Noble Materials for Photoelectrochemical Water Splitting
Bijoy Tudu, Rajashree Bortamuly, Pranjal Saikia
Development of stable and highly efficient photoelectrodes capable of harvesting solar energy is an essential need of the hour to deal with the global energy demand. Photoelectrochemical (PEC) water splitting is a clean methodology utilizing solar light to produce clean and sustainable hydrogen energy. The best approach to achieve high solar-to-hydrogen energy conversion efficiency is the design of efficient noble materials capable of plasmonic absorption, competent charge separation and their utilization. This chapter presents the recent development on noble metals based photocatalysts that have been widely applied in PEC water splitting.
Keywords
Water Splitting, H2 Evolution, Noble Metals, Photoelectrode, Photocurrent Density, Plasmonic Absorption, Schottky Junction
Published online 3/5/2020, 31 pages
Citation: Bijoy Tudu, Rajashree Bortamuly, Pranjal Saikia, Noble Materials for Photoelectrochemical Water Splitting, Materials Research Foundations, Vol. 71, pp 183-213, 2020
DOI: https://doi.org/10.21741/9781644900734-7
Part of the book on Photoelectrochemical Water Splitting
References
[1] T. Jafari, E. Moharreri, A.S. Amin, R. Miao, W. Song, S.L. Suib, Photocatalytic water splitting-the untamed dream: a review of recent advances, Molecules 21 (2016) 900-929. https://doi.org/10.3390/molecules21070900
[2] P. Cheng, Z. Yang, H. Wang, W. Cheng, M. Chen, W. Shangguan, G. Ding, TiO2-graphene nanocomposites for photocatalytic hydrogen production from splitting of water, Int. J. Hydrog. Energy 37 (2012) 2224-2230. https://doi.org/10.1016/j.ijhydene.2011.11.004
[3] P. Peerakiatkhajohn, J.-H. Yun, S. Wang, L. Wang, Review of recent progress in unassisted photoelectrochemical water splitting: from material modification to configuration design, J. Photon. Energy 7 (2016) 012006-012021. https://doi.org/10.1117/1.JPE.7.012006
[4] A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature 238 (1972) 37-38. https://doi.org/10.1038/238037a0
[5] J. Li, N. Wu, Semiconductor based photocatalysts and photoelectrochemical cells for solar fuel generation: a review, Catal. Sci. Technol. 5 (2015) 1360-1384. https://doi.org/10.1039/C4CY00974F
[6] A.J. Bard, Photochemistry and heterogeneous photocatalysis at semiconductors, J. photochem. 10 (1979) 59-75. https://doi.org/10.1016/0047-2670(79)80037-4
[7] J. Cen, Q. Wu, M. Liu, A. Orlov, Developing new understanding of photoelectrochemical water splitting via in-situ techniques: a review on recent progress, Green Energy & Environ. 2 (2017) 100-111. https://doi.org/10.1016/j.gee.2017.03.001
[8] J. Joy, J. Mathew, S.C. George, Nanomaterials for photoelectrochemical water splitting -review, Int. J. Hydrog. Energy 43 (2018) 4804-4817. https://doi.org/10.1016/j.ijhydene.2018.01.099
[9] Y. Tachibana, L. Vayssieres, J.R. Durrant, Artificial photosynthesis for solar water splitting, Nat. Photonics 6 (2012) 511-518. https://doi.org/10.1038/nphoton.2012.175
[10] J. Brillet, J.H. Yum, M. Cornuz, T. Hisatomi, R. Solarska, J. Augustynski, M. Graetzel, K. Sivula, Highly efficient water splitting by a dual absorber tandem cell, Nat. Photonics 6 (2012) 824-828. https://doi.org/10.1038/nphoton.2012.265
