Iron Oxide based Magnetic Nanomaterials for Biomedical Applications
Rushikesh Fopase, Lalit M. Pandey
Over the vast area of applications, magnetic nanomaterials have great potential in the field of biomedicine due to their unique magnetic characteristics, which make them a suitable candidate for diagnostics and therapeutic applications. Superparamagnetic iron oxide nanoparticles (SPIONs) offers controllable and tunable magnetic properties via surface functionalization and the addition of impurities to their crystal structures. Size-dependent behaviors of SPIONs characteristics ease of surface modifications to make them a suitable candidate for the diverse applications. In this chapter, we have discussed the applications of SPIONs in the biomedical field. With the briefing of about the properties of iron oxide nanomaterials, synthesis methods and surface modifications for SPIONs are also discussed. The chapter focuses on the applications of SPIONs in hyperthermia, medical resonance imaging (MRI), drug delivery, and tissue engineering in order to get attention to the recent advancements in the field of biomedicine.
Keywords
Superparamagnetic Iron Oxide Nanoparticles, Hyperthermia, Magnetic Resonance Imaging, Drug Delivery, Tissue Engineering
Published online 1/30/2020, 47 pages
Citation: Rushikesh Fopase, Lalit M. Pandey, Iron Oxide based Magnetic Nanomaterials for Biomedical Applications, Materials Research Proceedings, Vol. 66, pp 276-322, 2020
DOI: https://doi.org/10.21741/9781644900611-9
Part of the book on Magnetochemistry
References
[1] N.G. Shetake, A. Kumar, B.N. Pandey, Iron-oxide nanoparticles target intracellular HSP90 to induce tumor radio-sensitization, Biochim. Biophys. Acta Gen. Sub. 1863 (2019) 857-869. https://doi.org/10.1016/j.bbagen.2019.02.010
[2] C.F. Chee, B.F. Leo, C.W. Lai, Superparamagnetic iron oxide nanoparticles for drug delivery, Applications of Nanocomposite Materials in Drug Delivery, Elsevier 2018, pp. 861-903. https://doi.org/10.1016/B978-0-12-813741-3.00038-8
[3] L. Mohammed, H.G. Gomaa, D. Ragab, J. Zhu, Magnetic nanoparticles for environmental and biomedical applications: A review, Particuology 30 (2017) 1-14. https://doi.org/10.1016/j.partic.2016.06.001
[4] K. Qiao, W. Tian, J. Bai, L. Wang, J. Zhao, Z. Du, X. Gong, Application of magnetic adsorbents based on iron oxide nanoparticles for oil spill remediation: A review, J. Taiwan Institute Chem. Eng. 97 (2019) 227-236. https://doi.org/10.1016/j.jtice.2019.01.029
[5] H. Shokrollahi, Structure, synthetic methods, magnetic properties and biomedical applications of ferrofluids, Mater. Sci. Eng. C 33 (2013) 2476-2487. https://doi.org/10.1016/j.msec.2013.03.028
[6] T. Maurer, F. Ott, G. Chaboussant, Y. Soumare, J.-Y. Piquemal, G. Viau, Magnetic nanowires as permanent magnet materials, Appl. Phys. Lett. 91 (2007) 172501. https://doi.org/10.1063/1.2800786
[7] O. Tegus, E. Brück, K. Buschow, F. De Boer, Transition-metal-based magnetic refrigerants for room-temperature applications, Nature 415 (2002) 150-152. https://doi.org/10.1038/415150a
[8] P. Tartaj, M. Morales, T. Gonzalez-Carreno, S. Veintemillas-Verdaguer, C. Serna, Advances in magnetic nanoparticles for biotechnology applications, J. Magn. Magn. Mater. 290 (2005) 28-34. https://doi.org/10.1016/j.jmmm.2004.11.155
[9] S. Amiri, H. Shokrollahi, The role of cobalt ferrite magnetic nanoparticles in medical science, Mater. Sci. Eng. C 33 (2013) 1-8. https://doi.org/10.1016/j.msec.2012.09.003
[10] E. Mazario, N. Menéndez, P. Herrasti, M. Cañete, V. Connord, J. Carrey, Magnetic hyperthermia properties of electrosynthesized cobalt ferrite nanoparticles, J. Phys. Chem. C 117 (2013) 11405-11411. https://doi.org/10.1021/jp4023025
[11] A. Doaga, A. Cojocariu, W. Amin, F. Heib, P. Bender, R. Hempelmann, O. Caltun, Synthesis and characterizations of manganese ferrites for hyperthermia applications, Mater. Chem. Phys. 143 (2013) 305-310. https://doi.org/10.1016/j.matchemphys.2013.08.066
[12] B.D. Cullity, C.D. Graham, Introduction to magnetic materials, John Wiley & Sons 2011. https://doi.org/10.1002/9780470386323
[13] M. Willard, L. Kurihara, E. Carpenter, S. Calvin, V. Harris, Chemically prepared magnetic nanoparticles, Int. Mater. Rev. 49 (2004) 125-170. https://doi.org/10.1179/095066004225021882
[14] I. Khan, S. Park, J. Hong, Temperature dependent magnetic properties of Dy-doped Fe16N2: Potential rare-earth-lean permanent magnet, Intermetallics 108 (2019) 25-31. https://doi.org/10.1016/j.intermet.2019.02.001
