BiVO4 Photoanodes for Photoelectrochemical Water Splitting
Hyungtak Seo, Basanth S. Kalanoor, Shankara S. Kalanur
Bismuth vanadate (BiVO4) has been significantly utilized as a photoanode component in photoelectrochemical (PEC) water splitting system owing to its excellent optical, electrical properties and suitable band edge positions. BiVO4 has reached a remarkable milestone by exhibiting enhanced PEC activity and O2/H2 evolution rates. In this chapter, the factors such as crystal structure, facet, pH of the electrolyte, carrier dynamics, intrinsic defects, oxygen vacancies, doping, polarons, plasmon-induced resonant energy transfer and surface passivation catalysts influencing the efficiency of PEC water splitting activity of BiVO4 are discussed in detail.
Keywords
BiVO4, Crystal Structure, Facet, Carrier Dynamics, Intrinsic Defects, Oxygen Vacancies, Doping, Polaron, Surface Catalyst
Published online 3/5/2020, 54 pages
Citation: Hyungtak Seo, Basanth S. Kalanoor, Shankara S. Kalanur, BiVO4 Photoanodes for Photoelectrochemical Water Splitting, Materials Research Foundations, Vol. 71, pp 129-182, 2020
DOI: https://doi.org/10.21741/9781644900734-6
Part of the book on Photoelectrochemical Water Splitting
References
[1] A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature 238 (1972) 238037a0. https://doi.org/10.1038/238037a0.
[2] A. Kudo, K. Ueda, H. Kato, I. Mikami, Photocatalytic O2 evolution under visible light irradiation on BiVO4 in aqueous AgNO3 solution, Catal. Lett. 53 (1998) 229–230. https://doi.org/10.1023/A:1019034728816.
[3] Y. Park, K. J. McDonald, K.-S. Choi, Progress in bismuth vanadate photoanodes for use in solar water oxidation, Chem. Soc. Rev. 42 (2013) 2321–2337. https://doi.org/10.1039/C2CS35260E.
[4] B. Xie, H. Zhang, P. Cai, R. Qiu, Y. Xiong, Simultaneous photocatalytic reduction of Cr(VI) and oxidation of phenol over monoclinic BiVO4 under visible light irradiation, Chemosphere 63 (2006) 956–963. https://doi.org/10.1016/j.chemosphere.2005.08.064.
[5] M.S. Prévot, K. Sivula, Photoelectrochemical Tandem Cells for Solar Water Splitting, J. Phys. Chem. C. 117 (2013) 17879–17893. https://doi.org/10.1021/jp405291g.
[6] S.R. Taylor, Abundance of chemical elements in the continental crust: A new table, Geochim. Cosmochim. Acta 28 (1964) 1273–1285. https://doi.org/10.1016/0016-7037(64)90129-2.
[7] K.R. Tolod, S. Hernández, N. Russo, Recent advances in the BiVO4 photocatalyst for sun-driven water oxidation: top-performing photoanodes and scale-up challenges, Catalysts 7 (2017) 13. https://doi.org/10.3390/catal7010013.
[8] H.D. Telpande, D.V. Parwate, Characterization supported improved method for the synthesis of bismuth vanadate and its assessment with conventional synthetic route, IOSR J. Appl. Chem. 8 (2015) 28-37.
[9] A.R. Lim, S.H. Choh, M.S. Jang, Prominent ferroelastic domain walls in BiVO4 crystal, J. Phys. Condens. Matter. 7 (1995) 7309–7323. https://doi.org/10.1088/0953-8984/7/37/005.
[10] F.F. Abdi, N. Firet, R. van de Krol, Efficient BiVO4 thin film photoanodes modified with cobalt phosphate catalyst and W-doping, ChemCatChem 5 (2013) 490–496. https://doi.org/10.1002/cctc.201200472.
[11] W. Liu, H. Liu, L. Dang, H. Zhang, X. Wu, B. Yang, Z. Li, X. Zhang, L. Lei, S. Jin, Amorphous cobalt–iron hydroxide nanosheet electrocatalyst for efficient electrochemical and photo-electrochemical oxygen evolution, Adv. Funct. Mater. 27 (2017) 1603904. https://doi.org/10.1002/adfm.201603904.
[12] D.K. Zhong, S. Choi, D.R. Gamelin, Near-complete suppression of surface recombination in solar photoelectrolysis by “Co-Pi” catalyst-modified W:BiVO4, 133 (2011) 18370-18377. https://doi.org/10.1021/ja207348x.
[13] High Performance Pigments, 1st ed., John Wiley & Sons, Ltd, 2002. https://doi.org/10.1002/3527600493.
[14] A. Kudo, K. Omori, H. Kato, A novel aqueous process for preparation of crystal form-controlled and highly crystalline BiVO4 powder from layered vanadates at room temperature and its photocatalytic and photophysical properties, J. Am. Chem. Soc. 121 (1999) 11459–11467. https://doi.org/10.1021/ja992541y.
[15] A.W. Sleight, H. -y. Chen, A. Ferretti, D.E. Cox, Crystal growth and structure of BiVO4, Mater. Res. Bull. 14 (1979) 1571–1581. https://doi.org/10.1016/0025-5408(72)90227-9.
[16] A.K. Bhattacharya, K.K. Mallick, A. Hartridge, Phase transition in BiVO4, Mater. Lett. 30 (1997) 7–13. https://doi.org/10.1016/S0167-577X(96)00162-0.
[17] C. Martinez Suarez, S. Hernández, N. Russo, BiVO4 as photocatalyst for solar fuels production through water splitting: A short review, Appl. Catal. Gen. 504 (2015) 158–170. https://doi.org/10.1016/j.apcata.2014.11.044.
[18] J.K. Cooper, S. Gul, F.M. Toma, L. Chen, P.-A. Glans, J. Guo, J.W. Ager, J. Yano, I.D. Sharp, Electronic Structure of Monoclinic BiVO4, Chem. Mater. 26 (2014) 5365–5373. https://doi.org/10.1021/cm5025074.
[19] Z.-F. Huang, L. Pan, J.-J. Zou, X. Zhang, L. Wang, Nanostructured bismuth vanadate-based materials for solar-energy-driven water oxidation: a review on recent progress, Nanoscale. 6 (2014) 14044–14063. https://doi.org/10.1039/C4NR05245E.
[20] A. Walsh, Y. Yan, M.N. Huda, M.M. Al-Jassim, S.-H. Wei, Band Edge Electronic Structure of BiVO4: Elucidating the role of the Bi s and V d Orbitals, Chem. Mater. 21 (2009) 547–551. https://doi.org/10.1021/cm802894z.
[21] K. Ding, B. Chen, Z. Fang, Y. Zhang, Density functional theory study on the electronic and optical properties of three crystalline phases of BiVO4, Theor. Chem. Acc. 132 (2013) 1352. https://doi.org/10.1007/s00214-013-1352-x.