[11] S. Ikeda, T. Itani, K. Nango, M. Matsumura, Overall water splitting on tungsten-based photocatalysts with defect pyrochlore structure, Catal. Lett. 98 (2004) 229-233. https://doi.org/10.1007/s10562-004-8685-y
[12] L. Meda, L. Abbondanza, Materials for photo-electrochemical water splitting, Rev. Adv. Sci. Eng. 2 (2013) 200–207. https://doi.org/10.1166/rase.2013.1034
[13] A. Wolcott, W.A. Smith, T.R. Kuykendall, Y. Zhao, J.Z. Zhang, Photoelectrochemical water splitting using dense and aligned TiO2 nanorod arrays, Small 5 (2009) 104-111. https://doi.org/10.1002/smll.200800902
[14] V. Cristino, S. Caramori, R. Argazzi, L. Meda, G.L. Marra, C.A. Bignozzi, Efficient photoelectrochemical water splitting by anodically grown WO3 electrodes, Langmuir 27 (2011) 7276-7284. https://doi.org/10.1021/la200595x
[15] Y. Ling, G. Wang, D.A. Wheeler, J.Z. Zhang, Y. Li, Sn-doped hematite nanostructures for photoelectrochemical water splitting, Nano Lett. 11 (2011) 2119-2125. https://doi.org/10.1021/nl200708y
[16] F. Su, J. Lu, Y. Tian, X. Ma, J. Gong, Branched TiO2 nanoarrays sensitized with CdS quantum dots for highly efficient photoelectrochemical water splitting, Phys. Chem. Chem. Phys. 15 (2013) 12026-12032. https://doi.org/10.1039/c3cp51291f
[17] C.-Y. Lin, Y.-H. Lai, D. Mersch, E. Reisner, Cu2O/NiOx nanocomposite as an inexpensive photocathode in photoelectrochemical water splitting, Chem. Sci. 3 (2012) 3487-3489. https://doi.org/10.1039/c2sc20874a
[18] F. Xu, J. Mei, M. Zheng, D. Bai, Z. Wu, K. Gao, K. Jiang, Au nanoparticles modified branched TiO2 nanorod array arranged with ultrathin nanorods for enhanced photoelectrochemical water splitting, J. Alloys Compd. 693 (2017) 1124–1132. https://doi.org/10.1016/j.jallcom.2016.09.273
[19] S.T. Kochuveedu, Photocatalytic and photoelectrochemical water splitting on TiO2 via photosensitization, J. Nanometer. 2016 (2016) 1-12. https://doi.org/10.1155/2016/4073142
[20] R. siavash Moakhar, M. Jalali, A. Kushwaha, G. Kia Liang Goh, N. Riahi-Noori, A. Dolati, M. Ghorbani, Au-Pd bimetallic nanoparticle decorated TiO2 rutile nanorod arrays for enhanced photoelectrochemical water splitting, J. Appl. Electrochem. 48 (2018) 995–1007. https://doi.org/10.1007/s10800-018-1231-1
[21] P. Aurora, P. Rhee, L. Thompson, Titania nanotube supported gold photoanodes for photoelectrochemical cells, J. Electrochem. Soc. 157 (2010) 152-155. https://doi.org/10.1149/1.3417096
[22] C. Langhammer, Z. Yuan, I. Zoric, B. Kasemo, Plasmonic properties of supported Pt and Pd nanostructures, Nano Lett. 6 (2006) 833–838. https://doi.org/10.1021/nl060219x
[23] A. Zieli´nska-Jurek, E. Kowalska, J.W. Sobczak, W. Lisowski, B. Ohtani, A. Zaleska, Preparation and characterization of monometallic (Au) and bimetallic (Ag/Au) modified-titania photocatalysts activated by visible light, Appl. Catal. B: Environ. 101 (2011) 504–514. https://doi.org/10.1016/j.apcatb.2010.10.022
[24] T. Pakizeh, C. Langhammer, I. Zoric, P. Apell, M. Kall, Intrinsic fano interference of localized plasmons in Pd nanoparticles, Nano Lett. 9 (2009) 882–886. https://doi.org/10.1021/nl803794h
[25] S.E. Hunyadi Murph, K.J. Heroux, C.E. Turick, D. Thomas, Metallic and hybrid nanostructures: fundamentals and applications, J. Nanosci. Nanotech. 4 (2013) 387-427.
