Biodegradable Pots for Seedlings
S. Barbosa, L. Castillo
Biodegradable containers are environmentally friendly options to plastic pots commonly used in nursery and greenhouse activities. The use of plantable and compostable pots based on renewable and natural materials derived from waste or by-products of industrial processes have a potential market to enhance the sustainable character of current production systems. This chapter presents an analysis of the state-of-the-art on the development of biodegradable pots. Plantable and compostable containers made of different renewable materials, which are studied in the academic field up to patents and commercial products, are presented. Particularly, advantages and disadvantages respect to price, processability, mechanical properties, handling performance, plant quality, water-use efficiency and biodegradability are deeply analyzed and discussed.
Keywords
Compostable Pots, Plantable Pots, Biocomposites, Container Properties, Biodegradability
Published online 2/15/2020, 34 pages
Citation: S. Barbosa, L. Castillo, Biodegradable Pots for Seedlings, Materials Research Foundations, Vol. 68, pp 104-137, 2020
DOI: https://doi.org/10.21741/9781644900659-5
Part of the book on Advanced Applications of Bio-degradable Green Composites
References
[1] M.R. Evans, D.L. Hensley, Plant growth in plastic, peat, and processed poultry feather fiber growing containers, Hort. Sci. 39(5) (2004) 1012-1014. https://doi.org/10.21273/HORTSCI.39.5.1012
[2] M.S. Helgeson, W.R. Graves, D.S. Grewell, G. Srinivasan, Degradation and nitrogen release of zein-based bioplastic containers, J. Environ. Hort. 27 (2009) 123-127.
[3] C.R. Hall, B.J. Campbell, B.K. Behe, C. Yue, R.G. Lopez, J.H. Dennis, The appeal of biodegradable packaging to floral consumers, Hort. Sci. 45(2010) 583-591. https://doi.org/10.21273/HORTSCI.45.4.583’po
[4] M. Chappell, G.W. Knox, Alternatives to petroleum-based containers for the nursery industry, Bulletin 1407, University of Georgia, Cooperative Extension 2012.
[5] H. Mathers, Pot-in-pot container culture, The Nurs. Pap. 2 (2000) 1-6.
[6] J.W. Markham, D.J. Bremer, C.R. Boyer, K.R. Schroeder, Effect of container color on substrate temperatures and growth of red maple and redbud, Hort. Sci. 46 (2011) 721–726. https://doi.org/10.21273/HORTSCI.46.5.721
[7] D.L. Ingram, C. Martin, J. Ruter, Effect of heat stress on container-grown plants, Comb. Proc. Int. Plant Propagators Soc. 39 (1989) 348-353.
[8] T.G. Ranney, M.M. Peet, Heat tolerance of five taxa of birch (Betula): Physiological responses to supraoptimal leaf temperatures, J. Am. Soc. Hortic. Sci. 119(2) (1994) 243-248. https://doi.org/10.21273/JASHS.119.2.243
[9] J.E. Webber, S.D. Ross, Flower induction and pollen viability for western larch, Report from U.S. Department of Agriculture, Forest Service, Intermountain Research Station, 1995.
[10] H. Davidson, R. Mecklenburg, C. Peterson, Nursery management: Administration and culture, 4th Edition, Prentice Hall Upper Saddle River, 2000.
[11] H.M. McKay, A review of the effect of stresses between lifting and planting on nursery stock quality and performance, New Forest. 13(1-3) (1996) 363-393.