[22] Z. Zhao, Z. Li, Z. Zou, Electronic structure and optical properties of monoclinic clinobisvanite BiVO4, Phys. Chem. Chem. Phys. 13 (2011) 4746–4753. https://doi.org/10.1039/C0CP01871F.
[23] J. Ma, L.W. Wang, The role of the isolated 6s states in BiVO4 on the electronic and atomic structures, Appl. Phys. Lett. 105 (2014) 172102. https://doi.org/10.1063/1.4900549.
[24] S. Stoughton, M. Showak, Q. Mao, P. Koirala, D.A. Hillsberry, S. Sallis, L.F. Kourkoutis, K. Nguyen, L.F.J. Piper, D.A. Tenne, N.J. Podraza, D.A. Muller, C. Adamo, D.G. Schlom, Adsorption-controlled growth of BiVO4 by molecular-beam epitaxy, APL Mater. 1 (2013) 042112. https://doi.org/10.1063/1.4824041.
[25] J.K. Cooper, S. Gul, F.M. Toma, L. Chen, Y.-S. Liu, J. Guo, J.W. Ager, J. Yano, I.D. Sharp, Indirect Bandgap and Optical Properties of Monoclinic Bismuth Vanadate, J. Phys. Chem. C. 119 (2015) 2969–2974. https://doi.org/10.1021/jp512169w.
[26] F. Ambrosio, G. Miceli, A. Pasquarello, Redox levels in aqueous solution: Effect of van der Waals interactions and hybrid functionals, J. Chem. Phys. 143 (2015) 244508. https://doi.org/10.1063/1.4938189.
[27] F. Ambrosio, J. Wiktor, A. Pasquarello, pH-dependent catalytic reaction pathway for water splitting at the BiVO4–water interface from the band alignment, ACS Energy Lett. 3 (2018) 829–834. https://doi.org/10.1021/acsenergylett.8b00104.
[28] R. Li, F. Zhang, D. Wang, J. Yang, M. Li, J. Zhu, X. Zhou, H. Han, C. Li, Spatial separation of photogenerated electrons and holes among {010} and {110} crystal facets of BiVO4, Nat. Commun. 4 (2013) 1432. https://doi.org/10.1038/ncomms2401.
[29] T. Tachikawa, T. Ochi, Y. Kobori, Crystal-face-dependent charge dynamics on a BiVO4 photocatalyst revealed by single-particle spectroelectrochemistry, ACS Catal. 6 (2016) 2250–2256. https://doi.org/10.1021/acscatal.6b00234.
[30] C.W. Kim, Y.S. Son, M.J. Kang, D.Y. Kim, Y.S. Kang, (040)-Crystal facet engineering of BiVO4 plate photoanodes for solar fuel production, Adv. Energy Mater. 6 (2016) 1501754. https://doi.org/10.1002/aenm.201501754.
[31] J. Song, M.J. Seo, T.H. Lee, Y.-R. Jo, J. Lee, T.L. Kim, S.-Y. Kim, S.-M. Kim, S.Y. Jeong, H. An, S. Kim, B.H. Lee, D. Lee, H.W. Jang, B.-J. Kim, S. Lee, Tailoring crystallographic orientations to substantially enhance charge separation efficiency in anisotropic BiVO4 photoanodes, ACS Catal. 8 (2018) 5952–5962. https://doi.org/10.1021/acscatal.8b00877.
[32] J. Hu, W. Chen, X. Zhao, H. Su, Z. Chen, Anisotropic electronic characteristics, adsorption, and stability of low-index BiVO4 surfaces for photoelectrochemical applications, ACS Appl. Mater. Interfaces 10 (2018) 5475–5484. https://doi.org/10.1021/acsami.7b15243.
[33] A.J.E. Rettie, W.D. Chemelewski, J. Lindemuth, J.S. McCloy, L.G. Marshall, J. Zhou, D. Emin, C.B. Mullins, Anisotropic small-polaron hopping in W:BiVO4 single crystals, Appl. Phys. Lett. 106 (2015) 022106. https://doi.org/10.1063/1.4905786.
[34] H.S. Han, S. Shin, D.H. Kim, I.J. Park, J.S. Kim, P.-S. Huang, J.-K. Lee, I.S. Cho, X. Zheng, Boosting the solar water oxidation performance of a BiVO4 photoanode by crystallographic orientation control, Energy Environ. Sci. 11 (2018) 1299–1306. https://doi.org/10.1039/C8EE00125A.
[35] J. Yang, D. Wang, X. Zhou, C. Li, A theoretical study on the mechanism of photocatalytic oxygen evolution on BiVO4 in aqueous solution, Chem. Eur. J. 19 (2013) 1320–1326. https://doi.org/10.1002/chem.201202365.
[36] L. Zhang, W. Niu, G. Xu, Synthesis and applications of noble metal nanocrystals with high-energy facets, Nano Today 7 (2012) 586–605. https://doi.org/10.1016/j.nantod.2012.10.005.
[37] Q. Kuang, X. Wang, Z. Jiang, Z. Xie, L. Zheng, High-energy-surface engineered metal oxide micro- and nanocrystallites and their applications, Acc. Chem. Res. 47 (2014) 308–318. https://doi.org/10.1021/ar400092x.
[38] Z. Quan, Y. Wang, J. Fang, High-index faceted noble metal nanocrystals, Acc. Chem. Res. 46 (2013) 191–202. https://doi.org/10.1021/ar200293n.
[39] P. Li, X. Chen, H. He, X. Zhou, Y. Zhou, Z. Zou, Polyhedral 30-faceted BiVO4 microcrystals predominantly enclosed by high-index planes promoting photocatalytic water-splitting activity, Adv. Mater. 30 (2018) 1703119. https://doi.org/10.1002/adma.201703119.
[40] Y. Ma, S. R. Pendlebury, A. Reynal, F.L. Formal, J. R. Durrant, Dynamics of photogenerated holes in undoped BiVO4 photoanodes for solar water oxidation, Chem. Sci. 5 (2014) 2964–2973. https://doi.org/10.1039/C4SC00469H.
[41] J. Ravensbergen, F.F. Abdi, J.H. van Santen, R.N. Frese, B. Dam, R. van de Krol, J.T.M. Kennis, Unraveling the carrier dynamics of BiVO4: A femtosecond to microsecond transient absorption study, J. Phys. Chem. C 118 (2014) 27793–27800. https://doi.org/10.1021/jp509930s.
[42] M. Yabuta, A. Takeda, T. Sugimoto, K. Watanabe, A. Kudo, Y. Matsumoto, Particle size dependence of carrier dynamics and reactivity of photocatalyst BiVO4 probed with single-particle transient absorption microscopy, J. Phys. Chem. C 121 (2017) 22060–22066. https://doi.org/10.1021/acs.jpcc.7b06230.
[43] H. Inoue, T. Shimada, Y. Kou, Y. Nabetani, D. Masui, S. Takagi, H. Tachibana, The water oxidation bottleneck in artificial photosynthesis: How can we get through it? an alternative route involving a two-electron process, ChemSusChem 4 (2011) 173–179. https://doi.org/10.1002/cssc.201000385.
