Biodegradable Packing for Non-Food Items

$30.00

Biodegradable Packing for Non-Food Items

Debanga Bhusan Konwar, Titash Mondal, Shreedhar Bhat

In the current perspective, the use of packaging material for applications ranging from food items to personal care applications is on the rise. However, most of the packaging materials currently used are non-biodegradable in the environment. Hence, development of environmentally friendly packaging material is critical for maintaining a proper ecosystem of the world. In the current chapter, we reflect on the different types and classification of packaging material used in the market, with special emphasis on non-food items. A comprehensive overview is provided on the synthetic perspective of the biodegradable polymers used for packaging. Holistically, how biodegradable polymers are leveraged by different industries for developing non-food packaging is also discussed in this chapter.

Keywords
Biodegradable Packaging, Electronics Packaging, Personal Care Packaging, Horticulture, Dunnage

Published online 2/15/2020, 18 pages

Citation: Debanga Bhusan Konwar, Titash Mondal, Shreedhar Bhat, Biodegradable Packing for Non-Food Items, Materials Research Foundations, Vol. 68, pp 138-155, 2020

DOI: https://doi.org/10.21741/9781644900659-6

Part of the book on Advanced Applications of Bio-degradable Green Composites

References
[1] Polyethylene Terephthalate (PET) Packaging, Wood Mackenzie. https://www.woodmac.com/research/products/chemicalspolymersfibres/polymers/polyethylene-terephthalate-packaging/ (Accessed in 10 July 2019)
[2] Pressure to Reduce consumption of Single Use Plastic Packaging will continue into 2019 https://www.plasticstoday.com/packaging/pressure-reduce-consumption-single-use-plastic-packaging-will-continue-2019/8501551360001
[3] M. Eriksen, L.C.M. Lebreton, H.S. Carson, M. Thiel, C.J. Moore, J.C. Borerro Plastic pollution in the world’s oceans: more than 5 trillion plastic pieces weighing over 250,000 tons afloat at sea, PLoS ONE. 9 (2014) 111913. https://doi.org/10.1371/journal.pone.0111913
[4] J.R. Jambeck, K. Johnsen, Citizen-based litter and marine debris data collection and mapping, Comput. Sci. Eng. 17 (2015) 20–26. https://doi.org/10.1109/MCSE.2015.67
[5] Compendium of Polymer Terminology and Nomenclature, IUPAC 1139 recommendations, RSC publishing 2008.
[6] L.S. Nair, C.T. Laurencin, Biodegradable polymers as biomaterials, Prog. Polym. Sci. 32 (2007) 762-798. https://doi.org/10.1016/j.progpolymsci.2007.05.017
[7] N.K. Madhavan, N.R. Nair, R.P. John, An overview of the recent developments in polylactide (PLA) research, Biores Tech. 101 (2010) 8493-8501. https://doi.org/10.1016/j.biortech.2010.05.092
[8] R.M. Rasal, A.V. Janorkar, D.E. Hirt, Poly (lactic acid) modifications, Prog. Polym Sci. 35 (2010) 338-356. https://doi.org/10.1016/j.progpolymsci.2009.12.003
[9] Z. Zhen, O. Ophir, G. Ritu, K. Joachim, Biodegradable Polymers, Principles of Tissue Engineering (Fourth Edition). (2014) 441-473. https://doi.org/10.1016/B978-0-12-398358-9.00023-9
[10] A.W. Maria, W.H. Dietmar, The return of forgotten polymers- polycaprolactone in the 21st century, Prog. Poly Sci. 35 (2010) 1217-1256. https://doi.org/10.1016/j.progpolymsci.2010.04.002
[11] R. Ewa, Compostable polymer properties and packaging applications, Plastic Films in Food Packaging. 7 (2013) 217-248. https://doi.org/10.1016/B978-1-4557-3112-1.00013-2
[12] Z . Li, J. Yang, X. Jun Loh, Polyhydroxyalkanoates: Opening doors for a sustainable future, NPG Asia Material. 8 ( 2016) 265-274. https://doi.org/10.1038/am.2016.48
[13] G. Rokicki, Aliphatic cyclic carbonates and spiroorthocarbonates as monomers, Prog. Polym. Sci.25 (2000) 259-342. https://doi.org/10.1016/S0079-6700(00)00006-X
[14] M. Okada, Chemical syntheses of biodegradable polymers, Prog. Polym. Sci. 27 (2002) 87-133. https://doi.org/10.1016/S0079-6700(01)00039-9
[15] D.N. Bikiaras, D.S. Achilia synthesis of poly(alkylene succinate) biodegradable polyesters, part ii: Mathematical modelling of the polycondensation reaction, Polymer. 49 (2008) 3677-3685. https://doi.org/10.1016/j.polymer.2008.06.026
