey protein-based aerogels as drug carriers for life science applications, J. Supercrit. Fluid. 72 (2012) 111-119. https://doi.org/10.1016/j.supflu.2012.08.019
[66] C.A. Garcia-Gonzalez, E. Carenza, M. Zeng, I. Smirnova, A. Roig, Design of biocompatible magnetic pectin aerogel monoliths and microspheres, RSC Adv. 2 (2012) 9816-9823. https://doi.org/10.1039/c2ra21500d
[67] U. Guenther, I. Smirnova, R.H. Neubert, Hydrophilic silica aerogels as dermal drug delivery systems–Dithranol as a model drug, Eur. J. Pharm. Biopharm. 69 (2008) 935-942. https://doi.org/10.1016/j.ejpb.2008.02.003
[68] J.L. Gong, X.Y. Wang, G.M. Zeng, L. Chen, J.H. Deng, X.R. Zhang, Q.Y. Niu, Copper (II) removal by pectin–iron oxide magnetic nanocomposite adsorbent, Chem. Eng. J. 185 (2012) 100-107. https://doi.org/10.1016/j.cej.2012.01.050
[69] A. Javid, S. Ahmadian, A.A. Saboury, S.M. Kalantar, S. Rezaei-Zarchi, Novel biodegradable heparin-coated nanocomposite system for targeted drug delivery, RSC Adv. 4 (2014) 13719-13728. https://doi.org/10.1039/C3RA43967D
[70] R.J. Pinto, P.A. Marques, C.P. Neto, T. Trindade, S. Daina, P. Sadocco, Antibacterial activity of nanocomposites of silver and bacterial or vegetable cellulosic fibers, Acta Biomaterialia. 5 (2009) 2279-2289. https://doi.org/10.1016/j.actbio.2009.02.003
[71] M. Abdollahi, M. Alboofetileh, M. Rezaei, R. Behrooz, Comparing physico-mechanical and thermal properties of alginate nanocomposite films reinforced with organic and/or inorganic nanofillers, Food Hydrocoll. 32(2013) 416-424. https://doi.org/10.1016/j.foodhyd.2013.02.006
[72] R. Mansa, C. Detellier, Preparation and characterization of guar-montmorillonite nanocomposites, Materials. 6 (2013) 5199-5216. https://doi.org/10.3390/ma6115199
[73] N.D. Luong, N. Pahimanolis, U. Hippi, J.T. Korhonen, J. Ruokolainen, L.S. Johansson, J.D. Nam, J. Seppala, Graphene/cellulose nanocomposite paper with high electrical and mechanical performances, J. Mater. Chem. 21 (2011) 13991-13998. https://doi.org/10.1039/c1jm12134k
[74] V. Janaki, K. Vijayaraghavan, B.T. Oh, K.J. Lee, K. Muthuchelian, A.K. Ramasamy, S. Kamala-Kannan, Starch/polyaniline nanocomposite for enhanced removal of reactive dyes from synthetic effluent, Carbohydr Polym. 90 (2012) 1437-1444. https://doi.org/10.1016/j.carbpol.2012.07.012
[75] T. Zhanga, R. Yanga, S. Yanga, J. Guana, D. Zhanga, Y. Mab, H. Liua, Research progress of self-assembled nanogel and hybrid hydrogel systems based on pullulan derivatives, Drug Deliv. 25 (2018) 278–292. https://doi.org/10.1080/10717544.2018.1425776
[76] J. Kousalova, T. Etrych. Polymeric nanogels as drug delivery systems, Physiol. Res. 67 (2018) S305-S317. https://doi.org/10.33549/physiolres.933979
[77] T.H. Bang, T.T. Thanh Van, L.X. Hung, B.M. Ly, N.D. Nhut, T.T. Thu Thuy, B.T. Huy, Nanogels of acetylated ulvan enhance the solubility of hydrophobic drug curcumin, Bull. Mater. Sci. 42 (2019) 1-7. https://doi.org/10.1007/s12034-018-1682-3