[26] A. Zielińska-Jurek, Progress, challenge and perspective of bimetallic TiO2 based photocatalysts, J. Nanomater. 2014 (2014) 1–17. https://doi.org/10.1155/2014/208920
[27] E. Kowalska, H. Remita, C. Colbeau-Justin, J. Hupka, J. Belloni, Modification of titanium dioxide with platinum ions and clusters: application in photocatalysis, J. Phys. Chem. C 112 (2008) 1124–1131. https://doi.org/10.1021/jp077466p
[28] A. Zieli´nska-Jurek, J. Hupka, Preparation and characterization of Pt/Pd-modified titanium dioxide nanoparticles for visible light irradiation, Catal. Today 230 (2014) 181–187. https://doi.org/10.1016/j.cattod.2013.09.045
[29] Y. Shiraishi, Y. Takeda, Y. Sugano, S. Ichikawa, S. Tanaka, T. Hirai, Highly efficient photocatalytic dehalogenation of organic halides on TiO2 loaded with bimetallic Pd-Pt alloy nanoparticles, Chem. Commun. 47 (2011) 7863–7865. https://doi.org/10.1039/c1cc12087e
[30] Y. Mizukoshi, K. Sato, T.J. Konno, N. Masahashi, Dependence of photocatalytic activities upon the structures of Au-Pd bimetallic nanoparticles immobilized on TiO2 surface, Appl. Catal. B: Environ. 94 (2010) 248–253. https://doi.org/10.1016/j.apcatb.2009.11.015
[31] L. Li, Z. Xu, F. Liu, Y. Shao, J. Wang, H. Wan, S. Zheng, Photocatalytic nitrate reduction over Pt–Cu/TiO2 catalysts with benzene as hole scavenger, J. Photochem. Photobiol. A 212 (2010) 113–121. https://doi.org/10.1016/j.jphotochem.2010.04.003
[32] C.-T. Hsieh, J.-Y. Lin, Fabrication of bimetallic Pt-M (M= Fe, Co and Ni) nanoparticle/carbon nanotube electrocatalysts for direct methanol fuel cells, J. Power Sources 188 (2009) 347–352. https://doi.org/10.1016/j.jpowsour.2008.12.031
[33] Y. Ji, S. Yang, S. Guo, X. Song, B. Ding, Z. Yang, Bimetallic Ag/Au nanoparticles: a low temperature ripening strategy in aqueous solution, Colloids and Surfaces A: Physicochem. Eng. Aspects 372 (2010) 204–209. https://doi.org/10.1016/j.colsurfa.2010.10.028
[34] A.R. Rautio, P. Maki-Arvela, A. Aho, K. Eranen, K. Kordas, Chemoselective hydrogenation of citral by Pt and Pt-Sn catalysts supported on TiO2 nanoparticles and nanowires, Catal. Today 241 (2015) 170-178. https://doi.org/10.1016/j.cattod.2013.12.052
[35] K. Iwashina, A. Iwase, Y.H. Ng, R. Amal, A. Kudo, Z-schematic water splitting into H2 and O2 using metal sulfide as a hydrogen-evolving photocatalyst and reduced graphene oxide as a solid-state electron mediator, J. Am. Chem. Soc. 137 (2015) 604-607. https://doi.org/10.1021/ja511615s
[36] T.-F. Yeh, J. Cihlar, C.-Y. Chang, C. Cheng, H. Teng, Roles of graphene oxide in photocatalytic water splitting, Mater. Today 16 (2013) 78-84. https://doi.org/10.1016/j.mattod.2013.03.006
[37] M.A. Nadeem, Non-noble metal photocatalysts for hydrogen production: a step ahead towards practical applications, Int. J. Petrochem. Sci. Eng. 1 (2016) 85‒86. https://doi.org/10.15406/ipcse.2016.01.00015
[38] Q. Wang, T. Hisatomi, M. Katayama, T. Takata, T. Minegishi, A. Kudo, T. Yamada, K. Domen, Particulate photocatalyst sheets for Z-scheme water splitting: advantages over powder suspension and photoelectrochemical systems and future challenges, Faraday Discuss. 197 (2017) 491–504. https://doi.org/10.1039/C6FD00184J
[39] G. Darabhara, M.A. Amin, G.A.M. Mersal, E.M. Ahmed, M.R. Das, M.B. Zakaria, V. Malgras, S.M. Alsheri, Y. Yamauchi, S. Szunerits, R. Boukherroub, Reduced graphene oxide nanosheets decorated with Au, Pd and Au-Pd bimetallic nanoparticles as highly efficient catalysts for electrochemical hydrogen generation, J. Mater. Chem. A 3 (2015) 20254-20266. https://doi.org/10.1039/C5TA05730B