[15] M. Srivastava, S. Alla, S.S. Meena, N. Gupta, R. Mandal, N. Prasad, Magnetic field regulated controlled hyperthermia with LixFe3-xO4 (0.06≤ x≤ 0.3) nanoparticles, Ceram. Int. 45 (2019) 12028-12034. https://doi.org/10.1016/j.ceramint.2019.03.097
[16] S. Pandey, A. Quetz, A. Aryal, I. Dubenko, D. Mazumdar, S. Stadler, N. Ali, Thermosensitive Ni-based magnetic particles for self-controlled hyperthermia applications, J. Magn. Magn. Mater. 427 (2017) 200-205. https://doi.org/10.1016/j.jmmm.2016.11.049
[17] C. Gomez-Polo, V. Recarte, L. Cervera, J. Beato-Lopez, J. Lopez-Garcia, J. Rodríguez-Velamazán, M. Ugarte, E. Mendonça, J. Duque, Tailoring the structural and magnetic properties of Co-Zn nanosized ferrites for hyperthermia applications, J. Magn. Magn. Mater. 465 (2018) 211-219. https://doi.org/10.1016/j.jmmm.2018.05.051
[18] A.S. Teja, P.-Y. Koh, Synthesis, properties, and applications of magnetic iron oxide nanoparticles, Prog. Cryst. Growth Charact. Mater. 55 (2009) 22-45. https://doi.org/10.1016/j.pcrysgrow.2008.08.003
[19] T.K. Jain, M.K. Reddy, M.A. Morales, D.L. Leslie-Pelecky, V. Labhasetwar, Biodistribution, clearance, and biocompatibility of iron oxide magnetic nanoparticles in rats, Mol. Pharm. 5 (2008) 316-327. https://doi.org/10.1021/mp7001285
[20] M.M. Can, M. Coşkun, T. Fırat, A comparative study of nanosized iron oxide particles; magnetite (Fe3O4), maghemite (γ-Fe2O3) and hematite (α-Fe2O3), using ferromagnetic resonance, J. Alloys Compd. 542 (2012) 241-247. https://doi.org/10.1016/j.jallcom.2012.07.091
[21] M. Manjunatha, R. Kumar, A.V. Anupama, V.B. Khopkar, R. Damle, K.P. Ramesh, B. Sahoo, XRD, internal field-NMR and Mössbauer spectroscopy study of composition, structure and magnetic properties of iron oxide phases in iron ores, J. Mater. Res. Technol. 8 (2019) 2192-2200. https://doi.org/10.1016/j.jmrt.2019.01.022
[22] R. Zboril, L. Machala, M. Mashlan, V. Sharma, Iron (III) oxide nanoparticles in the thermally induced oxidative decomposition of Prussian blue, Fe4[Fe(CN)6]3, Cryst. Growth Design 4 (2004) 1317-1325. https://doi.org/10.1021/cg049748+
[23] R.P. Feynman, R.B. Leighton, M. Sands, The feynman lectures on physics; vol. i, Am. J. Phys. 33 (1965) 750-752. https://doi.org/10.1119/1.1972241
[24] M. Catti, G. Valerio, R. Dovesi, Theoretical study of electronic, magnetic, and structural properties of α-Fe2O3 (hematite), Phys. Rev.B 51 (1995) 7441-7450. https://doi.org/10.1103/PhysRevB.51.7441
[25] R.M. Cornell, U. Schwertmann, The iron oxides: structure, properties, reactions, occurrences and uses, John Wiley & Sons 2003. https://doi.org/10.1002/3527602097
[26] W. Wei, W. Zhaohui, Y. Taekyung, J. Changzhong, K. Woo-Sik, Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications, Sci. Technol. Adv. Mater. 16(2) (2015) 023501. https://doi:10.1088/1468-6996/16/2/023501
[27] Z. Shaterabadi, G. Nabiyouni, M. Soleymani, Optimal size for heating efficiency of superparamagnetic dextran-coated magnetite nanoparticles for application in magnetic fluid hyperthermia, Physica C: Superconductivity Appl. 549 (2018) 84-87. https://doi.org/10.1016/j.physc.2018.02.060
[28] V. Ganesan, B. Lahiri, C. Louis, J. Philip, S.P. Damodaran, Size-controlled synthesis of superparamagnetic magnetite nanoclusters for heat generation in an alternating magnetic field, J. Mol. Liq. 281 (2019) 315-323. https://doi.org/10.1016/j.molliq.2019.02.095
[29] D. Jiles, Introduction to magnetism and magnetic materials, CRC press 2015. https://doi.org/10.1201/b18948
[30] C. Hasirci, O. Karaagac, H. Köçkar, Superparamagnetic zinc ferrite: A correlation between high magnetizations and nanoparticle sizes as a function of reaction time via hydrothermal process, J. Magn. Magn. Mater. 474 (2019) 282-286. https://doi.org/10.1016/j.jmmm.2018.11.037
[31] Y.C. Park, J.B. Smith, T. Pham, R.D. Whitaker, C.A. Sucato, J.A. Hamilton, E. Bartolak-Suki, J.Y. Wong, Effect of PEG molecular weight on stability, T2 contrast, cytotoxicity, and cellular uptake of superparamagnetic iron oxide nanoparticles (SPIONs), Colloids Surf. B. Biointerfaces 119 (2014) 106-114. https://doi.org/10.1016/j.colsurfb.2014.04.027
[32] A. Luchini, Y. Gerelli, G. Fragneto, T. Nylander, G.K. Pálsson, M.S. Appavou, L. Paduano, Neutron Reflectometry reveals the interaction between functionalized SPIONs and the surface of lipid bilayers, Colloids Surf. B. Biointerfaces 151 (2017) 76-87. https://doi.org/10.1016/j.colsurfb.2016.12.005
[33] P. Lemal, S. Balog, C. Geers, P. Taladriz-Blanco, A. Palumbo, A.M. Hirt, B. Rothen-Rutishauser, A. Petri-Fink, Heating behavior of magnetic iron oxide nanoparticles at clinically relevant concentration, J. Magn. Magn. Mater. 474 (2019) 637-642. https://doi.org/10.1016/j.jmmm.2018.10.009