[44] Z.-Y. Zhao, Single water molecule adsorption and decomposition on the low-index stoichiometric rutile TiO2 surfaces, J. Phys. Chem. C 118 (2014) 4287–4295. https://doi.org/10.1021/jp500177n.
[45] S. Lardhi, L. Cavallo, M. Harb, Determination of the intrinsic defect at the origin of poor H2 evolution performance of the monoclinic BiVO4 photocatalyst using density functional theory, J. Phys. Chem. C. 122 (2018) 18204–18211. https://doi.org/10.1021/acs.jpcc.8b03044.
[46] J. Hu, X. Zhao, W. Chen, H. Su, Z. Chen, Theoretical insight into the mechanism of photoelectrochemical oxygen evolution reaction on BiVO4 anode with oxygen vacancy, J. Phys. Chem. C 121 (2017) 18702–18709. https://doi.org/10.1021/acs.jpcc.7b05884.
[47] M. Lamers, S. Fiechter, D. Friedrich, F.F. Abdi, R. van de Krol, Formation and suppression of defects during heat treatment of BiVO4 photoanodes for solar water splitting, J. Mater. Chem. A. 6 (2018) 18694–18700. https://doi.org/10.1039/C8TA06269B.
[48] T.W. Kim, Y. Ping, G.A. Galli, K.-S. Choi, Simultaneous enhancements in photon absorption and charge transport of bismuth vanadate photoanodes for solar water splitting, Nat. Commun. 6 (2015) 8769. https://doi.org/10.1038/ncomms9769.
[49] L. Zhou, C. Zhao, B. Giri, P. Allen, X. Xu, H. Joshi, Y. Fan, L.V. Titova, P.M. Rao, High light absorption and charge separation efficiency at low applied voltage from Sb-Doped SnO2/BiVO4 core/shell nanorod-array photoanodes, Nano Lett. 16 (2016) 3463–3474. https://doi.org/10.1021/acs.nanolett.5b05200.
[50] J.H. Kim, J.-W. Jang, Y.H. Jo, F.F. Abdi, Y.H. Lee, R. van de Krol, J.S. Lee, Hetero-type dual photoanodes for unbiased solar water splitting with extended light harvesting, Nat. Commun. 7 (2016) 13380. https://doi.org/10.1038/ncomms13380.
[51] S. Wang, P. Chen, J.-H. Yun, Y. Hu, L. Wang, An electrochemically treated BiVO4 photoanode for efficient photoelectrochemical water splitting, Angew. Chem. Int. Ed. 56 (2017) 8500–8504. https://doi.org/10.1002/anie.201703491.
[52] J.-M. Wu, Y. Chen, L. Pan, P. Wang, Y. Cui, D. Kong, L. Wang, X. Zhang, J.J. Zou, Multi-layer monoclinic BiVO4 with oxygen vacancies and V4+ species for highly efficient visible-light photoelectrochemical applications, Appl. Catal. B Environ. 221 (2018) 187–195. https://doi.org/10.1016/j.apcatb.2017.09.031.
[53] S. Wang, P. Chen, Y. Bai, J.-H. Yun, G. Liu, L. Wang, New BiVO4 dual photoanodes with enriched oxygen vacancies for efficient solar-driven water splitting, Adv. Mater. 30 (2018) 1800486. https://doi.org/10.1002/adma.201800486.
[54] Y. Zhang, D. Wang, X. Zhang, Y. Chen, L. Kong, P. Chen, Y. Wang, C. Wang, L. Wang, Y. Liu, Enhanced photoelectrochemical performance of nanoporous BiVO4 photoanode by combining surface deposited cobalt-phosphate with hydrogenation treatment, Electrochim. Acta 195 (2016) 51–58. https://doi.org/10.1016/j.electacta.2016.02.137.
[55] J. Li, L. Guo, N. Lei, Q. Song, Z. Liang, Metallic Bi Nanocrystal-Modified Defective BiVO4 Photoanodes with Exposed (040) Facets for Photoelectrochemical Water Splitting, ChemElectroChem 4 (2017) 2852–2861. https://doi.org/10.1002/celc.201700680.
[56] M.D. Bhatt, J.Y. Lee, Photocatalytic properties of intrinsically defective undoped bismuth vanadate (BiVO4) photocatalyst: A DFT study, J. Electroanal. Chem. 828 (2018) 97–101. https://doi.org/10.1016/j.jelechem.2018.09.042.
[57] D. Emin, Polarons by David Emin, Camb. Core. (2012). https://doi.org/10.1017/CBO9781139023436.
[58] M. Ziwritsch, S. Müller, H. Hempel, T. Unold, F.F. Abdi, R. van de Krol, D. Friedrich, R. Eichberger, Direct time-resolved observation of carrier trapping and polaron conductivity in BiVO4, ACS Energy Lett. 1 (2016) 888–894. https://doi.org/10.1021/acsenergylett.6b00423.
[59] J. Wiktor, F. Ambrosio, A. Pasquarello, Role of polarons in water splitting: The case of BiVO4, ACS Energy Lett. 3 (2018) 1693–1697. https://doi.org/10.1021/acsenergylett.8b00938.
[60] A.J.E. Rettie, W.D. Chemelewski, D. Emin, C.B. Mullins, Unravelling small-polaron transport in metal oxide photoelectrodes, J. Phys. Chem. Lett. 7 (2016) 471–479. https://doi.org/10.1021/acs.jpclett.5b02143.
[61] K.E. Kweon, G.S. Hwang, J. Kim, S. Kim, S. Kim, Electron small polarons and their transport in bismuth vanadate: a first principles study, Phys. Chem. Chem. Phys. 17 (2014) 256–260. https://doi.org/10.1039/C4CP03666B.
[62] V. Jovic, J. Laverock, A.J.E. Rettie, J.-S. Zhou, C.B. Mullins, V.R. Singh, B. Lamoureux, D. Wilson, T.-Y. Su, B. Jovic, H. Bluhm, T. Söhnel, K.E. Smith, Soft X-ray spectroscopic studies of the electronic structure of M:BiVO4 (M = Mo, W) single crystals, J. Mater. Chem. A. 3 (2015) 23743–23753. https://doi.org/10.1039/C5TA07898A.
[63] F.F. Abdi, T.J. Savenije, M.M. May, B. Dam, R. van de Krol, The origin of slow carrier transport in BiVO4 thin film photoanodes: A time-resolved microwave conductivity study, J. Phys. Chem. Lett. 4 (2013) 2752–2757. https://doi.org/10.1021/jz4013257.
[64] J. Wiktor, I. Reshetnyak, F. Ambrosio, A. Pasquarello, Comprehensive modeling of the band gap and absorption spectrum of BiVO4, Phys. Rev. Mater. 1 (2017) 022401. https://doi.org/10.1103/PhysRevMaterials.1.022401.