[12] A.K. Koeser, J.R. Stewart, G.A. Bollero, D.G. Bullock, D.K. Struve, Impacts of handling and transport on the growth and survival of balled-and-burlapped trees, Hort. Sci. 44(1) (2009) 53-58. https://doi.org/10.21273/HORTSCI.44.1.53
[13] L.E. Richardson-Calfee, J.R. Harris, R.H. Jones, J.K. Fanelli, Patterns of root production and mortality during transplant establishment of landscape-sized sugar maple, J. Am. Soc. Hortic. Sci. 135(3) (2010) 203-211. https://doi.org/10.21273/JASHS.135.3.203
[14] J. Muriuki, A. Kuria, C. Muthuri, A. Mukuralinda, A. Simons, R. Jamnadass, Testing biodegradable seedling containers as an alternative for polythene tubes in tropical small-scale tree nurseries, Small Scale For. 13(2) (2014) 127-142. https://doi.org/10.1007/s11842-013-9245-3
[15] J.W. Garthe, P.D. Kowal, Recycling used agricultural plastics, Penn State Fact Sheet C-8, https://pubs.cas. psu.edu/freepubs/pdfs/C8.pdf, 1993.
[16] C. Yue, C. Tong, Organic or local: Investigating consumer preference for fresh produce using a choice experiment with real economic incentives, Hort. Sci. 44(2) (2009) 366-371. https://doi.org/10.21273/HORTSCI.44.2.366
[17] J.L. Dennis, R.G. Lopez, B.K. Behe, C.R. Hall, C. Yue, B.L. Campbell, Sustainable production practices adopted by greenhouse and nursery plant growers, Hort. Sci. 45 (2010) 1232-1237. https://doi.org/10.21273/HORTSCI.45.8.1232
[18] C. Yue, J.H. Dennis, B.K. Behe, C.R. Hall, B.L. Campbell, R.G. Lopez, Investigating consumer preferences for organic, local, or sustainable plants, Hort. Sci. 46 (2011) 610-615. https://doi.org/10.21273/HORTSCI.46.4.610
[19] T.J. Hall, J.H. Dennis, R.G. Lopez, M.I. Marshall, Factors affecting growers’ willingness to adopt sustainable floriculture practices, Hort. Sci. 44 (2009) 1346-1351. https://doi.org/10.21273/HORTSCI.44.5.1346
[20] E. Schettini, G. Santagata, M. Malinconico, B. Immirzi, G.S. Mugnozza, G. Vox, Recycled wastes of tomato and hemp fibres for biodegradable pots: Physico-chemical characterization and field performance, Resour. Conserv. Recy. 70 (2013) 9-19. https://doi.org/10.1016/j.resconrec.2012.11.002
[21] S. Nambuthiri, A. Fulcher, A.K. Koeser, R. Geneve, G. Niu, Moving toward sustainability with alternative containers for greenhouse and nursery crop production: A review and research update, Hort. Technol. 25(1) (2015) 8-16. https://doi.org/10.21273/HORTTECH.25.1.8
[22] Abaecherli, V.I. Popa, Lignin in crop cultivations and bioremediation, Environ. Eng. Manag. J. 4(3) (2005) 273-292. https://doi.org/10.30638/eemj.2005.030
[23] A.A. Khan, T. McNeilly, C. Collins, Accumulation of amino acids, proline, and manganese stress in maize, J. Plant. Nutrition. 23 (2000) 1303-1314. https://doi.org/10.1080/01904160009382101
[24] M.R. Evans, M. Taylor, J. Kuehny, Physical properties of biocontainers for greenhouse crops production, Hort Technol. 20 (2010) 549-555. https://doi.org/10.21273/HORTTECH.20.3.549
[25] Koeser, R. Hauer, K. Norris, R. Krouse, Factors influencing long-term street tree survival in Milwaukee, WI, USA, Urban For. Urban Gree. 12(4) (2013) 562-568. https://doi.org/10.1016/j.ufug.2013.05.006
[26] J.S. Kuehny, M. Taylor, M.R. Evans, Greenhouse and landscape performance of bedding plants in biocontainers, Hort. Technol. 21 (2011) 155-161. https://doi.org/10.21273/HORTTECH.21.2.155
[27] B.P. Mooney, The second green revolution? Production of plant-based biodegradable plastics, Biochem. J. 418 (2009) 219-232. https://doi.org/10.1042/BJ20081769
[28] S. Ochi, Durability of starch based biodegradable plastics reinforced with manila hemp fibers, Materials 4 (2011) 457–468. https://doi.org/10.3390/ma4030457
[29] T. Tesfaye, B. Sithole, D. Ramjugernath, V. Chunilall, Valorisation of chicken feathers: Application in paper production, J. Clean Prod. 164 (2017) 1324–1331. https://doi.org/10.1016/j.jclepro.2017.07.034
[30] C. Müller, U. Kües, C. Schöpper A. Kharazipour, Natural binders, in: U. Kües (Ed.), Wood production, wood technology, and biotechnological impacts, Universitätsverlag Göttingen, Göttingen, 2007, pp. 347-381.