[34] K. Woo, J. Hong, S. Choi, H.W. Lee, J.-P. Ahn, C.S. Kim, S.W. Lee, Easy synthesis and magnetic properties of iron oxide nanoparticles, Chem. Mater. 16 (2004) 2814-2818. https://doi.org/10.1021/cm049552x
[35] T. Lastovina, A. Bugaev, S. Kubrin, E. Kudryavtsev, A. Soldatov, Structural studies of magnetic nanoparticles doped with rare-earth elements, J. Struct. Chem. 57 (2016) 1444-1449. https://doi.org/10.1134/S0022476616070209
[36] K.T. Nguyen, Y. Zhao, Engineered hybrid nanoparticles for on-demand diagnostics and therapeutics, Acc. Chem. Res. 48 (2015) 3016-3025. https://doi.org/10.1021/acs.accounts.5b00316
[37] Y. Wei, B. Han, X. Hu, Y. Lin, X. Wang, X. Deng, Synthesis of Fe3O4 nanoparticles and their magnetic properties, Procedia Engineering 27 (2012) 632-637. https://doi.org/10.1016/j.proeng.2011.12.498
[38] L. Gholami, R.K. Oskuee, M. Tafaghodi, A.R. Farkhani, M. Darroudi, Green facile synthesis of low-toxic superparamagnetic iron oxide nanoparticles (SPIONs) and their cytotoxicity effects toward Neuro2A and HUVEC cell lines, Ceram. Int. 44 (2018) 9263-9268. https://doi.org/10.1016/j.ceramint.2018.02.137
[39] K. Kalantari, M.B. Ahmad, K. Shameli, R. Khandanlou, Synthesis of talc/Fe3O4 magnetic nanocomposites using chemical co-precipitation method, Int. J. Nanomedicine 8 (2013) 1817-1823. https://doi.org/10.2147/IJN.S43693
[40] A. Gholoobi, Z. Meshkat, K. Abnous, M. Ghayour-Mobarhan, M. Ramezani, F.H. Shandiz, K. Verma, M. Darroudi, Biopolymer-mediated synthesis of Fe3O4 nanoparticles and investigation of their in vitro cytotoxicity effects, J. Mol. Struct. 1141 (2017) 594-599. https://doi.org/10.1016/j.molstruc.2017.04.024
[41] M. Azhdarzadeh, F. Atyabi, A.A. Saei, B.S. Varnamkhasti, Y. Omidi, M. Fateh, M. Ghavami, S. Shanehsazzadeh, R. Dinarvand, Theranostic MUC-1 aptamer targeted gold coated superparamagnetic iron oxide nanoparticles for magnetic resonance imaging and photothermal therapy of colon cancer, Colloids Surf. B. Biointerfaces 143 (2016) 224-232. https://doi.org/10.1016/j.colsurfb.2016.02.058
[42] F. Arriagada, K. Osseo-Asare, Synthesis of nanosize silica in a nonionic water-in-oil microemulsion: effects of the water/surfactant molar ratio and ammonia concentration, J. Colloid Interface Sci. 211 (1999) 210-220. https://doi.org/10.1006/jcis.1998.5985
[43] A.E. Silva, G. Barratt, M. Chéron, E.S.T. Egito, Development of oil-in-water microemulsions for the oral delivery of amphotericin B, Int. J. Pharm. 454 (2013) 641-648. https://doi.org/10.1016/j.ijpharm.2013.05.044
[44] L. Cai, Z.-Z. Chen, M.-Y. Chen, H.-W. Tang, D.-W. Pang, MUC-1 aptamer-conjugated dye-doped silica nanoparticles for MCF-7 cells detection, Biomaterials 34 (2013) 371-381. https://doi.org/10.1016/j.biomaterials.2012.09.084
[45] M.A. Malik, M.Y. Wani, M.A. Hashim, Microemulsion method: A novel route to synthesize organic and inorganic nanomaterials: 1st Nano Update, Arabian J. Chem. 5 (2012) 397-417. https://doi.org/10.1016/j.arabjc.2010.09.027
[46] T. Aubert, F. Grasset, S. Mornet, E. Duguet, O. Cador, S. Cordier, Y. Molard, V. Demange, M. Mortier, H. Haneda, Functional silica nanoparticles synthesized by water-in-oil microemulsion processes, J. Colloid Interface Sci. 341 (2010) 201-208. https://doi.org/10.1016/j.jcis.2009.09.064
[47] M. Pileni, Control of the size and shape of inorganic nanocrystals at various scales from nano to macrodomains, J. Phys. Chem. C 111 (2007) 9019-9038. https://doi.org/10.1021/jp070646e
[48] M.R. Housaindokht, A.N. Pour, Precipitation of hematite nanoparticles via reverse microemulsion process, J. Natural Gas Chem. 20 (2011) 687-692. https://doi.org/10.1016/S1003-9953(10)60234-4
[49] J. Livage, M. Henry, C. Sanchez, Sol-gel chemistry of transition metal oxides, Prog. Solid State Chem. 18 (1988) 259-341. https://doi.org/10.1016/0079-6786(88)90005-2
[50] L.L. Hench, J.K. West, The sol-gel process, Chem. Rev. 90 (1990) 33-72. https://doi.org/10.1021/cr00099a003
[51] H. Schmidt, Chemistry of material preparation by the sol-gel process, J. Non-Cryst. Solids 100 (1988) 51-64. https://doi.org/10.1016/0022-3093(88)90006-3
[52] M. Tadić, V. Kusigerski, D. Marković, M. Panjan, I. Milošević, V. Spasojević, Highly crystalline superparamagnetic iron oxide nanoparticles (SPION) in a silica matrix, J. Alloys Compd. 525 (2012) 28-33. https://doi.org/10.1016/j.jallcom.2012.02.056
[53] X. Liu, S. Tao, Y. Shen, Preparation and characterization of nanocrystalline α-Fe2O3 by a sol-gel process, Sensors Actuators B: Chem. 40 (1997) 161-165. https://doi.org/10.1016/S0925-4005(97)80256-0