[65] J. Cen, S. Li, J. Zheng, F. Pan, Electron polarons in the subsurface layer of Mo/W-doped BiVO4 surfaces, RSC Adv. 9 (2019) 819–823. https://doi.org/10.1039/C8RA09009B.
[66] A. Chaudhuri, L. Mandal, X. Chi, M. Yang, M.C. Scott, M. Motapothula, X.J. Yu, P. Yang, Y. Shao-Horn, T. Venkatesan, A.T.S. Wee, A. Rusydi, Direct observation of anisotropic small-hole polarons in an orthorhombic structure of BiVO4 films, Phys. Rev. B. 97 (2018) 195150. https://doi.org/10.1103/PhysRevB.97.195150.
[67] B. Pattengale, J. Ludwig, J. Huang, Atomic insight into the W-doping effect on carrier dynamics and photoelectrochemical properties of BiVO4 photoanodes, J. Phys. Chem. C. 120 (2016) 1421–1427. https://doi.org/10.1021/acs.jpcc.5b11451.
[68] W. Luo, J. Wang, X. Zhao, Z. Zhao, Z. Li, Z. Zou, Formation energy and photoelectrochemical properties of BiVO4 after doping at Bi3+ or V5+ sites with higher valence metal ions, Phys. Chem. Chem. Phys. 15 (2012) 1006–1013. https://doi.org/10.1039/C2CP43408C.
[69] X. Zhao, J. Hu, S. Chen, Z. Chen, An investigation on the role of W doping in BiVO4 photoanodes used for solar water splitting, Phys. Chem. Chem. Phys. 20 (2018) 13637–13645. https://doi.org/10.1039/C8CP01316K.
[70] U. Prasad, J. Prakash, B. Azeredo, A. Kannan, Stoichiometric and non-stoichiometric tungsten doping effect in bismuth vanadate based photoactive material for photoelectrochemical water splitting, Electrochim. Acta 299 (2019) 262–272. https://doi.org/10.1016/j.electacta.2019.01.013.
[71] M. Zhou, J. Bao, Y. Xu, J. Zhang, J. Xie, M. Guan, C. Wang, L. Wen, Y. Lei, Y. Xie, Photoelectrodes based upon Mo:BiVO4 inverse opals for photoelectrochemical water splitting, ACS Nano 8 (2014) 7088–7098. https://doi.org/10.1021/nn501996a.
[72] M. Favaro, R. Uecker, S. Nappini, I. Píš, E. Magnano, H. Bluhm, R. van de Krol, D.E. Starr, Chemical, structural, and electronic characterization of the (010) surface of single crystalline bismuth vanadate, J. Phys. Chem. C. (2018). (in press) https://doi.org/10.1021/acs.jpcc.8b09016.
[73] L. Yang, Y. Xiong, W. Guo, J. Guo, D. Gao, Y. Zhang, P. Xiao, Mo6+ doped BiVO4 with improved charge separation and oxidation kinetics for photoelectrochemical water splitting, Electrochim. Acta 256 (2017) 268–277. https://doi.org/10.1016/j.electacta.2017.09.186.
[74] M. Tayebi, A. Tayyebi, B.-K. Lee, Improved photoelectrochemical performance of molybdenum (Mo)-doped monoclinic bismuth vanadate with increasing donor concentration, Catal. Today. (2018) (in press). https://doi.org/10.1016/j.cattod.2018.10.014.
[75] M. Rohloff, B. Anke, S. Zhang, U. Gernert, C. Scheu, M. Lerch, A. Fischer, Mo-doped BiVO4 thin films – high photoelectrochemical water splitting performance achieved by a tailored structure and morphology, Sustain. Energy Fuels 1 (2017) 1830–1846. https://doi.org/10.1039/C7SE00301C.
[76] R.P. Antony, P.S. Bassi, F.F. Abdi, S.Y. Chiam, Y. Ren, J. Barber, J.S.C. Loo, L.H. Wong, Electrospun Mo-BiVO4 for efficient photoelectrochemical water oxidation: Direct evidence of improved hole diffusion length and charge separation, Electrochimica Acta. 211 (2016) 173–182. https://doi.org/10.1016/j.electacta.2016.06.008.
[77] A.J. Bard, Standard Potentials in Aqueous Solution, 1st edition, Taylor & Francis group, (1985), New York, https://doi.org/https://doi.org/10.1201/9780203738764.
[78] R.P. Antony, T. Baikie, S.Y. Chiam, Y. Ren, R.R. Prabhakar, S.K. Batabyal, S.C.J. Loo, J. Barber, L.H. Wong, Catalytic effect of Bi5+ in enhanced solar water splitting of tetragonal BiV0.8Mo0.2O4, Appl. Catal. Gen. 526 (2016) 21–27. https://doi.org/10.1016/j.apcata.2016.07.022.
[79] O. Monfort, S. Sfaelou, L. Satrapinskyy, T. Plecenik, T. Roch, G. Plesch, P. Lianos, Comparative study between pristine and Nb-modified BiVO4 films employed for photoelectrocatalytic production of H2 by water splitting and for photocatalytic degradation of organic pollutants under simulated solar light, Catal. Today. 280 (2017) 51–57. https://doi.org/10.1016/j.cattod.2016.07.006.
[80] Y. Zhang, Z. Yi, G. Wu, Q. Shen, Novel Y doped BiVO4 thin film electrodes for enhanced photoelectric and photocatalytic performance, J. Photochem. Photobiol. Chem. 327 (2016) 25–32. https://doi.org/10.1016/j.jphotochem.2016.05.004.
[81] B. Zhang, H. Zhang, Z. Wang, X. Zhang, X. Qin, Y. Dai, Y. Liu, P. Wang, Y. Li, B. Huang, Doping strategy to promote the charge separation in BiVO4 photoanodes, Appl. Catal. B Environ. 211 (2017) 258–265. https://doi.org/10.1016/j.apcatb.2017.03.078.
[82] C. Yin, S. Zhu, Z. Chen, W. Zhang, J. Gu, D. Zhang, One step fabrication of C-doped BiVO4 with hierarchical structures for a high-performance photocatalyst under visible light irradiation, J. Mater. Chem. A. 1 (2013) 8367–8378. https://doi.org/10.1039/C3TA11833A.
[83] X. Zhong, H. He, M. Yang, G. Ke, Z. Zhao, F. Dong, B. Wang, Y. Chen, X. Shi, Y. Zhou, In3+-doped BiVO4 photoanodes with passivated surface states for photoelectrochemical water oxidation, J. Mater. Chem. A 6 (2018) 10456–10465. https://doi.org/10.1039/C8TA01377B.
[84] H. Ullah, A.A. Tahir, T.K. Mallick, Structural and electronic properties of oxygen defective and Se-doped p-type BiVO4(001) thin film for the applications of photocatalysis, Appl. Catal. B Environ. 224 (2018) 895–903. https://doi.org/10.1016/j.apcatb.2017.11.034.