[40] C. Wang, D. Astruc, Nano gold plasmonic photocatalysis for organic synthesis and clean energy conversion, Chem. Soc. Rev. 43 (2014) 7188-7216. https://doi.org/10.1039/C4CS00145A
[41] S.-S. Yi, X.-B. Zhang, B.-R. Wulan, J.-M. Yan, Q. Jiang, Non-noble metals applying to solar water splitting, Energy Environ. Sci. 11 (2018) 3128-3156. https://doi.org/10.1039/C8EE02096E
[42] E. Halary-Wagner, F. Wagner, P. Hoffmann, Titanium dioxide thin-film deposition on polymer substrate by light induced chemical vapor deposition, J. Electrochem. Soc. 151 (2004) 571-576. https://doi.org/10.1149/1.1775931
[43] Y.W. Phuan, W.J. Ong, M.N. Chong, J.D. Ocon, Prospects of electrochemically synthesized hematite photoanodes for photoelectrochemical water splitting: a review, J. Photochem. Photobiol. C: Photochem. Rev. 33 (2017) 54-82. https://doi.org/10.1016/j.jphotochemrev.2017.10.001
[44] K.M.H. Young, B.M. Klahr, O. Zandi, T.W. Hamann, Photocatalytic water oxidation with hematite electrodes, Catal. Sci. Technol. 3 (2013) 1660-1671. https://doi.org/10.1039/c3cy00310h
[45] A. Wolcott, W.A. Smith, T.R. Kuykendall, Y. Zhao, J.Z. Zhang, Photoelectrochemical study of nanostructured ZnO thin films for hydrogen generation from water splitting, Adv. Funct. Mater. 19 (2009) 1849-1856. https://doi.org/10.1002/adfm.200801363
[46] E. Chorbadzhiyska, M. Mitov, G. Hristov, N. Dimcheva, L. Nalbandian, A. Evdou, Y. Hubenova, Pd-Au electrocatalysts for hydrogen evolution reaction at neutral pH, Int. J. Electrochem. 2014 (2014) 1–6. https://doi.org/10.1155/2014/239270
[47] H.W. Chen, Y. Ku, Y.L. Kuo, Effect of Pt/TiO2 characteristics on temporal behavior of o-cresol decomposition by visible light-induced photocatalysis, Water Res. 41 (2007) 2069–2078. https://doi.org/10.1016/j.watres.2007.02.021
[48] X. Meng, L. Liu, S. Ouyang, H. Xu, D. Wang, N. Zhao, J. Ye, Nanometals for solar to chemical energy conversion: from semiconductor based photocatalysis to plasmon-mediated photocatalysis and photo-thermocatalysis, Adv. Mater. 28 (2016) 6781-6803. https://doi.org/10.1002/adma.201600305
[49] M.R. Gholipour, C.-T. Dinh, F. Beland, T.-O. Do, Nanocomposite heterojunctions as sunlight-driven photocatalysts for hydrogen production from water splitting, Nanoscale 7 (2015) 8187-8208. https://doi.org/10.1039/C4NR07224C
[50] A. Fujishima, K. Honda, S. Kikuchi, K. Kagaku Zasshi, Photosensitized electrolytic oxidation on semiconducting n-Type TiO2 electrode, J. Chem. Soc. Japan 72 (1969) 108-113. https://doi.org/10.1246/nikkashi1898.72.108
[51] T.S. Atabaev, M.A. Hossain, D. Lee, H.K. Kim, Y.H. Hwang, Pt-coated TiO2 nanorods for photoelectrochemical water splitting applications, Results in Physics 6 (2016) 373–376. https://doi.org/10.1016/j.rinp.2016.07.002
[52] F. Wang, Z. Zheng, F. Jia, Enhanced photoelectrochemical water splitting on Pt-loaded TiO2 nanorods array thin film, Mater. Lett. 71 (2012) 141–144. https://doi.org/10.1016/j.matlet.2011.12.063
[53] A. Galinska, J. Walendziewski, Photocatalytic water splitting over Pt−TiO2 in the presence of sacrificial reagents, Energy Fuels 19 (2005) 1143–1147. https://doi.org/10.1021/ef0400619
[54] J. Xiao, X. Zhang, Y. Li, A ternary g-C3N4/Pt/ZnO photoanode for efficient photoelectrochemical water splitting, Int. J. Hydrog. Energy 40 (2015) 9080–9087. https://doi.org/10.1016/j.ijhydene.2015.05.122
[55] N. Naseri, P. Sangpour, S.H. Mousavi, Applying alloyed metal nanoparticles to enhance solar assisted water splitting, RSC Adv. 4 (2014) 46697–46703. https://doi.org/10.1039/C4RA08216H