[54] Z. Haijun, J. Xiaolin, Y. Yongjie, L. Zhanjie, Y. Daoyuan, L. Zhenzhen, The effect of the concentration of citric acid and pH values on the preparation of MgAl2O4 ultrafine powder by citrate sol–gel process, Mater. Res. Bull. 39 (2004) 839-850. https://doi.org/10.1016/j.materresbull.2004.01.006
[55] P. Vaqueiro, M. Lopez-Quintela, Influence of complexing agents and pH on yttrium− Iron garnet synthesized by the sol−gel method, Chem. Mater. 9 (1997) 2836-2841. https://doi.org/10.1021/cm970165f
[56] S.H. Vajargah, H.M. Hosseini, Z. Nemati, Synthesis of nanocrystalline yttrium iron garnets by sol–gel combustion process: The influence of pH of precursor solution, Mater. Sci. Eng. B 129 (2006) 211-215. https://doi.org/10.1016/j.mseb.2006.01.014
[57] A. Mali, A. Ataie, Influence of the metal nitrates to citric acid molar ratio on the combustion process and phase constitution of barium hexaferrite particles prepared by sol–gel combustion method, Ceram. Int. 30 (2004) 1979-1983. https://doi.org/10.1016/j.ceramint.2003.12.178
[58] A. Akbar, H. Yousaf, S. Riaz, S. Naseem, Role of precursor to solvent ratio in tuning the magnetization of iron oxide thin films–A sol-gel approach, J. Magn. Magn. Mater. 471 (2019) 14-24. https://doi.org/10.1016/j.jmmm.2018.09.008
[59] A.K. Gupta, S. Wells, Surface-modified superparamagnetic nanoparticles for drug delivery: preparation, characterization, and cytotoxicity studies, IEEE Trans. NanoBiosci. 3 (2004) 66-73. https://doi.org/10.1109/TNB.2003.820277
[60] C. Janko, J. Zaloga, M. Pöttler, S. Dürr, D. Eberbeck, R. Tietze, S. Lyer, C. Alexiou, Strategies to optimize the biocompatibility of iron oxide nanoparticles–“SPIONs safe by design”, J. Magn. Magn. Mater. 431 (2017) 281-284. https://doi.org/10.1016/j.jmmm.2016.09.034
[61] M. Singh, A. Savchenko, I. Shetinin, A. Majouga, An original route to target delivery via core-shell modification of SPIONs, Mater. Today Proceedings 3 (2016) 2652-2661. https://doi.org/10.1016/j.matpr.2016.06.009
[62] N. Singh, J. Nayak, S.K. Sahoo, R. Kumar, Glutathione conjugated superparamagnetic Fe3O4-Au core shell nanoparticles for pH controlled release of DOX, Mater. Sci. Eng. C 100 (2019) 453-465. https://doi.org/10.1016/j.msec.2019.03.031
[63] S. Ullah, K. Seidel, S. Türkkan, D.P. Warwas, T. Dubich, M. Rohde, H. Hauser, P. Behrens, A. Kirschning, M. Köster, Macrophage entrapped silica coated superparamagnetic iron oxide particles for controlled drug release in a 3D cancer model, J. Controlled Release 294 (2019) 327-336. https://doi.org/10.1016/j.jconrel.2018.12.040
[64] S.A.C. Lima, A. Gaspar, S. Reis, L. Durães, Multifunctional nanospheres for co-delivery of methotrexate and mild hyperthermia to colon cancer cells, Mater. Sci. Eng. C 75 (2017) 1420-1426. https://doi.org/10.1016/j.msec.2017.03.049
[65] S. Haracz, M. Hilgendorff, J. Rybka, M. Giersig, Effect of surfactant for magnetic properties of iron oxide nanoparticles, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 364 (2015) 120-126. https://doi.org/10.1016/j.nimb.2015.08.035
[66] S.E. Favela-Camacho, E.J. Samaniego-Benítez, A. Godínez-García, L.M. Avilés-Arellano, J.F. Pérez-Robles, How to decrease the agglomeration of magnetite nanoparticles and increase their stability using surface properties, Colloids Surf. Physicochem. Eng. Aspects 574 (2019) 29-35. https://doi.org/10.1016/j.colsurfa.2019.04.016
[67] B. Shaghaghi, S. Khoee, S. Bonakdar, Preparation of multifunctional Janus nanoparticles on the basis of SPIONs as targeted drug delivery system, Int. J. Pharm. 559 (2019) 1-12. https://doi.org/10.1016/j.ijpharm.2019.01.020
[68] M. Galli, B. Rossotti, P. Arosio, A.M. Ferretti, M. Panigati, E. Ranucci, P. Ferruti, A. Salvati, D. Maggioni, A new catechol-functionalized polyamidoamine as an effective SPION stabilizer, Colloids Surf. B. Biointerfaces 174 (2019) 260-269. https://doi.org/10.1016/j.colsurfb.2018.11.007
[69] D.K. Chatterjee, P. Diagaradjane, S. Krishnan, Nanoparticle-mediated hyperthermia in cancer therapy, Ther. Deliv. 2 (2011) 1001-1014. https://doi.org/10.4155/tde.11.72
[70] D. Ortega, Q.A. Pankhurst, Magnetic hyperthermia, Nanosci.1 (2013) 60-88. https://doi.org/10.1039/9781849734844-00060
[71] M. Falk, R. Issels, Hyperthermia in oncology, Int. J. Hyperthermia 17 (2001) 1-18. https://doi.org/10.1080/02656730150201552
[72] H. Mamiya, Y. Takeda, T. Naka, N. Kawazoe, G. Chen, B. Jeyadevan, Practical solution for effective whole-body magnetic fluid hyperthermia treatment, J. Nanomater. 2017 (2017) 1047697. https://doi.org/10.1155/2017/1047697