[78] G. Soni, K.S. Yadav, Nanogels as potential nanomedicine carrier for treatment of cancer: a mini review of the state of the art, Saudi Pharm J. 24 (2016) 133–139. https://doi.org/10.1016/j.jsps.2014.04.001
[79] S.H. Bhang, N. Won, T.J. Lee, H. Jin, J. Nam, J. Park, H. Chung,H.S. Park, Y.E. Sung,S.K. Hahn, B.S. Kim, S.Kim, Hyaluronic acid-quantum dot conjugates for in vivo lymphatic vessel imaging, ACS Nano. 3 (2009) 1389-1398. https://doi.org/10.1021/nn900138d
[80] W.B. Tan, S. Jiang, Y. Zhang, Quantum-dot based nanoparticles for targeted silencing of her2/neu gene via RNA interference, Biomaterials. 28 (2007) 1565-1571. https://doi.org/10.1016/j.biomaterials.2006.11.018
[81] I.B. Bwatanglang, F. Mohammad, N.A. Yusof, Folic acid targeted Mn:ZnS quantum dots for theranostic applications of cancer cell imaging and therapy, Int. J. Nanomed. 11 (2016) 413-428. https://doi.org/10.2147/IJN.S90198
[82] A.S. Abdelhamid, M.W. Helmy, S.M. Ebrahim, Layer-by-layer gelatin/chondroitin quantum dots-based nanotheranostics: combined rapamycin/celecoxib delivery and cancer imaging, Nanomedicine (Lond.).13 (2018) 1707–1730. https://doi.org/10.2217/nnm-2018-0028
[83] C. Zhu, S. Zhang, C. Song, Y. Zhang, Q. Ling, P.R. Hoffmann, J. Li, T. Chen, W. Zheng, Z. Huang, Selenium nanoparticles decorated with Ulva lactuca polysaccharide potentially attenuate colitis by inhibiting NF-κB mediated hyper inflammation, J Nanobiotechnol. 15 (2017) 1-15. https://doi.org/10.1186/s12951-016-0241-6
[84] C. Wang, X. Gao, Z. Chen, Y. Chen, H. Chen, Preparation, characterization and application of polysaccharide-based metallic nanoparticles: A review, Polymers. 9 (2017) 1-34.https://doi.org/10.3390/polym9010001
[85] https://cdn.intechopen.com/pdfs/36882/InTechNanoparticles_based_on_modified_polysaccharides.pdf (accessed on 10 May 2019).
[86] K. Akiyoshi, S. Yamaguchi, J. Sunamoto, Self-aggregates of hydrophobic polysaccharide derivatives, Chem. Lett. 20 (1991) 1263–1266. https://doi.org/10.1246/cl.1991.1263
[87] K. Akiyoshi, S. Kobayashi, S. Shichibe, D. Mix, M. Baudys, S.W. Kim, J. Sunamoto, Self-assembled hydrogel nanoparticle of cholesterol-bearing pullulan as a carrier of protein drugs: Complexation and stabilization of insulin, J. Contr. Release. 54 (1998) 313–320.
[88] H. Omidian, K. Park, Swelling agents and devices in oral drug delivery, J. Drug. Deliv. Sci. Tech. 18 (2008) 83-93. https://doi.org/10.1016/S1773-2247(08)50016-5
[89] M. Grassi, G. Grassi, Mathematical modelling and controlled drug delivery: matrix systems. Current. Drug. Deliv. 2 (2005) 97-116. https://doi.org/10.2174/1567201052772906
[90] J. M. Sankalia, G.M. Sankalia, R.C. Mashru, Drug release and swelling kinetics of directly compressed glipizide sustained-release, J Contr Rel. 129 (2008) 49–58. https://doi.org/10.1016/j.jconrel.2008.03.016
[91] K.S. Rajesh, M.P. Venkataraju, D.V. Gowda, Hydrophilic natural gums in formulation of oral-controlled release matrix tablets of propranolol hydrochloride, J Pharm Sci. 22 (2009) 211-219.