[56] K. Ueno, H. Misawa, Plasmon-enhanced photocurrent generation and water oxidation from visible to near-infrared wavelengths, NPG Asia Materials 5 (2013) 61-67. https://doi.org/10.1038/am.2013.42
[57] M. Haro, R. Abargues, I. Herraiz-Cardona, J. Mart´ınez-Pastor, S. Gim´enez, Plasmonic versus catalytic effect of gold nanoparticles on mesoporous TiO2 electrodes for water splitting, Electrochim. Acta 144 (2014) 64–70. https://doi.org/10.1016/j.electacta.2014.07.146
[58] H.J. Kim, S.H. Lee, A.A. Upadhye, I. Ro, M.I. Tejedor-Tejedor, M.A. Anderson, W.B. Kim, G.W. Huber, Plasmon-enhanced photoelectrochemical water splitting with size-controllable gold nanodot arrays, ACS Nano 8 (2014) 10756–10765. https://doi.org/10.1021/nn504484u
[59] Z. Zhang, L. Zhang, M. N. Hedhili, H. Zhang, P. Wang, Plasmonic gold nanocrystals coupled with photonic crystal seamlessly on TiO2 nanotube photoelectrodes for efficient visible light photoelectrochemical water splitting, Nano Lett. 13 (2013) 14–20. https://doi.org/10.1021/nl3029202
[60] X. Zhang, Y. Liu, S.-T. Lee, S. Yang, Z. Kang, Coupling surface plasmon resonance of gold nanoparticles with slow-photon-effect of TiO2 photonic crystals for synergistically enhanced photoelectrochemical water splitting, Energy Environ. Sci. 7 (2014) 1409–1419. https://doi.org/10.1039/c3ee43278e
[61] F. Su, T. Wang, R. Lv, J. Zhang, P. Zhang, J. Lu, J. Gong, Dendritic Au/TiO2 nanorod arrays for visible-light driven photoelectrochemical water splitting, Nanoscale 5 (2013) 9001-9010. https://doi.org/10.1039/c3nr02766j
[62] J.Y. Choi, Y. Hoon Sung, H.J. Choi, Y. Doo Kim, D. Huh, H. Lee, Fabrication of Au nanoparticle-decorated TiO2 nanotube arrays for stable photoelectrochemical water splitting by two-step anodization, Ceram. Int. 43 (2017) 14063–14067. https://doi.org/10.1016/j.ceramint.2017.07.141
[63] P. Peerakiatkhajohn, T. Butburee, J.H. Yun, H. Chen, R.M. Richards, L. Wang, A hybrid photoelectrode with plasmonic Au@TiO2 nanoparticles for enhanced photoelectrochemical water splitting, J. Mater. Chem. A 3 (2015) 20127–20133. https://doi.org/10.1039/C5TA04137F
[64] J. Chen, M. Yu, Y. Wang, S. Shen, M. Wang, L. Guo, Au@SiO2 core/shell nanoparticle-decorated TiO2 nanorod arrays for enhanced photoelectrochemical water splitting, Chin. Sci. Bull. 59 (2014) 2191–2198. https://doi.org/10.1007/s11434-014-0188-7
[65] L. Wang, X. Zhou, N.T. Nguyen, P. Schmuki, Plasmon-enhanced photoelectrochemical water splitting using Au nanoparticles decorated on hematite nanoflake arrays, ChemSusChem 8 (2015) 618–622. https://doi.org/10.1002/cssc.201403013
[66] M. Gholami, M. Qorbani, O. Moradlou, N. Naseri, A.Z. Moshfegh, Optimal Ag2S nanoparticle incorporated TiO2 nanotube array for visible water splitting, RSC Adv. 4 (2014) 7838- 7844. https://doi.org/10.1039/c3ra44898c
[67] Y. Wei, L. Ke, J. Kong, H. Liu, Z. Jiao, X. Lu, H. Du, X.W. Sun, Enhanced photoelectrochemical water-splitting effect with a bent ZnO nanorod photoanode decorated with Ag nanoparticles, Nanotechnology 23 (2012) 235401-235409. https://doi.org/10.1088/0957-4484/23/23/235401
[68] J. Wu, S. Lu, D. Ge, L. Zhang, W. Chen, H. Gu, Photocatalytic properties of Pd/TiO2 nanosheets for hydrogen evolution from water splitting, RSC Adv. 6 (2016) 67502-67508. https://doi.org/10.1039/C6RA10408H
[69] N.K. Allam, A.J. Poncheri, M.A. El-Sayed, Vertically oriented Ti–Pd mixed oxynitride nanotube arrays for enhanced photoelectrochemical water splitting, ACS Nano 5 (2011) 5056–5066. https://doi.org/10.1021/nn201136t