[73] S. Toraya-Brown, M.R. Sheen, P. Zhang, L. Chen, J.R. Baird, E. Demidenko, M.J. Turk, P.J. Hoopes, J.R. Conejo-Garcia, S. Fiering, Local hyperthermia treatment of tumors induces CD8+ T cell-mediated resistance against distal and secondary tumors, Handbook of immunological properties of engineered nanomaterials: Volume 3: engineered nanomaterials and the immune cell function, World Scientific2016, pp. 309-347. https://doi.org/10.1142/9789813140479_0012
[74] S. Gao, M. Zheng, X. Ren, Y. Tang, X. Liang, Local hyperthermia in head and neck cancer: mechanism, application and advance, Oncotarget 7 (2016) 57367-57378. https://doi.org/10.18632/oncotarget.10350
[75] Z. Behrouzkia, Z. Joveini, B. Keshavarzi, N. Eyvazzadeh, R.Z. Aghdam, Hyperthermia: how can it be used?, Oman Med. J. 31 (2016) 89-97. https://doi.org/10.5001/omj.2016.19
[76] H. Kok, P. Wust, P.R. Stauffer, F. Bardati, G. Van Rhoon, J. Crezee, Current state of the art of regional hyperthermia treatment planning: a review, Radiation Oncology 10 (2015) 196. https://doi.org/10.1186/s13014-015-0503-8
[77] J. Crezee, C. van Leeuwen, A. Oei, L. van Heerden, A. Bel, L. Stalpers, P. Ghadjar, N. Franken, H. Kok, Biological modelling of the radiation dose escalation effect of regional hyperthermia in cervical cancer, Radiation Oncology 11 (2016) 14. https://doi.org/10.1186/s13014-016-0592-z
[78] M. Lévy, C. Wilhelm, J.M. Siaugue, O. Horner, J.C. Bacri, F. Gazeau, Magnetically induced hyperthermia: size-dependent heating power of γ-Fe2O3 nanoparticles, J. Phys.: Condens. Matter 20 (2008) 204133. https://doi.org/10.1088/0953-8984/20/20/204133
[79] M. Suto, Y. Hirota, H. Mamiya, A. Fujita, R. Kasuya, K. Tohji, B. Jeyadevan, Heat dissipation mechanism of magnetite nanoparticles in magnetic fluid hyperthermia, J. Magn. Magn. Mater. 321 (2009) 1493-1496. https://doi.org/10.1016/j.jmmm.2009.02.070
[80] E. Lima, E. De Biasi, R.D. Zysler, M.V. Mansilla, M.L. Mojica-Pisciotti, T.E. Torres, M.P. Calatayud, C. Marquina, M.R. Ibarra, G.F. Goya, Relaxation time diagram for identifying heat generation mechanisms in magnetic fluid hyperthermia, J. Nanopart. Res. 16 (2014) 2791. https://doi.org/10.1007/s11051-014-2791-6
[81] M. Coïsson, G. Barrera, F. Celegato, L. Martino, S.N. Kane, S. Raghuvanshi, F. Vinai, P. Tiberto, Hysteresis losses and specific absorption rate measurements in magnetic nanoparticles for hyperthermia applications, Biochim. Biophys. Acta Gen. Sub. 1861 (2017) 1545-1558. https://doi.org/10.1016/j.bbagen.2016.12.006
[82] C.W. Kartikowati, Q. Li, S. Horie, T. Ogi, T. Iwaki, K. Okuyama, Aligned Fe3O4 magnetic nanoparticle films by magneto-electrospray method, RSC Adv. 7 (2017) 40124-40130. https://doi.org/10.1039/C7RA07944C
[83] L. Maldonado-Camargo, I. Torres-Díaz, A. Chiu-Lam, M. Hernández, C. Rinaldi, Estimating the contribution of Brownian and Néel relaxation in a magnetic fluid through dynamic magnetic susceptibility measurements, J. Magn. Magn. Mater. 412 (2016) 223-233. https://doi.org/10.1016/j.jmmm.2016.03.087
[84] M. Brollo, J. M. Orozco-Henao, R. López-Ruiz, D. Muraca, C. S. B. Dias, K. R. Pirota, M. Knobel, Magnetic hyperthermia in brick-like Ag@ Fe3O4 core–shell nanoparticles, J. Magn. Magn. Mater. 397 (2016) 20-27. https://doi.org/10.1016/j.jmmm.2015.08.081
[85] A. Hervault and N.T.K. Thanh, Magnetic nanoparticle-based therapeutic agents for thermo-chemotherapy treatment of cancer. Nanoscale 6(20) (2014) 11553-11573. https://doi.org/10.1039/c4nr03482a
[86] Z. Shaterabadi, G. Nabiyouni, and M. Soleymani, Physics responsible for heating efficiency and self-controlled temperature rise of magnetic nanoparticles in magnetic hyperthermia therapy. Prog. Biophys. Mol. Biol. 133 (2018) 9-19. https://doi.org/10.1016/j.pbiomolbio.2017.10.001
[87] R.E. Rosensweig, Heating magnetic fluid with alternating magnetic field, J. Magn. Magn. Mater. 252 (2002) 370-374. https://doi.org/10.1016/S0304-8853(02)00706-0
[88] X. Wang, H. Gu, Z. Yang, The heating effect of magnetic fluids in an alternating magnetic field, J. Magn. Magn. Mater. 293 (2005) 334-340. https://doi.org/10.1016/j.jmmm.2005.02.028
[89] E.C. Abenojar, S. Wickramasinghe, J. Bas-Concepcion, A.C.S. Samia, Structural effects on the magnetic hyperthermia properties of iron oxide nanoparticles, Progress Natural Sci. Mater. Int. 26 (2016) 440-448. https://doi.org/10.1016/j.pnsc.2016.09.004
[90] J.-P. Fortin, F. Gazeau, C. Wilhelm, Intracellular heating of living cells through Néel relaxation of magnetic nanoparticles, Eur. Biophys. J. 37 (2008) 223-228. https://doi.org/10.1007/s00249-007-0197-4
[91] R. Ramanujan, L. Lao, Magnetic particles for hyperthermia treatment of cancer, Proc. First Intl. Bioengg. Conf, 2004, pp. 69-72.
