Silver Nanoparticles with Different Thiol Functionalization: An Opposite Optical Behaviour in Presence of Hg(II)

Silver Nanoparticles with Different Thiol Functionalization: An Opposite Optical Behaviour in Presence of Hg(II)

Luca Burratti, Iole Venditti, Chiara Battocchio, S. Casciardi, Paolo Prosposito

Abstract. We synthesized two different functionalized silver nanoparticles (AgNPs) in water, starting from silver nitrate, as Ag(I) ions precursor, and sodium borohydride, as reduction agent. The first system was capped with sodium 3-mercapto-1- propansulfonate (3MPS), while L-Cysteine and citrate stabilized the other system. We characterized both systems by UV-Vis absorption spectroscopy and transmission electron microscopy (TEM). We tested their optical response to several heavy metal ions monitoring the Localized Surface Plasmon Resonance (LSPR) band. In particular, these two systems have an opposite optical behaviour in presence of Hg(II) ions as contaminants. In the case of AgNPs-L-Cysteine/citrate, the plasmonic band shifted to higher wavelengths affording a linear behaviour and LOD, in the range from 1 to 7.5 ppm and 600 ppb, respectively; whereas, the AgNPS-3MPS peak shifted to lower wavelengths with a linear range from 0 to 5 ppm and a LOD of 240 ppb for Hg(II). A preliminary hypothesis about the interaction mechanism between AgNPs and Hg(II) ions is discussed.

Keywords
Metal Nanomaterials, Silver Nanoparticles, Localized Surface Plasmon Resonance (L-SPR), Optical Sensors, Hg(II) Ions Detection

Published online 2/25/2020, 10 pages

Citation: Luca Burratti, Iole Venditti, Chiara Battocchio, S. Casciardi, Paolo Prosposito, Silver Nanoparticles with Different Thiol Functionalization: An Opposite Optical Behaviour in Presence of Hg(II), Materials Research Proceedings, Vol. 16, pp 6-15, 2020

DOI: https://doi.org/10.21741/9781644900710-2

Part of the book on Photonics and Photoactive Materials

References
[1] X. Cao, C. Tan, X. Zhang, W. Zhao, H. Zhang, Solution-Processed Two- Dimensional Metal Dichalcogenide-Based Nanomaterials for Energy Storage and Conversion, Adv. Mater. 28 (2016) 6167–6196. https://doi.org/10.1002/adma.201504833
[2] P. Prosposito, L. D’Amico, M. Casalboni, N. Motta, Periodic arrangement of mono-dispersed gold nanoparticles for high performance polymeric solar cells, in: 2015 IEEE 15th Int. Conf. Nanotechnol., IEEE, 2015: pp. 378–380. https://doi.org/10.1109/NANO.2015.7389005
[3] F. Xia, T. Mueller, Y. Lin, A. Valdes-Garcia, P. Avouris, Ultrafast graphene photodetector, Nat. Nanotechnol. 4 (2009) 839–843. https://doi.org/10.1038/nnano.2009.292