[85] T. Xia, M. Chen, L. Xiao, W. Fan, B. Mao, D. Xu, P. Guan, J. Zhu, W. Shi, Dip-coating synthesis of P-doped BiVO4 photoanodes with enhanced photoelectrochemical performance, J. Taiwan Inst. Chem. Eng. 93 (2018) 582–589. https://doi.org/10.1016/j.jtice.2018.09.003.
[86] L. Shan, G. Wang, J. Suriyaprakash, D. Li, L. Liu, L. Dong, Solar light driven pure water splitting of B-doped BiVO4 synthesized via a sol–gel method, J. Alloys Compd. 636 (2015) 131–137. https://doi.org/10.1016/j.jallcom.2015.02.113.
[87] B. Anke, M. Rohloff, M.G. Willinger, W. Hetaba, A. Fischer, M. Lerch, Improved photoelectrochemical performance of bismuth vanadate by partial O/F-substitution, Solid State Sci. 63 (2017) 1–8. https://doi.org/10.1016/j.solidstatesciences.2016.11.004.
[88] A.C. Ulpe, B. Anke, S. Berendts, M. Lerch, T. Bredow, O/F-substitution in BiVO4: Defect structures, phase stability and optical properties, Solid State Sci. 75 (2018) 39–44. https://doi.org/10.1016/j.solidstatesciences.2017.11.007.
[89] G.V. Govindaraju, J.M. Morbec, G.A. Galli, K.-S. Choi, Experimental and computational investigation of lanthanide ion doping on BiVO4 photoanodes for solar water splitting, J. Phys. Chem. C 122 (2018) 19416–19424. https://doi.org/10.1021/acs.jpcc.8b05503.
[90] J. Quiñonero, T. Lana–Villarreal, R. Gómez, Improving the photoactivity of bismuth vanadate thin film photoanodes through doping and surface modification strategies, Appl. Catal. B Environ. 194 (2016) 141–149. https://doi.org/10.1016/j.apcatb.2016.04.057.
[91] X. Zhao, J. Hu, B. Wu, A. Banerjee, S. Chakraborty, J. Feng, Z. Zhao, S. Chen, R. Ahuja, T.C. Sum, Z. Chen, Simultaneous enhancement in charge separation and onset potential for water oxidation in a BiVO4 photoanode by W–Ti codoping, J. Mater. Chem. A. 6 (2018) 16965–16974. https://doi.org/10.1039/C8TA05491F.
[92] H. He, S.P. Berglund, A.J.E. Rettie, W.D. Chemelewski, P. Xiao, Y. Zhang, C.B. Mullins, Synthesis of BiVO4 nanoflake array films for photoelectrochemical water oxidation, J. Mater. Chem. A. 2 (2014) 9371–9379. https://doi.org/10.1039/C4TA00895B.
[93] P.S. Bassi, L. Xianglin, Y. Fang, J.S.C. Loo, J. Barber, L.H. Wong, Understanding charge transport in non-doped pristine and surface passivated hematite (Fe2O3) nanorods under front and backside illumination in the context of light induced water splitting, Phys. Chem. Chem. Phys. 18 (2016) 30370–30378. https://doi.org/10.1039/C6CP05379C.
[94] X. Chang, T. Wang, P. Zhang, Y. Wei, J. Zhao, J. Gong, Stable aqueous photoelectrochemical CO2 reduction by a Cu2O dark cathode with improved selectivity for carbonaceous products, Angew. Chem. Int. Ed. 55 (2016) 8840–8845. https://doi.org/10.1002/anie.201602973.
[95] J. Gan, X. Lu, B.B. Rajeeva, R. Menz, Y. Tong, Y. Zheng, Efficient photoelectrochemical water oxidation over hydrogen-reduced nanoporous BiVO4 with Ni–Bi electrocatalyst, ChemElectroChem 2 (2015) 1385–1395. https://doi.org/10.1002/celc.201500091.
[96] S. Xiao, H. Chen, Z. Yang, X. Long, Z. Wang, Z. Zhu, Y. Qu, S. Yang, Origin of the Different photoelectrochemical performance of mesoporous BiVO4 photoanodes between the BiVO4 and the FTO side illumination, J. Phys. Chem. C 119 (2015) 23350–23357. https://doi.org/10.1021/acs.jpcc.5b07505.
[97] B.J. Trześniewski, W.A. Smith, Photocharged BiVO4 photoanodes for improved solar water splitting, J. Mater. Chem. A. 4 (2016) 2919–2926. https://doi.org/10.1039/C5TA04716A.
[98] B.J. Trześniewski, I.A. Digdaya, T. Nagaki, S. Ravishankar, I. Herraiz-Cardona, D.A. Vermaas, A. Longo, S. Gimenez, W.A. Smith, Near-complete suppression of surface losses and total internal quantum efficiency in BiVO4 photoanodes, Energy Environ. Sci. 10 (2017) 1517–1529. https://doi.org/10.1039/C6EE03677E.
[99] A.J. Bard, A.B. Bocarsly, F.R.F. Fan, E.G. Walton, M.S. Wrighton, The concept of Fermi level pinning at semiconductor/liquid junctions. Consequences for energy conversion efficiency and selection of useful solution redox couples in solar devices, J. Am. Chem. Soc. 102 (1980) 3671–3677. https://doi.org/10.1021/ja00531a001.
[100] S.R. Morrison, Electrochemistry at semiconductor and oxidized metal electrodes, Springer US, 1980.
[101] R. van de Krol, M. Grätzel, eds., Photoelectrochemical hydrogen production, Springer US, 2012.
[102] C. Du, X. Yang, M.T. Mayer, H. Hoyt, J. Xie, G. McMahon, G. Bischoping, D. Wang, Hematite-based water splitting with low turn-on voltages, Angew. Chem. Int. Ed. 52 (2013) 12692–12695. https://doi.org/10.1002/anie.201306263.
[103] Y.V. Pleskov, Solar energy conversion: A photoelectrochemical approach, Springer-Verlag, Berlin Heidelberg, 1990.
[104] S. Byun, B. Kim, S. Jeon, B. Shin, Effects of a SnO2 hole blocking layer in a BiVO4-based photoanode on photoelectrocatalytic water oxidation, J. Mater. Chem. A 5 (2017) 6905–6913. https://doi.org/10.1039/C7TA00806F.
[105] S. Byun, G. Jung, S.-Y. Moon, B. Kim, J.Y. Park, S. Jeon, S.-W. Nam, B. Shin, Compositional engineering of solution-processed BiVO4 photoanodes toward highly efficient photoelectrochemical water oxidation, Nano Energy 43 (2018) 244–252. https://doi.org/10.1016/j.nanoen.2017.11.034.
[106] B. Lamm, L. Zhou, P. Rao, M. Stefik, Atomic layer deposition of space-efficient SnO2 underlayers for bivo4 host–guest architectures for photoassisted water splitting, ChemSusChem. (2019) in press. https://doi.org/10.1002/cssc.201802566.