[31] P. Nechita, E. Dobrin, F. Ciolacu, E. Bobu, The biodegradability and mechanical strength of nutritive pots for vegetable planting based on lignocellulose composite materials, Bio Resources 5(2) (2010) 1102-1113.
[32] K. Formela, A. Hejna, Ł. Piszczyk, M.R. Saeb X. Colom, Processing and structure–property relationships of natural rubber/wheat bran biocomposites, Cellulose 23 (2016) 3157–3175. https://doi.org/10.1007/s10570-016-1020-0
[33] Sandak, I. Modzelewska, J. Sandak, FT-NIR analysis of recycled paper with addition of cereal bran biodegraded with microfungi, J. Near Infrared Spectrosc. 19(5) (2011) 369–379. https://doi.org/10.1255/jnirs.951
[34] Sandak, J. Sandak, I. Modzelewska, Manufacturing fit-for-purpose paper packaging containers with controlled biodegradation rate by optimizing addition of natural fillers, Cellulose 26 (2019) 2673–2688. https://doi.org/10.1007/s10570-018-02235-6
[35] A.R. Tumer, E. Karacaoglu, A. Namli, A. Keten, S. Farasat, R. Akcan, O. Sert, A.B. Odabasi, Effects of different types of soil on decomposition: an experimental study, Leg. Med. 15(3) (2013) 149–156. https://doi.org/10.1016/j.legalmed.2012.11.003
[36] M.R. Evans, D. Karcher, Properties of plastic, peat, and processed poultry feather fiber growing containers, Hort. Sci. 39 (2004) 1008-1011. https://doi.org/10.21273/HORTSCI.39.5.1008
[37] P.D. Postemsky, P.A. Marinangeli, N.R. Curvetto, Recycling of residual substrate from Ganoderma lucidum mushroom cultivation as biodegradable containers for horticultural seedlings, Sci. Hortic. Amsterdam. 201 (2016) 329–337. https://doi.org/10.1016/j.scienta.2016.02.021
[38] P.D. Postemsky, S.E. Delmastro, N.R. Curvetto, Effect of edible oils and Cu (II) on the biodegradation of rice by-products by Ganoderma lucidum mushroom, Int. Biodeter. Biodegr. 93 (2014) 25-32. https://doi.org/10.1016/j.ibiod.2014.05.006
[39] P.D. Postemsky, N.R. Curvetto, Solid-state fermentation of cereal grains and sunflower seed hulls by Grifolagargal and Grifolasordulenta, Int. Biodeter. Biodegr. 100 (2015) 52-61. https://doi.org/10.1016/j.ibiod.2015.02.016
[40] E. Chiellini, P. Cinelli, R.S. Kenawy, A. Lazzeri, Gelatin-based blends and composites. Morphological and thermal mechanical characterization, Biomacromolecules 2 (2001) 806-811. https://doi.org/10.1021/bm015519h
[41] L. Sartore, G. Vox, E. Schettini, Preparation and performance of novel biodegradable polymeric materials based on hydrolyzed proteins for agricultural application, J. Polym. Environ. 21(3) (2013) 718–725. https://doi.org/10.1007/s10924-013-0574-2