[92] P. Matricardi, C. Cencetti, R. Ria, F. Alhaique, T. Coviello, Preparation and characterization of novel gellan gum hydrogels suitable for modified drug release, Molecules. 14 (2009) 3376-3391. https://doi.org/10.3390/molecules14093376
[93] H.H. Alur, S.I. Pather, A.K. Mitra, T.P. Johnston, Evaluation of the gum from hakea gibbosa as a sustained-release and mucoadhesive component in buccal tablets, Pharm Develop Technol. 4 (1999) 347-358. https://doi.org/10.1081/PDT-100101370
[94] V. Pillay, C.M. Dangor, T. Govender, K.R. Moopanar, N. Hurbans,Drug release modulation from cross-linked calcium alginate microdiscs, 1: evaluation of the concentration dependency of sodium alginate on drug entrapment capacity, morphology, and dissolution rate, Drug Deliv. 5 (1998) 25-34. https://doi.org/10.3109/10717549809052024
[95] W. Leobandung, H. Ichikawa, Hydrogels in pharmaceutical formulations, Eur. J. Pharm. Biopharm. 50 (2000) 27-46. https://doi.org/10.1016/S0939-6411(00)00090-4
[96] D.A. Edwards, Non-Fickiandiffusion in thin polymer films, J Polym Sci. 34 (1996) 981-997. https://doi.org/10.1002/(SICI)1099-0488(19960415)34:5<981::AID-POLB16>3.0.CO;2-7
[97] N.A. Peppas, L. Branson, Water diffusion and sorption in amorphous macromolecular systems and foods, J Food Engineer. 22 (1994) 189-210. https://doi.org/10.1016/0260-8774(94)90030-2
[98] J.J. Sahlin, A simple equation for description of solute release. III. Coupling of diffusion and relaxation, Int J Pharm. 57 (1989) 169-172. https://doi.org/10.1016/0378-5173(89)90306-2
[99] P. Blaskovich, R. Ohri, L. Pham, Oxidized cellulose microspheres. US15/593,871. 2019.
[100] R. Burtt. Kits and methods of using ascorbates to modify polysaccharide fillers and delivery systems. US16/097,941. 2019.
[101] J. Gu, , Kainthan, R. Kumar, K. Jin-Hwan, A.K. Prasad, Y. Yu-Ying. Streptococcus pneumoniae capsular polysaccharides and conjugates thereof, US15/110634. 2018.
[102] R. Biemans, L. Marie- Josephe, N. Garcon, P.V. Hermand, P.J. Jan, M.M.P. Van. Pneumoccal polysaccharide conjugate vaccine. US14/729,408. 2018.
[103] A. Shukla, S. Shukla. Tunable anti-microbial loaded hydrogels, US14/942,435. 2018.
[104] P. Christopher, H. Servaas, V. Tugba, D. Steve. Process for preparing derivatized polysaccharides. US14/411,928. 2018.
[105] E. Eren. Hypoallergic drug delivery system. UK1717991.2. 2018.
[106] A. Forge, D. Vonwill, V.P. Shastri. Method for purifying polysaccharides and pharmaceutical compositions and medical devices containing the same. US15/183/077. 2017.
[107] A. Shajaee, S. Read, R.A. Couch, P. Hodgkins. Controlled dose drug delivery system. US15/480,021. 2017.
[108] E. Laugier, F. Gouchet. Grandmontagne B; Biomaterial, injectable implant comprising it, its method of preparation and its uses. US15/091,142. 2016.
[109] Mash, E.A. Jr, P.R. Kiela, K. Grishen. Method and compositions for targeted drug delivery to the lower GI tract. US14/271,251. 2016.
[110] C.L. Visage, D. Letourneur, F. Chaubet, A. Autissier. Method for preparing porous scaffold for tissue engineering. US 12/681,676. 2015.
[111] P.E. Pierini, Y.G. Georlach- Doht, J. Hermanns. Process for dry grinding a polysaccharide dervative. US13/498,621. 2015.
[112] K. A. Reed. Aqueous drug delivery system. US13/231,150. 2015.
[113] P. David, C. Lindsey. Drug delivery compositions and methods targeting P- glycoprotein. US15/183/077. 2014.
[114] D. Su, P. Ashton, J. Chen. In situ gelling Drug delivery system. US12/870,616. 2011.
[115] J.R. Dutcher. Polysaccharides nanoparticles. US12/809,629. 2010.
[116] T. C. Zion, A. Zarur, J.Y. Ying. Stimuli- responsive system for controlled drug delivery. US10/740,436. 2009.
[117] B. R. Conway, D. Gherghel. Chronotherapeutic ocular delivery system comprising a combination of prostaglandin and a beta- blocker for treating primary glaucoma. US11/992,272. 2009.