[107] W. Zhang, D. Yan, X. Tong, M. Liu, Ultrathin lutetium oxide film as an epitaxial hole-blocking layer for crystalline bismuth vanadate water splitting photoanodes, Adv. Funct. Mater. 28 (2018) 1705512. https://doi.org/10.1002/adfm.201705512.
[108] S.J. Hong, S. Lee, J.S. Jang, J.S. Lee, Heterojunction BiVO4/WO3 electrodes for enhanced photoactivity of water oxidation, Energy Environ. Sci. 4 (2011) 1781–1787. https://doi.org/10.1039/C0EE00743A.
[109] Y. Liang, T. Tsubota, L.P.A. Mooij, R. van de Krol, Highly improved quantum efficiencies for thin film BiVO4 photoanodes, J. Phys. Chem. C. 115 (2011) 17594–17598. https://doi.org/10.1021/jp203004v.
[110] P. Chatchai, Y. Murakami, S.–. Kishioka, A.Y. Nosaka, Y. Nosaka, FTO∕SnO2∕BiVO4 composite photoelectrode for water oxidation under visible light irradiation, Electrochem. Solid-State Lett. 11 (2008) H160–H163. https://doi.org/10.1149/1.2906109.
[111] M.G. Lee, D.H. Kim, W. Sohn, C.W. Moon, H. Park, S. Lee, H.W. Jang, Conformally coated BiVO4 nanodots on porosity-controlled WO3 nanorods as highly efficient type II heterojunction photoanodes for water oxidation, Nano Energy 28 (2016) 250–260. https://doi.org/10.1016/j.nanoen.2016.08.046.
[112] K.S. Joya, Y.F. Joya, K. Ocakoglu, R. van de Krol, Water-splitting catalysis and solar fuel devices: artificial leaves on the move, Angew. Chem. Int. Ed. 52 (2013) 10426–10437. https://doi.org/10.1002/anie.201300136.
[113] K. Sivula, Metal oxide photoelectrodes for solar fuel production, surface traps, and catalysis, J. Phys. Chem. Lett. 4 (2013) 1624–1633. https://doi.org/10.1021/jz4002983.
[114] M. Zhong, T. Hisatomi, T. Minegishi, H. Nishiyama, M. Katayama, T. Yamada, K. Domen, Bulky crystalline BiVO4 thin films for efficient solar water splitting, J. Mater. Chem. A 4 (2016) 9858–9864. https://doi.org/10.1039/C6TA03072F.
[115] L. Zhang, C.Y. Lin, V.K. Valev, E. Reisner, U. Steiner, J.J. Baumberg, Plasmonic enhancement in BiVO4 photonic crystals for efficient water splitting, Small 10 (2014) 3970–3978. https://doi.org/10.1002/smll.201400970.
[116] C. Ding, J. Shi, D. Wang, Z. Wang, N. Wang, G. Liu, F. Xiong, C. Li, Visible light driven overall water splitting using cocatalyst/BiVO4 photoanode with minimized bias, Phys. Chem. Chem. Phys. 15 (2013) 4589–4595. https://doi.org/10.1039/C3CP50295C.
[117] T.W. Kim, K.-S. Choi, Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting, Science 343 (2014) 990–994. https://doi.org/10.1126/science.1246913.
[118] J.H. Kim, J.W. Jang, H.J. Kang, G. Magesh, J.Y. Kim, J.H. Kim, J. Lee, J.S. Lee, Palladium oxide as a novel oxygen evolution catalyst on BiVO4 photoanode for photoelectrochemical water splitting, J. Catal. 317 (2014) 126–134. https://doi.org/10.1016/j.jcat.2014.06.015.
[119] Y. Liang, J. Messinger, Improving BiVO4 photoanodes for solar water splitting through surface passivation, Phys. Chem. Chem. Phys. 16 (2014) 12014–12020. https://doi.org/10.1039/C4CP00674G.
[120] L. Chen, F.M. Toma, J.K. Cooper, A. Lyon, Y. Lin, I.D. Sharp, J.W. Ager, Mo-Doped BiVO4 photoanodes synthesized by reactive sputtering, ChemSusChem 8 (2015) 1066–1071. https://doi.org/10.1002/cssc.201402984.
[121] M. de Respinis, K.S. Joya, H.J.M. De Groot, F. D’Souza, W.A. Smith, R. van de Krol, B. Dam, Solar Water Splitting Combining a BiVO4 Light Absorber with a Ru-Based Molecular Cocatalyst, J. Phys. Chem. C. 119 (2015) 7275–7281. https://doi.org/10.1021/acs.jpcc.5b00287.
[122] M.G. Lee, C.W. Moon, H. Park, W. Sohn, S.B. Kang, S. Lee, K.J. Choi, H.W. Jang, Dominance of plasmonic resonant energy transfer over direct electron transfer in substantially enhanced water oxidation activity of BiVO4 by Shape-Controlled Au Nanoparticles, Small. 13 (2017) 1701644. https://doi.org/10.1002/smll.201701644.
[123] K.-H. Ye, Z. Wang, J. Gu, S. Xiao, Y. Yuan, Y. Zhu, Y. Zhang, W. Mai, S. Yang, Carbon quantum dots as a visible light sensitizer to significantly increase the solar water splitting performance of bismuth vanadate photoanodes, Energy Environ. Sci. 10 (2017) 772–779. https://doi.org/10.1039/C6EE03442J.
[124] M.-W. Kim, K. Kim, T.Y. Ohm, B. Joshi, E. Samuel, M.T. Swihart, H. Yoon, H. Park, S.S. Yoon, Mo-doped BiVO4 nanotextured pillars as efficient photoanodes for solar water splitting, J. Alloys Compd. 726 (2017) 1138–1146. https://doi.org/10.1016/j.jallcom.2017.07.260.
[125] X. Zhang, R. Wang, F. Li, Z. An, M. Pu, X. Xiang, Enhancing photoelectrochemical water oxidation efficiency of bivo4 photoanodes by a hybrid structure of layered double hydroxide and graphene, Ind. Eng. Chem. Res. 56 (2017) 10711–10719. https://doi.org/10.1021/acs.iecr.7b02960.
[126] F.S. Hegner, I. Herraiz-Cardona, D. Cardenas-Morcoso, N. López, J.-R. Galán-Mascarós, S. Gimenez, Cobalt hexacyanoferrate on BiVO4 photoanodes for robust water splitting, ACS Appl. Mater. Interfaces. 9 (2017) 37671–37681. https://doi.org/10.1021/acsami.7b09449.
[127] Y. Wang, F. Li, X. Zhou, F. Yu, J. Du, L. Bai, L. Sun, Highly efficient photoelectrochemical water splitting with an immobilized molecular Co4O4 cubane catalyst, Angew. Chem. Int. Ed. 56 (2017) 6911–6915. https://doi.org/10.1002/anie.201703039.