[42] H. Kono, Characterization and properties of carboxymethyl cellulose hydrogels crosslinked by polyethylene glycol, Carbohydr. Polym. 106 (2014) 84-93. https://doi.org/10.1016/j.carbpol.2014.02.020
[43] P. Niedermann, G. Szebényi, A. Toldy, Effect of epoxidized soybean oil on curing, rheological, mechanical and thermal properties of aromatic and aliphatic epoxy resins, J. Polym. Environ. 22(4) (2014) 525-536. https://doi.org/10.1007/s10924-014-0673-8
[44] L. Sartore, E. Schettini, S. Pandini, F. Bignotti, G. Vox, A. D’Amore, Biodegradable containers from green waste materials, in AIP Conference Proceedings. (Vol. 1736, No. 1, p. 020100), AIP Publishing, 2016. https://doi.org/10.1063/1.4949675
[45] L. Sartore, F. Bignotti, S. Pandini, A. D’Amore, L. Di Landro, Green composites and blends from leather industry waste, Polym. Composite. 37(12) (2016b) 3416-3422. https://doi.org/10.1002/pc.23541
[46] P.A. Sreekumar, A. Pradeesh, G. Unnikrishnan, J. Kuruvilla, T. Sabu, Mechanical and water sorption studies of ecofriendly banana fiber reinforced polyester composites fabricated by RTM, J. Appl. Polym. Sci. 109 (2008) 1547–1555. https://doi.org/10.1002/app.28155
[47] Ashori, A. Nourbakhsh, Reinforced polypropylene composites: Effects of chemical compositions and particle size, Bioresour. Technol. 101(7) (2010) 2515-2519. https://doi.org/10.1016/j.biortech.2009.11.022
[48] M.C. Geneau, Proceded’elaborationd’agromateriau composite naturel par extrusion bivis et injection moulage de tourteau de tournesol, PhD thesis, Institut National Polytechnique De Toulouse, 2006.
[49] Rouilly, F. Silvestre, L. Rigal, H. Caruel, E. Paux, J. Silvestre, P. Morard, Utilisation de tourteau de tournesol pour la fabrication de pots de repiquage biodégradables, 15th International Sunflower Conference, Toulouse, France, 2000.
[50] M. C. Celhay, Fractionnement de coproduits de pin maritime (Pinus pinaster) et de peuplier (Populustremula) pour l’obtentiond’ extraits polyphénoliques à activité antioxydante: procédéd’extraction aqueuseen extracteur bi-vis et étude des conditions subcritiques, PhD thesis, Université de Toulouse, 2013.
[51] M.Z. Norashikin, M. Z. Ibrahim, The potential of natural waste (corn husk) for production of environmental friendly biodegradable film for seedling, World Acad. Sci. Eng. Technol. 58 (2009) 176-180.