[92] M. Mallory, E. Gogineni, G. C. Jones, L. Greer, C. B. Simone, Therapeutic hyperthermia: The old, the new, and the upcoming, Crit. Rev. Oncol. Hematol 97 (2016) 258-542. https://doi.org/10.1016/j.critrevonc.2015.08.003
[93] B. Frey, E.-M. Weiss, Y. Rubner, R. Wunderlich, O.J. Ott, R. Sauer, R. Fietkau, U.S. Gaipl, Old and new facts about hyperthermia-induced modulations of the immune system, Int. J. Hyperthermia 28 (2012) 528-542. https://doi.org/10.3109/02656736.2012.677933
[94] N. Datta, S.G. Ordóñez, U. Gaipl, M. Paulides, H. Crezee, J. Gellermann, D. Marder, E. Puric, S. Bodis, Local hyperthermia combined with radiotherapy and-/or chemotherapy: Recent advances and promises for the future, Cancer Treat. Rev. 41 (2015) 742-753. https://doi.org/10.1016/j.ctrv.2015.05.009
[95] T. Chen, J. Guo, C. Han, M. Yang, X. Cao, Heat shock protein 70, released from heat-stressed tumor cells, initiates antitumor immunity by inducing tumor cell chemokine production and activating dendritic cells via TLR4 pathway, J. Immunology 182 (2009) 1449-1459. https://doi.org/10.4049/jimmunol.182.3.1449
[96] P. Schildkopf, B. Frey, O.J. Ott, Y. Rubner, G. Multhoff, R. Sauer, R. Fietkau, U.S. Gaipl, Radiation combined with hyperthermia induces HSP70-dependent maturation of dendritic cells and release of pro-inflammatory cytokines by dendritic cells and macrophages, Radiother. Oncol. 101 (2011) 109-115. https://doi.org/10.1016/j.radonc.2011.05.056
[97] A. Jordan, R. Scholz, P. Wust, H. Fähling, R. Felix, Magnetic fluid hyperthermia (MFH): Cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles, J. Magn. Magn. Mater. 201 (1999) 413-419. https://doi.org/10.1016/S0304-8853(99)00088-8
[98] R.R. Shah, T.P. Davis, A.L. Glover, D.E. Nikles, C.S. Brazel, Impact of magnetic field parameters and iron oxide nanoparticle properties on heat generation for use in magnetic hyperthermia, J. Magn. Magn. Mater. 387 (2015) 96-106. https://doi.org/10.1016/j.jmmm.2015.03.085
[99] I. Apostolova, J. Wesselinowa, Possible low-TC nanoparticles for use in magnetic hyperthermia treatments, Solid State Commun. 149 (2009) 986-990. https://doi.org/10.1016/j.ssc.2009.04.015
[100] K. McNerny, Y. Kim, D.E. Laughlin, M.E. McHenry, Chemical synthesis of monodisperse γ-Fe–Ni magnetic nanoparticles with tunable Curie temperatures for self-regulated hyperthermia, J. Appl. Phys. 107 (2010) 09A312. https://doi.org/10.1063/1.3348738
[101] S. Laurent, S. Dutz, U.O. Häfeli, M. Mahmoudi, Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles, Adv. Colloid Interface Sci. 166 (2011) 8-23. https://doi.org/10.1016/j.cis.2011.04.003
[102] R. Di Corato, A. Espinosa, L. Lartigue, M. Tharaud, S. Chat, T. Pellegrino, C. Ménager, F. Gazeau, C. Wilhelm, Magnetic hyperthermia efficiency in the cellular environment for different nanoparticle designs, Biomaterials 35 (2014) 6400-6411. https://doi.org/10.1016/j.biomaterials.2014.04.036
[103] B.E. Kashevsky, S.B. Kashevsky, T.I. Terpinskaya, V.S. Ulashchik, Magnetic hyperthermia with hard-magnetic nanoparticles: In vivo feasibility of clinically relevant chemically enhanced tumor ablation, J. Magn. Magn. Mater. 475 (2019) 216-222. https://doi.org/10.1016/j.jmmm.2018.11.083
[104] S. Jadhav, P. Shewale, B. Shin, M. Patil, G. Kim, A. Rokade, S. Park, R. Bohara, Y. Yu, Study of structural and magnetic properties and heat induction of gadolinium-substituted manganese zinc ferrite nanoparticles for in vitro magnetic fluid hyperthermia, J. Colloid Interface Sci. 541 (2019) 192-203. https://doi.org/10.1016/j.jcis.2019.01.063
[105] J. Matuszak, J. Zaloga, R.P. Friedrich, S. Lyer, J. Nowak, S. Odenbach, C. Alexiou, I. Cicha, Endothelial biocompatibility and accumulation of SPION under flow conditions, J. Magn. Magn. Mater. 380 (2015) 20-26. https://doi.org/10.1016/j.jmmm.2014.09.005
[106] B. Ankamwar, T.-C. Lai, J.-H. Huang, R.-S. Liu, M. Hsiao, C.-H. Chen, Y. Hwu, Biocompatibility of Fe3O4 nanoparticles evaluated by in vitro cytotoxicity assays using normal, glia and breast cancer cells, Nanotechnology 21 (2010) 075102. https://doi.org/10.1088/0957-4484/21/7/075102
[107] N. Singh, G.J. Jenkins, R. Asadi, S.H. Doak, Potential toxicity of superparamagnetic iron oxide nanoparticles (SPION), Nano Rev. 1 (2010) 5358. https://doi.org/10.3402/nano.v1i0.5358