[70] G. Hitoki, T. Takata, J.N. Kondo, M. Hara, H. Kobayashi, K. Domen, (Oxy) nitrides as new photocatalysts for water splitting under visible light irradiation, J. Electrochem. Soc. 70 (2002) 463–465. https://doi.org/10.5796/electrochemistry.70.463
[71] C. Hou, M. Zhang, T. Kasama, C. Engelbrekt, L. Zhang, H. Wang, Q. Chi, Reagent‐free synthesis and plasmonic antioxidation of unique nanostructured metal-metal oxide core shell microfibers, Adv. Mater. 28 (2016) 4097-4104. https://doi.org/10.1002/adma.201505990
[72] S. Zhang, B. Peng, S. Yang, H.G. Wang, H. Yu, Y. Fang, F. Peng, Non-noble metal copper nanoparticles decorated TiO2 nanotube arrays with plasmon-enhanced photocatalytic hydrogen evolution under visible light, Int. J. Hydrog. Energy 40 (2015) 303-310. https://doi.org/10.1016/j.ijhydene.2014.10.122
[73] G. Xiong, R. Shao, T.C. Droubay, A.G. Joly, K.M. Beck, S.A. Chambers, Photoemission electron microscopy of TiO2 anatase films embedded with rutile nanocrystals, Adv. Funct. Mater. 17 (2007) 2133-2138. https://doi.org/10.1002/adfm.200700146
[74] F. Wang, R.J. Wong, J.H. Ho, Y. Jiang, R. Amal, Sensitization of Pt/TiO2 using plasmonic Au nanoparticles for hydrogen evolution under visible-light irradiation, ACS Appl. Mater. Interfaces 9 (2017) 30575–30582. https://doi.org/10.1021/acsami.7b06265
[75] A.A. Melvin, K. Illath, T. Das, T. Raja, S. Bhattacharyya, C.S. Gopinath, M-Au/TiO2 (M=Ag, Pd and Pt) Nanophotocatalyst for overall solar water splitting: role of interfaces, Nanoscale 7 (2015) 13477-13488. https://doi.org/10.1039/C5NR03735B
[76] Y. Lu, J. Zhang, L. Ge, C. Han, P. Qiu, S. Fang, Synthesis of novel Au-Pd nanoparticles decorated one-dimensional ZnO nanorod arrays with enhanced photoelectrochemical water splitting activity, J. Colloid Interface Sci. 483 (2016) 146–153. https://doi.org/10.1016/j.jcis.2016.08.022
[77] R.S. Moakhar, A. Kushwaha, M. Jalali, G.K.L. Goh, A. Dolati, M. Ghorbani, Enhancement in solar driven water splitting by Au-Pd nanoparticle decoration of electrochemically grown ZnO nanorods, J. Appl. Electrochem. 46 (2016) 819-827. https://doi.org/10.1007/s10800-016-0981-x
[78] Y. Li, Z. Liu, Y. Wang, Z. Liu, J. Han, J. Ya, ZnO/CuInS2 core/shell heterojunction nanoarray for photoelectrochemical water splitting, Int. J. Hydrog. Energy 37 (2012) 15029-15037. https://doi.org/10.1016/j.ijhydene.2012.07.117
[79] J. Han, Z. Liu, K. Guo, J. Ya, Y. Zhao, X. Zhang, T. Hong, J. Liu, High-efficiency AgInS2-modified ZnO nanotube array photoelectrodes for all-solid-state hybrid solar cells, ACS Appl. Mater. Interfaces 6 (2014) 17119-17125. https://doi.org/10.1021/am5047813
[80] M. Law, L.E. Greene, J.C. Johnson, R. Saykally, P. Yang, Nanowire dye-sensitized solar cells, Nat. Mater. 4 (2005) 455-459. https://doi.org/10.1038/nmat1387
[81] Y. Zhang, Y. Zhang, Y. Guo, L. Wu, Y. Liu, L. Song, Synthesis of Au-Pd nanoparticle-decorated graphene-coated ZnO nanorod arrays with enhanced photoelectrochemical performance and stability, RSC Adv. 9 (2018) 2666–2672. https://doi.org/10.1039/C8RA09028A
[82] K.K. Patra, C.S. Gopinath, Bimetallic and plasmonic Ag-Au on TiO2 for solar water splitting: an active nanocomposite for entire visible-light-region absorption, ChemCatChem 8 (2016) 3294–3311. https://doi.org/10.1002/cctc.201600937
[83] J. Liu, F. Chen, Plasmon enhanced photoelectrochemical activity of Ag-Cu nanoparticles on TiO2/Ti substrates, Int. J. Electrochem. Sci. 7 (2012) 9560-9572.