[4] S.I. Valyansky, E.K. Naimi, L. V. Kozhitov, Functional 2D nanomaterials for optoelectronics based on langmuir bacteriorhodopsin films, Mod. Electron. Mater. 2 (2016) 79–84. https://doi.org/10.1016/j.moem.2016.12.007
[5] S. Priyadarsini, S. Mohanty, S. Mukherjee, S. Basu, M. Mishra, Graphene and graphene oxide as nanomaterials for medicine and biology application, J. Nanostructure Chem. 8 (2018) 123–137. https://doi.org/10.1007/s40097-018-0265-6
[6] J.J. Giner-Casares, M. Henriksen-Lacey, M. Coronado-Puchau, L.M. Liz- Marzán, Inorganic nanoparticles for biomedicine: where materials scientists meet medical research, Mater. Today. 19 (2016) 19–28. https://doi.org/10.1016/j.mattod.2015.07.004
[7] M. Etienne, A. Goux, E. Sibottier, A. Walcarius, Oriented Mesoporous Organosilica Films on Electrode: A New Class of Nanomaterials for Sensing, J. Nanosci. Nanotechnol. 9 (2009) 2398–2406. https://doi.org/10.1166/jnn.2009.SE39
[8] P.K. Kannan, D.J. Late, H. Morgan, C.S. Rout, Recent developments in 2D layered inorganic nanomaterials for sensing, Nanoscale. 7 (2015) 13293–13312. https://doi.org/10.1039/C5NR03633J
[9] R. De Angelis, I. Venditti, I. Fratoddi, F. De Matteis, P. Prosposito, I. Cacciotti, L. D’Amico, F. Nanni, A. Yadav, M. Casalboni, M. V. Russo, From nanospheres to microribbons: Self-assembled Eosin Y doped PMMA nanoparticles as photonic crystals, J. Colloid Interface Sci. 414 (2014) 24–32. https://doi.org/10.1016/j.jcis.2013.09.045
[10] J. Hou, H. Zhang, Q. Yang, M. Li, L. Jiang, Y. Song, Hydrophilic- Hydrophobic Patterned Molecularly Imprinted Photonic Crystal Sensors for High-Sensitive Colorimetric Detection of Tetracycline, Small. 11 (2015) 2738–2742. https://doi.org/10.1002/smll.201403640
[11] Z. Cai, N.L. Smith, J.-T. Zhang, S.A. Asher, Two-Dimensional Photonic Crystal Chemical and Biomolecular Sensors, Anal. Chem. 87 (2015) 5013– 5025. https://doi.org/10.1021/ac504679n
[12] Y. Zhang, Y. Zhao, R. Lv, A review for optical sensors based on photonic crystal cavities, Sensors Actuators A Phys. 233 (2015) 374–389. https://doi.org/10.1016/j.sna.2015.07.025
[13] C. Dispenza, M.A. Sabatino, S. Alessi, G. Spadaro, L. D’Acquisto, R. Pernice, G. Adamo, S. Stivala, A. Parisi, P. Livreri, A.C. Busacca, Hydrogel films engineered in a mesoscopically ordered structure and responsive to ethanol vapors, React. Funct. Polym. 79 (2014) 68–76. https://doi.org/10.1016/j.reactfunctpolym.2014.03.016
[14] L. Burratti, F. De Matteis, M. Casalboni, R. Francini, R. Pizzoferrato, P. Prosposito, Polystyrene photonic crystals as optical sensors for volatile organic compounds, Mater. Chem. Phys. 212 (2018) 274–281. https://doi.org/10.1016/j.matchemphys.2018.03.039
[15] L. Burratti, M. Casalboni, F. De Matteis, R. Pizzoferrato, P. Prosposito, Polystyrene opals responsive to methanol vapors, Materials (Basel). 11 (2018). https://doi.org/10.3390/ma11091547
[16] M. Qin, M. Sun, R. Bai, Y. Mao, X. Qian, D. Sikka, Y. Zhao, H.J. Qi, Z. Suo,
X. He, Bioinspired Hydrogel Interferometer for Adaptive Coloration and Chemical Sensing, Adv. Mater. 30 (2018) 1800468. https://doi.org/10.1002/adma.201800468