[108] A.R. Yasemian, M.A. Kashi, A. Ramazani, Surfactant-free synthesis and magnetic hyperthermia investigation of iron oxide (Fe3O4) nanoparticles at different reaction temperatures, Mater. Chem. Phys. 230 (2019) 9-16. https://doi.org/10.1016/j.matchemphys.2019.03.032
[109] C. Ispas, D. Andreescu, A. Patel, D.V. Goia, S. Andreescu, K.N. Wallace, Toxicity and developmental defects of different sizes and shape nickel nanoparticles in zebrafish, Environ. Sci. Technol. 43 (2009) 6349-6356. https://doi.org/10.1021/es9010543
[110] S. Chattopadhyay, S.K. Dash, S. Tripathy, B. Das, D. Mandal, P. Pramanik, S. Roy, Toxicity of cobalt oxide nanoparticles to normal cells; an in vitro and in vivo study, Chem. Biol. Interact. 226 (2015) 58-71. https://doi.org/10.1016/j.cbi.2014.11.016
[111] S.M. Hussain, A.K. Javorina, A.M. Schrand, H.M. Duhart, S.F. Ali, J.J. Schlager, The interaction of manganese nanoparticles with PC-12 cells induces dopamine depletion, Toxicol. Sci. 92 (2006) 456-463. https://doi.org/10.1093/toxsci/kfl020
[112] A. Hütten, D. Sudfeld, I. Ennen, G. Reiss, W. Hachmann, U. Heinzmann, K. Wojczykowski, P. Jutzi, W. Saikaly, G. Thomas, New magnetic nanoparticles for biotechnology, J. Biotechnol. 112 (2004) 47-63. https://doi.org/10.1016/j.jbiotec.2004.04.019
[113] S. Araújo-Barbosa, M. Morales, Nanoparticles of Ni1− xCux alloys for enhanced heating in magnetic hyperthermia, J. Alloys Compd. 787 (2019) 935-943. https://doi.org/10.1016/j.jallcom.2019.02.148
[114] D. Bharathi, R. Ranjithkumar, S. Vasantharaj, B. Chandarshekar, V. Bhuvaneshwari, Synthesis and characterization of chitosan/iron oxide nanocomposite for biomedical applications, Int. J. Biol. Macromol. 132 (2019) 880-887. https://doi.org/10.1016/j.ijbiomac.2019.03.233
[115] S.W. Lee, S. Bae, Y. Takemura, I.B. Shim, T.M. Kim, J. Kim, H.J. Lee, S. Zurn, C.S. Kim, Self-heating characteristics of cobalt ferrite nanoparticles for hyperthermia application, J. Magn. Magn. Mater. 310 (2007) 2868-2870. https://doi.org/10.1016/j.jmmm.2006.11.080
[116] E.L. Verde, G.T. Landi, J.D.A. Gomes, M.H. Sousa, A.F. Bakuzis, Magnetic hyperthermia investigation of cobalt ferrite nanoparticles: Comparison between experiment, linear response theory, and dynamic hysteresis simulations, J. Appl. Phys. 111 (2012) 123902. https://doi.org/10.1063/1.4729271
[117] R. Valenzuela, Novel applications of ferrites, Physics Research International 2012 (2012) 591839. https://doi.org/10.1155/2012/591839
[118] P. Pradhan, J. Giri, G. Samanta, H.D. Sarma, K.P. Mishra, J. Bellare, R. Banerjee, D. Bahadur, Comparative evaluation of heating ability and biocompatibility of different ferrite‐based magnetic fluids for hyperthermia application, J. Biomed. Mater. Res. Part B: Applied Biomater. 81 (2007) 12-22. https://doi.org/10.1002/jbm.b.30630
[119] E.L. Verde, G.T. Landi, M. Carrião, A.L. Drummond, J.d.A. Gomes, E.D. Vieira, M.H. Sousa, A.F. Bakuzis, Field dependent transition to the non-linear regime in magnetic hyperthermia experiments: Comparison between maghemite, copper, zinc, nickel and cobalt ferrite nanoparticles of similar sizes, AIP Adv. 2 (2012) 032120. https://doi.org/10.1063/1.4739533
[120] Y. Sheng, S. Li, Z. Duan, R. Zhang, J. Xue, Fluorescent magnetic nanoparticles as minimally-invasive multi-functional theranostic platform for fluorescence imaging, MRI and magnetic hyperthermia, Mater. Chem. Phys. 204 (2018) 388-396. https://doi.org/10.1016/j.matchemphys.2017.10.076
[121] V. Khot, A. Salunkhe, N. Thorat, R. Ningthoujam, S. Pawar, Induction heating studies of dextran coated MgFe2O4 nanoparticles for magnetic hyperthermia, Dalton Transactions 42 (2013) 1249-1258. https://doi.org/10.1039/C2DT31114C
[122] M.A. Kerroum, A. Essyed, C. Iacovita, W. Baaziz, D. Ihiawakrim, O. Mounkachi, M. Hamedoun, A. Benyoussef, M. Benaissa, O. Ersen, The effect of basic pH on the elaboration of ZnFe2O4 nanoparticles by co-precipitation method: Structural, magnetic and hyperthermia characterization, J. Magn. Magn. Mater. 478 (2019) 239-246. https://doi.org/10.1016/j.jmmm.2019.01.081
[123] V. Kusigerski, E. Illes, J. Blanusa, S. Gyergyek, M. Boskovic, M. Perovic, V. Spasojevic, Magnetic properties and heating efficacy of magnesium doped magnetite nanoparticles obtained by co-precipitation method, J. Magn. Magn. Mater. 475 (2019) 470-478. https://doi.org/10.1016/j.jmmm.2018.11.127