[84] S. Kim, J.-M. Kim, J.-E. Park, J.-M. Nam, Non noble metal based plasmonic nanomaterials: recent advances and future perspectives, Adv. Mater. 30 (2018) 1704528-1704551. https://doi.org/10.1002/adma.201704528
[85] N.M. Mohamed, R. Bashiri, F.K. Chong, S. Sufian, S. Kakooei, Photoelectrochemical behavior of bimetallic Cu–Ni and monometallic Cu, Ni doped TiO2 for hydrogen production. Int. J. Hydrog. Energy 40 (2015) 14031–14038. https://doi.org/10.1016/j.ijhydene.2015.07.064
[86] H. Tian, S.Z. Kang, X. Li, L. Qin, M. Ji, J. Mu, Fabrication of an efficient noble metal-free TiO2 based photocatalytic system using Cu–Ni bimetallic deposit as an active center of H2 evolution from water, Sol. Energy Mater. Sol. Cells 134 (2015) 309–317. https://doi.org/10.1016/j.solmat.2014.12.016
[87] M.M. Momeni, Y. Ghayeb, M. Mahvari, Study of photoelectrochemical water splitting using films based on deposited TiO2 nanotubes, Appl. Phys. A 124 (2018) 586-597. https://doi.org/10.1007/s00339-018-2009-3
[88] B.Y. Cheng, J.S. Yang, H.W. Cho, J.J. Wu, Fabrication of efficient BiVO4-TiO2 heterojunction photoanode for photoelectrochemical water oxidation, ACS Appl. Mater. Interfaces 8 (2016) 20032-20039. https://doi.org/10.1021/acsami.6b05489
[89] F. Cao, W. Tian, L. Li, Ternary non-noble metal zinc-nickel-cobalt carbonate hydroxide co-catalysts toward highly efficient photoelectrochemical water splitting, J. Mater. Sci. Technol. 34 (2017) 899–904. https://doi.org/10.1016/j.jmst.2017.11.054
[90] X. Han, Y. Wei, J. Su, Y. Zhao, Low-cost oriented hierarchical growth of BiVO4/rGO/Ni-Fe nanoarrays photoanode for photoelectrochemical water splitting, ACS Sustainable Chem. Eng. 6 (2018) 14695−14703. https://doi.org/10.1021/acssuschemeng.8b03259
[91] S. Oh, S. Jung, Y.H. Lee, J.T. Song, T.H. Kim, D.K. Nandi, S.-H. Kim, J. Oh, Hole-selective CoOx/SiOx/Si heterojunctions for photoelectrochemical water splitting, ACS Catal. 8 (2018) 9755-9764. https://doi.org/10.1021/acscatal.8b03520
[92] S.R. Vaddipalli, S.R. Sanivarapu, S. Vengatesan, J.B. Lawrence, M. Eashwar, G. Sreedhar, Heterostructured Au NPs/CdS/LaBTC MOFs photoanode for efficient photoelectrochemical water splitting: stability enhancement via CdSe QDs to 2D-CdS nanosheets transformation, ACS Appl. Mater. Interfaces 8 (2016) 23049−23059. https://doi.org/10.1021/acsami.6b06851