[128] M. Chhetri, S. Dey, C.N.R. Rao, Photoelectrochemical oxygen evolution reaction activity of amorphous Co–La double hydroxide-BiVO4 fabricated by pulse plating electrodeposition, ACS Energy Lett. 2 (2017) 1062–1069. https://doi.org/10.1021/acsenergylett.7b00247.
[129] J.K. Kim, X. Shi, M.J. Jeong, J. Park, H.S. Han, S.H. Kim, Y. Guo, T.F. Heinz, S. Fan, C.-L. Lee, J.H. Park, X. Zheng, Enhancing Mo:BiVO4 solar water splitting with patterned Au nanospheres by plasmon-induced energy transfer, Adv. Energy Mater. 8 (2018) 1701765. https://doi.org/10.1002/aenm.201701765.
[130] M.-W. Kim, E. Samuel, K. Kim, H. Yoon, B. Joshi, M.T. Swihart, S.S. Yoon, Tuning the morphology of electrosprayed BiVO4 from nanopillars to nanoferns via pH control for solar water splitting, J. Alloys Compd. 769 (2018) 193–200. https://doi.org/10.1016/j.jallcom.2018.07.167.
[131] P. Guan, H. Bai, F. Wang, H. Yu, D. Xu, B. Chen, T. Xia, W. Fan, W. Shi, Boosting water splitting performance of bivo4 photoanode through selective surface decoration of Ag2S, ChemCatChem. 10 (2018) 4927–4933. https://doi.org/10.1002/cctc.201801199.
[132] X. Han, Y. Wei, J. Su, Y. Zhao, Low-cost oriented hierarchical growth of BiVO4/rGO/NiFe nanoarrays photoanode for photoelectrochemical water splitting, ACS Sustain. Chem. Eng. 6 (2018) 14695–14703. https://doi.org/10.1021/acssuschemeng.8b03259.
[133] M. Zhang, R.P. Antony, S.Y. Chiam, F.F. Abdi, L.H. Wong, Understanding the roles of NiOx in enhancing the photoelectrochemical performance of BiVO4 photoanodes for solar water splitting, ChemSusChem. (2019) in press. https://doi.org/10.1002/cssc.201801780.
[134] B.-R. Wulan, S.S. Yi, S.J. Li, Y.X. Duan, J.-M. Yan, X.B. Zhang, Q. Jiang, Non-noble-metal bismuth nanoparticle-decorated bismuth vanadate nanoarray photoanode for efficient water splitting, Mater. Chem. Front. 2 (2018) 1799–1804. https://doi.org/10.1039/C8QM00239H.
[135] L. Li, J. Li, J. Bai, Q. Zeng, L. Xia, Y. Zhang, S. Chen, Q. Xu, B. Zhou, Serial hole transfer layers for a BiVO4 photoanode with enhanced photoelectrochemical water splitting, Nanoscale 10 (2018) 18378–18386. https://doi.org/10.1039/C8NR06342G.
[136] M.-W. Kim, K. Kim, T.Y. Ohm, H. Yoon, B. Joshi, E. Samuel, M.T. Swihart, S.K. Choi, H. Park, S.S. Yoon, Electrosprayed BiVO4 nanopillars coated with atomic-layer-deposited ZnO/TiO2 as highly efficient photoanodes for solar water splitting, Chem. Eng. J. 333 (2018) 721–729. https://doi.org/10.1016/j.cej.2017.09.130.
[137] M.N. Shaddad, D. Cardenas-Morcoso, P. Arunachalam, M. García-Tecedor, M.A. Ghanem, J. Bisquert, A. Al-Mayouf, S. Gimenez, Enhancing the optical absorption and interfacial properties of bivo4 with ag3po4 nanoparticles for efficient water splitting, J. Phys. Chem. C 122 (2018) 11608–11615. https://doi.org/10.1021/acs.jpcc.8b00738.
[138] J. Wei, C. Zhou, Y. Xin, X. Li, L. Zhao, Z. Liu, Cooperation effect of heterojunction and co-catalyst in BiVO4/Bi2S3/NiOOH photoanode for improving photoelectrochemical performances, New J. Chem. 42 (2018) 19415–19422. https://doi.org/10.1039/C8NJ04846K.
[139] H. Saada, R. Abdallah, B. Fabre, D. Floner, S. Fryars, A. Vacher, V. Dorcet, C. Meriadec, S. Ababou-Girard, G. Loget, Boosting the performance of BiVO4 prepared through alkaline electrodeposition with an amorphous Fe Co-Catalyst, ChemElectroChem 6 (2019) 613–617. https://doi.org/10.1002/celc.201801443.
[140] S. Wang, T. He, J.-H. Yun, Y. Hu, M. Xiao, A. Du, L. Wang, New iron-cobalt oxide catalysts promoting BiVO4 films for photoelectrochemical water splitting, Adv. Funct. Mater. 28 (2018) 1802685. https://doi.org/10.1002/adfm.201802685.
[141] M. Kan, D. Xue, A. Jia, X. Qian, D. Yue, J. Jia, Y. Zhao, A highly efficient nanoporous BiVO4 photoelectrode with enhanced interface charge transfer Co-catalyzed by molecular catalyst, Appl. Catal. B Environ. 225 (2018) 504–511. https://doi.org/10.1016/j.apcatb.2017.12.014.
[142] X. Lv, X. Xiao, M. Cao, Y. Bu, C. Wang, M. Wang, Y. Shen, Efficient carbon dots/NiFe-layered double hydroxide/BiVO4 photoanodes for photoelectrochemical water splitting, Appl. Surf. Sci. 439 (2018) 1065–1071. https://doi.org/10.1016/j.apsusc.2017.12.182.
[143] Y. Gao, Y. Li, G. Yang, S. Li, N. Xiao, B. Xu, S. Liu, P. Qiu, S. Hao, L. Ge, Fe2TiO5 as an efficient co-catalyst to improve the photoelectrochemical water splitting performance of BiVO4, ACS Appl. Mater. Interfaces. 10 (2018) 39713–39722. https://doi.org/10.1021/acsami.8b14141.
[144] L. Wang, J. Su, L. Guo, Hierarchical growth of a novel Mn-Bi coupled BiVO4 arrays for enhanced photoelectrochemical water splitting, Nano Res. 12 (2019) 575-580. https://doi.org/10.1007/s12274-018-2256-9.
[145] Q. Wang, T. Niu, L. Wang, C. Yan, J. Huang, J. He, H. She, B. Su, Y. Bi, FeF2/BiVO4 heterojuction photoelectrodes and evaluation of its photoelectrochemical performance for water splitting, Chem. Eng. J. 337 (2018) 506–514. https://doi.org/10.1016/j.cej.2017.12.126.
[146] J.K. Kim, Y. Cho, M.J. Jeong, B. Levy‐Wendt, D. Shin, Y. Yi, D.H. Wang, X. Zheng, J.H. Park, Rapid formation of a disordered layer on monoclinic BiVO4: Co-catalyst-free photoelectrochemical solar water splitting, ChemSusChem. 11 (2018) 933–940. https://doi.org/10.1002/cssc.201702173.