[16] O. Dechy-Cabaret, B. Martin-Vaca, D. Bourissou, Controlled ring-opening polymerization of lactide and glycolide, Chem. Rev. 104 (2004) 6147-6176. https://doi.org/10.1021/cr040002s
[17] Y. Zhu, C. Romain, C.K. Williams, Sustainable polymers from renewable resources, Nature. 540 (2016) 354-362. https://doi.org/10.1038/nature21001
[18] J.E. Stephen, Cellulose nanowhiskers: Promising materials for advanced applications, Soft Matter. 7 (2011) 303-315. https://doi.org/10.1039/C0SM00142B
[19] Y.L. Chung, J.V. Olsson, R.J. Li, C. W. Frank, R.M. Waymouth, S.L. Billington, E. S. Sattely, Renewable lignin-pla copolymer and application in biobased composites, ACS Sustainable Chem. Eng. 1 (2013) 1231−1238. https://doi.org/10.1021/sc4000835
[20] M. Vert, Aliphatic polyesters:  great degradable polymers that cannot do everything. Biomacromolecule. 6 (2005) 538-546. https://doi.org/10.1021/bm0494702
[21] E.K. George , Biodegradable and recyclable electrostatically shielded packaging for electronic devices and media, US Patent US5177660A (1993).
[22] C. Adam, E. James, J. Bowden, Paper/biodegradable plastic laminate and electromagnetic shielding material, US Patent US20090096703A1 (2009).
[23] A.J. Bradford, Naturally degradable and recyclable static-dissipative packaging material, US Patent US5613610A (1997)
[24] B. James, Biodegradable packaging for shipping, US Patent US20160052692A1 (2014).
[25] C. Kun-Hsiang , Method for manufacturing environmentally friendly cushioning material, US Patent US20160194828A1 (2016).
[26] N. Isao Biodegradable copolymers and plastic articles comprising biodegradable copolymers, European Patent EP0739368B1 (2003).
[27] K. Scott, N. Stanley, B. Scott, J. Andrew, J. Wnuk, C. Hayes, E. Charlotte, B.Lee Arent flexible barrier packaging derived from renewable resources, US Patent US8871319B2 (2014).
[28] M. Bauer, K. Mauser, R. Kelm, K. Stark Method for the production of a biodegradable plastic film, and film PCT WO2007135037A1 (2008).
[29] I. Gopal, B. Thomas, L. Gerald, Substantially biodegradable and compostable high-barrier packaging material and methods for production, US Patent US8771835B2 (2014).
[30] P. Tapani, N. Kimmo, K. Tapio, K. Sami heat-sealable biodegradable packaging material, a method for its manufacture, and a product package made from the material, US Patent US9181010B2 (2015).
[31] J. Andrew, S. Wnuk, S. Kendyl , M. John, E. Layman Robert, M. Emily Charlotte, B. Lee, A. Mathew, Degradable sachets for developing markets, US Patent US8367173B2 (2012)
[32] P. Stuart, Suskind compostable packaging for containment of liquids, US Patent US5458933A (1995).
[33] D. Andra, L. Abderrahim, G. Alain, B. Stéphanie, Potential of lignins as antioxidant additive in active biodegradable packaging materials, Journal of Poly. Env. 21 (2013) 692–701. https://doi.org/10.1007/s10924-013-0570-6
[34] D. John, D. Elise, F. Brian, J. Marck, Biodegradable package for detergent, US Patent US20130053293A1 (2010).
[35] A. Eva, A. Rafael A. Hayati, S. Bruce, R. HarteMaria, Micro-perforated poly(lactic) acid packaging systems and method of preparation thereof, US Patent US20100151166A1 (2010).
[36] E. Donald, Weder floral packaging formed of renewable or biodegradable polymer materials US Patent US20110225882A1 (2011).
[37] H.Y. Huang, G.F. Wu, E.H. Sun, Z.Z. Chang, The Influence of heat treatment on the properties of breeding bio-container, Appl. Mech. Mater. 341 (2013) 119-123. https://doi.org/10.4028/www.scientific.net/AMM.341-342.119
[38] G. Wu, E. Sun, H. Huang, Z. Chang, Y. Xu, preparation and properties of biodegradable planting containers made with straw and starch adhesive, Bio. Res. 8 (2013) 5358-5368. https://doi.org/10.15376/biores.8.4.5358-5368
[39] S.M. James, Package containing biodegradable dunnage material, US Patent US4997091A (1999)
[40] J.L. Goers, S. Thomas, H.O. Warda, H.O. William, Method of forming improved loose fill packing material from recycled paper, US Patent US5900119A (1999).