[52] S.N.A.M. Rafee, Y.L. Lee, M.R. Jamalludin, N.A. Razak, N.L. Makhtar, R.I. Ismail, Effect of different ratios of biomaterials to banana peels on the weight loss of biodegradable pots, Acta Technologica Agriculturae. 22(1) (2019) 1-4. https://doi.org/10.2478/ata-2019-0001
[53] K.C. Liew, L.K. Khor, Effect of different ratios of bioplastic to newspaper pulp fibres on the weight loss of bioplastic pot, J. King Saud Univ. Eng. Sci. 27 (2015) 137–141. https://doi.org/10.1016/j.jksues.2013.08.001
[54] Ververis, K. Georghiou, N. Christodoulakis, P. Santas, R. Santas, Fiber dimensions, lignin and cellulose content of various plant materials and their suitability for paper production, Ind. Crop. Prod. 19 (2003) 245–254. https://doi.org/10.1016/j.indcrop.2003.10.006
[55] Grewell, G. Srinivasan, J. Schrader, W. Graves, M. Kessler, Sustainable materials for a horticultural application, Plast. Eng. 70(3) (2014) 44-52. https://doi.org/10.1002/j.1941-9635.2014.tb01141.x
[56] S.A. Madbouly, J.A. Schrader, G. Srinivasan, K. Liu, K.G. McCabe, D. Grewell, W.R. Graves, M.R. Kessler, Biodegradation behavior of bacterial-based polyhydroxyalkanoate (PHA) and DDGS composites, Green Chem. 16(4) (2014) 1911-1920. https://doi.org/10.1039/C3GC41503A
[57] V. Candido, V. Miccolis, G., Gatta, S., Margiotta, P., Picuno, C., Manera, The effect of soil solarization and protection techniques on yield traits of melon in unheated greenhouse, Acta Hortic. 559(2) (2001) 705–712. https://doi.org/10.17660/ActaHortic.2001.559.104
[58] Kyrikou, D. Briassoulis, Biodegradation of agricultural plastic films: A critical review, J. Polym. Environ. 15(2) (2007) 125–150. https://doi.org/10.1007/s10924-007-0053-8
[59] N. Lucas, C. Bienaime, C. Belloy, M. Queneudec, F. Silvestre, J.E. Nava-Saucedo, Polymer biodegradation: Mechanisms and estimation techniques, Chemosphere. 73 (2008) 429–442. https://doi.org/10.1016/j.chemosphere.2008.06.064
[60] K.G. McCabe, J.A. Schrader, S. Madbouly, D. Grewell, W.R. Graves, Evaluation of biopolymer-coated fiber containers for container-grown plants, Hort. Technology 24 (2014) 439-448. https://doi.org/10.21273/HORTTECH.24.4.439
[61] M. Malinconico, B Immirzi, S. Massenti, F.P. LaMantia, P. Mormile, L. Petti, Blends of polyvinylalcohol and functionalized polycaprolactone. A study of the melt extrusion and post-cure of films suitable for protected cultivation, J. Mater. Sci. 37 (2002) 4973–4978. https://doi.org/10.1023/A:1021058810774
[62] M. Avella, E. DiPace, B. Immirzi, G. Impallomeni, M. Malinconico, G. Santagata, Addition of glycerol plasticizer to sea weeds derived alginates: Influence of microstructure on chemical–physical properties, Carbohyd. Polym. 69 (2007) 503–511. https://doi.org/10.1016/j.carbpol.2007.01.011
[63] Simkovic, What could be greener than composites made from polysaccharides?, Carbohyd. Polym. 74 (2008) 759–762. https://doi.org/10.1016/j.carbpol.2008.07.009
[64] A.K. Mohanty, M. Misra, G. Hinrichsen, Biofibres, biodegradable polymers and biocomposites: An overview, Macromol. Mater. Eng. 276/277 (2000) 1–24. https://doi.org/10.1002/(SICI)1439-2054(20000301)276:1<1::AID-MAME1>3.0.CO;2-W
[65] H. Hatami-Marbini, S. Pietruszczak, On inception of cracking in composite materials with brittle matrix, Comput Struct. 85 (2007) 1177–1184. https://doi.org/10.1016/j.compstruc.2006.12.001
[66] L.M. Lewin, E.M. Pearce, Handbook of fiber science and technology, Fiber chemistry, vol. IV, Marcel Dekker, New York, 1985.
[67] P. Wambua, U. Ivens, I. Verpoest, Natural fibers: can they replace glass in fiber-reinforced plastics?, Composite. Sci. Technol. 63 (2003) 1259–1264. https://doi.org/10.1016/S0266-3538(03)00096-4
[68] V.P. Cyras, J. Martucci, S. Iannace, A. Vázquez, Influence of the fiber content and the processing conditions on the flexural creep behavior of sisal–PCL–starch composites, J. Thermoplast Compos. 14 (2001) 1–13.