[147] W. Zhang, R. Li, X. Zhao, Z. Chen, A.W.-K. Law, K. Zhou, A cobalt-based metal–organic framework as cocatalyst on BiVO4 photoanode for enhanced photoelectrochemical water oxidation, ChemSusChem. 11 (2018) 2710–2716. https://doi.org/10.1002/cssc.201801162.
[148] Y. Liu, Y. Jiang, F. Li, F. Yu, W. Jiang, L. Xia, Molecular cobalt salophen catalyst-integrated BiVO4 as stable and robust photoanodes for photoelectrochemical water splitting, J. Mater. Chem. A 6 (2018) 10761–10768. https://doi.org/10.1039/C8TA01304G.
[149] Y. Hu, Y. Wu, J. Feng, H. Huang, C. Zhang, Q. Qian, T. Fang, J. Xu, P. Wang, Z. Li, Z. Zou, Rational design of electrocatalysts for simultaneously promoting bulk charge separation and surface charge transfer in solar water splitting photoelectrodes, J. Mater. Chem. A. 6 (2018) 2568–2576. https://doi.org/10.1039/C7TA10361A.
[150] Q. Pan, C. Zhang, Y. Xiong, Q. Mi, D. Li, L. Zou, Q. Huang, Z. Zou, H. Yang, Boosting charge separation and transfer by plasmon-enhanced MoS2/BiVO4 p–n heterojunction composite for efficient photoelectrochemical water splitting, ACS Sustain. Chem. Eng. 6 (2018) 6378–6387. https://doi.org/10.1021/acssuschemeng.8b00170.
[151] F. Tang, W. Cheng, H. Su, X. Zhao, Q. Liu, Smoothing surface trapping states in 3D coral-like CoOOH-wrapped-BiVO4 for efficient photoelectrochemical water oxidation, ACS Appl. Mater. Interfaces. 10 (2018) 6228–6234. https://doi.org/10.1021/acsami.7b15674.
[152] X. Wang, K.-H. Ye, X. Yu, J. Zhu, Y. Zhu, Y. Zhang, Polyaniline as a new type of hole-transporting material to significantly increase the solar water splitting performance of BiVO4 photoanodes, J. Power Sources 391 (2018) 34–40. https://doi.org/10.1016/j.jpowsour.2018.04.074.
[153] L. Gao, F. Li, H. Hu, X. Long, N. Xu, Y. Hu, S. Wei, C. Wang, J. Ma, J. Jin, Dual modification of a BiVO4 photoanode for enhanced photoelectrochemical performance, ChemSusChem. 11 (2018) 2502–2509. https://doi.org/10.1002/cssc.201800999.
[154] P. Subramanyam, T. Vinodkumar, D. Nepak, M. Deepa, C. Subrahmanyam, Mo-doped BiVO4@reduced graphene oxide composite as an efficient photoanode for photoelectrochemical water splitting, Catal. Today. 325 (2019) 73–80. https://doi.org/10.1016/j.cattod.2018.07.006.
[155] M. Wang, Q. Wang, P. Guo, Z. Jiao, In situ fabrication of nanoporous BiVO4/Bi2S3 nanosheets for enhanced photoelectrochemical water splitting, J. Colloid Interface Sci. 534 (2019) 338–342. https://doi.org/10.1016/j.jcis.2018.09.056.
[156] D. Xue, M. Kan, X. Qian, Y. Zhao, A tandem water splitting cell based on nanoporous BiVO4 photoanode cocatalyzed by ultrasmall cobalt borate sandwiched with conformal TiO2 layers, ACS Sustain. Chem. Eng. 6 (2018) 16228–16234. https://doi.org/10.1021/acssuschemeng.8b03078.
[157] T.-G. Vo, Y. Tai, C.Y. Chiang, Multifunctional ternary hydrotalcite-like nanosheet arrays as an efficient co-catalyst for vastly improved water splitting performance on bismuth vanadate photoanode, J. Catal. 370 (2019) 1–10. https://doi.org/10.1016/j.jcat.2018.12.002.
[158] P. Guan, H. Bai, F. Wang, H. Yu, D. Xu, W. Fan, W. Shi, In-situ anchoring Ag through organic polymer for configuring efficient plasmonic BiVO4 photoanode, Chem. Eng. J. 358 (2019) 658–665. https://doi.org/10.1016/j.cej.2018.10.066.
[159] M.N. Shaddad, P. Arunachalam, J. Labis, M. Hezam, A.M. Al-Mayouf, Fabrication of robust nanostructured (Zr)BiVO4/nickel hexacyanoferrate core/shell photoanodes for solar water splitting, Appl. Catal. B Environ. 244 (2019) 863–870. https://doi.org/10.1016/j.apcatb.2018.11.079.
[160] A. Kafizas, X. Xing, S. Selim, C.A. Mesa, Y. Ma, C. Burgess, M.A. McLachlan, J.R. Durrant, Ultra-thin Al2O3 coatings on BiVO4 photoanodes: Impact on performance and charge carrier dynamics, Catal. Today. 321–322 (2019) 59–66. https://doi.org/10.1016/j.cattod.2017.11.014.
[161] T.-G. Vo, Y. Tai, C.-Y. Chiang, Novel hierarchical ferric phosphate/bismuth vanadate nanocactus for highly efficient and stable solar water splitting, Appl. Catal. B Environ. 243 (2019) 657–666. https://doi.org/10.1016/j.apcatb.2018.11.001.
[162] S.Y. Jeong, H.-M. Shin, Y.-R. Jo, Y.J. Kim, S. Kim, W.-J. Lee, G.J. Lee, J. Song, B.J. Moon, S. Seo, H. An, S.H. Lee, Y.M. Song, B.-J. Kim, M.-H. Yoon, S. Lee, Plasmonic silver nanoparticle-impregnated nanocomposite BiVO4 photoanode for plasmon-enhanced photocatalytic water splitting, J. Phys. Chem. C. 122 (2018) 7088–7093. https://doi.org/10.1021/acs.jpcc.8b00220.
[163] L. Zhang, L.O. Herrmann, J.J. Baumberg, Size dependent plasmonic effect on BiVO4 photoanodes for solar water splitting, Sci. Rep. 5 (2015) 16660. https://doi.org/10.1038/srep16660.
[164] C. Zachäus, F.F. Abdi, L.M. Peter, R. van de Krol, Photocurrent of BiVO4 is limited by surface recombination, not surface catalysis, Chem. Sci. 8 (2017) 3712–3719. https://doi.org/10.1039/C7SC00363C.
[165] X. Zhang, Y.L. Chen, R.-S. Liu, D.P. Tsai, Plasmonic photocatalysis, Rep. Prog. Phys. 76 (2013) 046401. https://doi.org/10.1088/0034-4885/76/4/046401.
[166] S. Linic, P. Christopher, D.B. Ingram, Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy, Nat. Mater. 10 (2011) 911–921. https://doi.org/10.1038/nmat3151.