[17] J. Owen, L. Brus, Chemical Synthesis and Luminescence Applications of Colloidal Semiconductor Quantum Dots, J. Am. Chem. Soc. 139 (2017) 10939–10943. https://doi.org/10.1021/jacs.7b05267
[18] K.J. Nordell, E.M. Boatman, G.C. Lisensky, A Safer, Easier, Faster Synthesis for CdSe Quantum Dot Nanocrystals, J. Chem. Educ. 82 (2005) 1697. https://doi.org/10.1021/ed082p1697
[19] F. Liu, M.-H. Jang, H.D. Ha, J.-H. Kim, Y.-H. Cho, T.S. Seo, Facile Synthetic Method for Pristine Graphene Quantum Dots and Graphene Oxide Quantum Dots: Origin of Blue and Green Luminescence, Adv. Mater. 25 (2013) 3657– 3662. https://doi.org/10.1002/adma.201300233
[20] Q. Lu, C. Wu, D. Liu, H. Wang, W. Su, H. Li, Y. Zhang, S. Yao, A facile and simple method for synthesis of graphene oxide quantum dots from black carbon, Green Chem. 19 (2017) 900–904. https://doi.org/10.1039/C6GC03092K
[21] L. Burratti, E. Ciotta, E. Bolli, M. Casalboni, F. De Matteis, R. Francini, S. Casciardi, P. Prosposito., Synthesis of fluorescent silver nanoclusters with potential application for heavy metal ions detection in water, in AIP Conference Proceedings; (2019): p. 020007. https://doi.org/10.1063/1.5123568
[22] L. Burratti, E. Bolli, M. Casalboni, F. de Matteis, F. Mochi, R. Francini, S. Casciardi, P. Prosposito, Synthesis of Fluorescent Ag Nanoclusters for Sensing and Imaging Applications, Mater. Sci. Forum. 941 (2018) 2243–2248. https://doi.org/10.4028/www.scientific.net/MSF.941.2243
[23] A.C. Vinayaka, S. Basheer, M.S. Thakur, Bioconjugation of CdTe quantum dot for the detection of 2,4-dichlorophenoxyacetic acid by competitive fluoroimmunoassay based biosensor, Biosens. Bioelectron. 24 (2009) 1615–1620. https://doi.org/10.1016/j.bios.2008.08.042
[24] R. De Angelis, L. D’Amico, M. Casalboni, F. Hatami, W.T. Masselink, P. Prosposito, Photoluminescence sensitivity to methanol vapours of surface InP quantum dot: Effect of dot size and coverage, Sensors Actuators, B Chem. 189 (2013) 113–117. https://doi.org/10.1016/j.snb.2013.01.057
[25] M. Frasco, N. Chaniotakis, Semiconductor Quantum Dots in Chemical Sensors and Biosensors, Sensors. 9 (2009) 7266–7286. https://doi.org/10.3390/s90907266
[26] A. Ananthanarayanan, X. Wang, P. Routh, B. Sana, S. Lim, D.-H. Kim, K.-H. Lim, J. Li, P. Chen, Facile Synthesis of Graphene Quantum Dots from 3D Graphene and their Application for Fe 3+ Sensing, Adv. Funct. Mater. 24 (2014) 3021–3026. https://doi.org/10.1002/adfm.201303441
[27] E. Ciotta, P. Prosposito, P. Tagliatesta, C. Lorecchio, L. Stella, S. Kaciulis, P. Soltani, E. Placidi, R. Pizzoferrato, Discriminating between different heavy metal ions with fullerene-derived nanoparticles, Sensors (Switzerland). 18 (2018) 1–15. https://doi.org/10.3390/s18051496
[28] J.X. Dong, Z.F. Gao, Y. Zhang, B.L. Li, N.B. Li, H.Q. Luo, A selective and sensitive optical sensor for dissolved ammonia detection via agglomeration of fluorescent Ag nanoclusters and temperature gradient headspace single drop microextraction, Biosens. Bioelectron. 91 (2017) 155–161. https://doi.org/10.1016/j.bios.2016.11.062
[29] A.T. Afaneh, G. Schreckenbach, Fluorescence Enhancement/Quenching Based on Metal Orbital Control: Computational Studies of a 6-Thienyllumazine- Based Mercury Sensor, J. Phys. Chem. A. 119 (2015) 8106–8116. https://doi.org/10.1021/acs.jpca.5b04691
[30] S. O’Keeffe, C. Fitzpatrick, E. Lewis, An optical fibre based ultra violet and visible absorption spectroscopy system for ozone concentration monitoring, Sensors Actuators B Chem. 125 (2007) 372–378. https://doi.org/10.1016/j.snb.2007.02.023
[31] H.-A. Ho, M. Béra-Abérem, M. Leclerc, Optical Sensors Based on Hybrid DNA/Conjugated Polymer Complexes, Chem. – A Eur. J. 11 (2005) 1718– 1724. https://doi.org/10.1002/chem.200400537
[32] J. Wang, Y. Chang, W.B. Wu, P. Zhang, S.Q. Lie, C.Z. Huang, Label-free and selective sensing of uric acid with gold nanoclusters as optical probe, Talanta. 152 (2016) 314–320. https://doi.org/10.1016/j.talanta.2016.01.018