[69] D.G. Hepworth, D.M. Bruce, The mechanical properties of a composite manufactured from non-fibrous vegetable tissue and PVA, Compos Appl Sci Manuf. 31 (2000) 283–285. https://doi.org/10.1016/S1359-835X(99)00100-1
[70] J.A. Schrader, G. Srinivasan, D. Grewell, K.G. McCabe, W.R. Graves, Fertilizer effects of soy-plastic containers during crop production and transplant establishment. Hort Science. 48 (2013) 724-773. https://doi.org/10.21273/HORTSCI.48.6.724
[71] S. Sahoo, A. Behera, R.M. Nanda, R. Sahoo, P.L. Nayak, Gelatin blended with Cloisite 30B (MMT) for control release of Ofloxacin, Am J Sci Ind Res. 2(3) (2011) 363-368. https://doi.org/10.5251/ajsir.2011.2.3.363.368
[72] M.S. Helgeson, Horticultural evaluation of zein-based bioplastic containers, M Sc. Thesis, Iowa State University, United States, 2009.
[73] Sun, H. Huang, F. Sun, G. Wu, Z. Chang, Degradable Nursery Containers Made of Rice Husk and Cornstarch Composites, Bio. Resources. 12(1) (2017) 785-798. https://doi.org/10.15376/biores.12.1.785-798
[74] Poggio, E. Ciannamea, L. Castillo, S. Barbosa, Desarrollo de recipientes activos y biodegradables para cultivos agrícolas, Avances en Ciencias e Ingeniería. 7(2) (2016).
[75] Van de Wetering, S. Athalage, Biodegradable planters, U.S. Patent No. 7681359, 2010.
[76] Cameron, P. Styles, Biodegradable plant pots, U.S. Patent Application No. 12/098666, 2009.
[77] J.F. Whitehead, Biodegradable plant pot, U.S. Patent No. 8474181, 2009.
[78] S. Hermann, Planting container and method of making the container, U.S. Patent No. 6092331, 2000.
[79] P. Kelly, A. Lynch, Plant pots, plant and tree guards, and plant and tree wrap, WIPO Patent, 2007.
[80] W. Waldenmeier, Biodegradable plant pot-formed from flat sheet e.g. corrugated cardboard with polyester coating. Germany Patent, 1991.
[81] Haimin, Nutritive flowerpot prepared from pig manure, China Patent No. 107736150, 2018.
[82] M. Sudo, S. Ueda, K. Yagi, Nursery container and molding of the same. Japan Patent No. 10309135, 1998.
[83] S. Qingxi, H. Jianxiang, Plant fibre pot for seedling and method for mfg. same. China Patent No. 1268283, 2000.
[84] C. Samet, Bio-degradable compositions and use thereof. U.S. Patent Application No 15/959633, 2018.
[85] Wenli, Degradable flowerpot. China Patent No. 201393428, 2010.
[86] S. Cheung, H. Liang, Pot de fleur vert naturellement degradable et son procede de fabrication. WIPO Patent No. 2007051393, 2007.
[87] Gibert, Biodegradable pot or bucket, France Patent No. 3051097, 2017.
[88] R. Conneway, S. Verlinden, A.K. Koeser, M. Evans, R. Schnelle, V. Anderson, J.R. Stewart, Use of alternative containers for long- and short-term greenhouse crop production, Hort. Technology. 25(1) (2015) 26–34. https://doi.org/10.21273/HORTTECH.25.1.26
[89] Y. Sun, G. Niu, A.K., Koeser, G. Bi, V. Anderson, K. Jacobsen, R. Conneway, S. Verlinden, R. Stewart, T. Sarah, S.T. Lovell, Impact of biocontainers on plant performance and container decomposition in the landscape, Hort. Technology. 25(1) (2015) 63-70. https://doi.org/10.21273/HORTTECH.25.1.63