[33] K.A. Willets, R.P. Van Duyne, Localized Surface Plasmon Resonance Spectroscopy and Sensing, Annu. Rev. Phys. Chem. 58 (2007) 267–297. https://doi.org/10.1146/annurev.physchem.58.032806.104607
[34] K.M. Mayer, J.H. Hafner, Localized Surface Plasmon Resonance Sensors, Chem. Rev. 111 (2011) 3828–3857. https://doi.org/10.1021/cr100313v
[35] J. V. Rohit, J.N. Solanki, S.K. Kailasa, Surface modification of silver nanoparticles with dopamine dithiocarbamate for selective colorimetric sensing of mancozeb in environmental samples, Sensors Actuators, B Chem. 200 (2014) 219–226. https://doi.org/10.1016/j.snb.2014.04.043
[36] D. Li, Y. Dong, B. Li, Y. Wu, K. Wang, S. Zhang, Colorimetric sensor array with unmodified noble metal nanoparticles for naked-eye detection of proteins and bacteria, Analyst. 140 (2015) 7672–7677. https://doi.org/10.1039/c5an01267h
[37] A. Jeevika, D.R. Shankaran, Functionalized silver nanoparticles probe for visual colorimetric sensing of mercury, Mater. Res. Bull. 83 (2016) 48–55. https://doi.org/10.1016/j.materresbull.2016.05.029
[38] J.Y. Cheon, W.H. Park, Green synthesis of silver nanoparticles stabilized with mussel-inspired protein and colorimetric sensing of lead(II) and copper(II) ions, Int. J. Mol. Sci. 17 (2016). https://doi.org/10.3390/ijms17122006
[39] P. Prosposito, F. Mochi, E. Ciotta, M. Casalboni, F. De Matteis, I. Venditti, L. Fontana, G. Testa, I. Fratoddi, Hydrophilic silver nanoparticles with tunable optical properties: Application for the detection of heavy metals in water, Beilstein J. Nanotechnol. 7 (2016) 1654–1661. https://doi.org/10.3762/bjnano.7.157
[40] F. Mochi, L. Burratti, I. Fratoddi, I. Venditti, C. Battocchio, L. Carlini, G. Iucci, M. Casalboni, F. De Matteis, S. Casciardi, S. Nappini, I. Pis, P. Prosposito, Plasmonic Sensor Based on Interaction between Silver Nanoparticles and Ni2+ or Co2+ in Water, Nanomaterials. 8 (2018) 488. https://doi.org/10.3390/nano8070488
[41] A. Majzik, L. Fülöp, E. Csapó, F. Bogár, T. Martinek, B. Penke, G. Bíró, I. Dékány, Functionalization of gold nanoparticles with amino acid, β-amyloid peptides and fragment, Colloids Surfaces B Biointerfaces. 81 (2010) 235–241. https://doi.org/10.1016/j.colsurfb.2010.07.011
[42] I. Venditti, G. Testa, F. Sciubba, L. Carlini, F. Porcaro, C. Meneghini, S. Mobilio, C. Battocchio, I. Fratoddi, Hydrophilic Metal Nanoparticles Functionalized by 2-Diethylaminoethanethiol: A Close Look at the Metal– Ligand Interaction and Interface Chemical Structure, J. Phys. Chem. C. 121 (2017) 8002–8013. https://doi.org/10.1021/acs.jpcc.7b01424
[43] Prosposito, Burratti, Bellingeri, Protano, Faleri, Corsi, Battocchio, Iucci, Tortora, Secchi, Franchi, Venditti, Bifunctionalized Silver Nanoparticles as Hg2+ Plasmonic Sensor in Water: Synthesis, Characterizations, and Ecosafety, Nanomaterials. 9 (2019) 1353. https://doi.org/10.3390/nano9101353
[44] L. Li, L. Gui, W. Li, A colorimetric silver nanoparticle-based assay for Hg(II) using lysine as a particle-linking reagent, Microchim. Acta. 182 (2015) 1977– 1981. https://doi.org/10.1007/s00604-015-1536-2
[45] P.K. Sarkar, A. Halder, N. Polley, S.K. Pal, Development of Highly Selective and Efficient Prototype Sensor for Potential Application in Environmental Mercury Pollution Monitoring, Water, Air, Soil Pollut. 228 (2017) 314. https://doi.org/10.1007/s11270-017-3479-1
[46] G. V Ramesh, T.P. Radhakrishnan, A Universal Sensor for Mercury (Hg, Hg I , Hg II ) Based on Silver Nanoparticle-Embedded Polymer Thin Film, ACS Appl. Mater. Interfaces. 3 (2011) 988–994. https://doi.org/10.1021/am200023w
[47] S.S. Ravi, L.R. Christena, N. SaiSubramanian, S.P. Anthony, Green synthesized silver nanoparticles for selective colorimetric sensing of Hg2+ in aqueous solution at wide pH range, Analyst. 138 (2013) 4370. https://doi.org/10.1039/c3an00320e