[124] C.R. De Silva, S. Smith, I. Shim, J. Pyun, T. Gutu, J. Jiao, Z. Zheng, Lanthanide (III)-doped magnetite nanoparticles, J. Am. Chem. Soc. 131 (2009) 6336-6337. https://doi.org/10.1021/ja9014277
[125] S. Nag, A. Roychowdhury, D. Das, S. Das, S. Mukherjee, Structural and magnetic properties of erbium (Er3+) doped nickel zinc ferrite prepared by sol-gel auto-combustion method, J. Magn. Magn. Mater. 466 (2018) 172-179. https://doi.org/10.1016/j.jmmm.2018.06.084
[126] M. Hashim, M. Raghasudha, S.S. Meena, J. Shah, S.E. Shirsath, S. Kumar, D. Ravinder, P. Bhatt, R. Kumar, R. Kotnala, Influence of rare earth ion doping (Ce and Dy) on electrical and magnetic properties of cobalt ferrites, J. Magn. Magn. Mater. 449 (2018) 319-327. https://doi.org/10.1016/j.jmmm.2017.10.023
[127] T.S. Atabaev, N.H. Hong, Enhanced optical properties of ZrO2: Eu3+ powders codoped with gadolinium ions, J. Sol-Gel Sci. Technol. 82 (2017) 15-19. https://doi.org/10.1007/s10971-017-4347-6
[128] X. Zhou, Y. Zhou, L. Zhou, J. Wei, J. Wu, D. Yao, Effect of Gd and La doping on the structure, optical and magnetic properties of NiZnCo ferrites, Ceram. Int. 45 (2019) 6236-6242. https://doi.org/10.1016/j.ceramint.2018.12.102
[129] S. Deka, V. Saxena, A. Hasan, P. Chandra, L.M. Pandey, Synthesis, characterization and in vitro analysis of α-Fe2O3-GdFeO3 biphasic materials as therapeutic agent for magnetic hyperthermia applications, Materials Science and Engineering: C 92 (2018) 932-941. https://doi.org/10.1016/j.msec.2018.07.042
[130] K. Arda, S. Akay, C. Erisken, Effect of gadolinium concentration on temperature change under magnetic field, PLoS One 14 (2019) e0214910. https://doi.org/10.1371/journal.pone.0214910
[131] I. Hilger, W.A. Kaiser, Iron oxide-based nanostructures for MRI and magnetic hyperthermia, Nanomedicine 7 (2012) 1443-1459. https://doi.org/10.2217/nnm.12.112
[132] A. Rękorajska, G. Cichowicz, M.K. Cyranski, M. Pękała, P. Krysinski, Synthesis and characterization of Gd3+-and Tb3+-doped iron oxide nanoparticles for possible endoradiotherapy and hyperthermia, J. Magn. Magn. Mater. 479 (2019) 50-58. https://doi.org/10.1016/j.jmmm.2019.01.102
[133] V. Daboin, S. Briceño, J. Suárez, L. Carrizales-Silva, O. Alcalá, P. Silva, G. Gonzalez, Magnetic SiO2-Mn1-xCoxFe2O4 nanocomposites decorated with Au@Fe3O4 nanoparticles for hyperthermia, J. Magn. Magn. Mater. 479 (2019) 91-98. https://doi.org/10.1016/j.jmmm.2019.02.002
[134] M. Ognjanović, D.M. Stanković, Y. Ming, H. Zhang, B. Jančar, B. Dojčinović, Ž. Prijović, B. Antić, Bifunctional (Zn, Fe)3O4 nanoparticles: Tuning their efficiency for potential application in reagentless glucose biosensors and magnetic hyperthermia, J. Alloys Compd. 777 (2019) 454-462. https://doi.org/10.1016/j.jallcom.2018.10.369
[135] L. Li, N. Yi, X. Wang, X. Lin, T. Zeng, T. Qiu, Novel triazolium-based ionic liquids as effective catalysts for transesterification of palm oil to biodiesel, J. Mol. Liq. 249 (2018) 732-738. https://doi.org/10.1016/j.molliq.2017.11.097
[136] S. Shaw, A. Biswas, A. Gangwar, P. Maiti, C. Prajapat, S.S. Meena, N. Prasad, Synthesis of Exchange Coupled Nanoflowers for Efficient Magnetic Hyperthermia, J. Magn. Magn. Mater. 484 (2019) 437-444. https://doi.org/10.1016/j.jmmm.2019.04.056
[137] I. Andreu, E. Natividad, L. Solozábal, O. Roubeau, Same magnetic nanoparticles, different heating behavior: Influence of the arrangement and dispersive medium, J. Magn. Magn. Mater. 380 (2015) 341-346. https://doi.org/10.1016/j.jmmm.2014.10.114
[138] S. El-Dek, M.A. Ali, S.M. El-Zanaty, S.E. Ahmed, Comparative investigations on ferrite nanocomposites for magnetic hyperthermia applications, J. Magn. Magn. Mater. 458 (2018) 147-155. https://doi.org/10.1016/j.jmmm.2018.02.052
[139] M. Sadat, R. Patel, J. Sookoor, S.L. Bud’ko, R.C. Ewing, J. Zhang, H. Xu, Y. Wang, G.M. Pauletti, D.B. Mast, Effect of spatial confinement on magnetic hyperthermia via dipolar interactions in Fe3O4 nanoparticles for biomedical applications, Mater. Sci. Eng. C 42 (2014) 52-63. https://doi.org/10.1016/j.msec.2014.04.064
[140] P. Shete, R. Patil, N. Thorat, A. Prasad, R. Ningthoujam, S. Ghosh, S. Pawar, Magnetic chitosan nanocomposite for hyperthermia therapy application: preparation, characterization and in vitro experiments, Appl. Surf. Sci. 288 (2014) 149-157. https://doi.org/10.1016/j.apsusc.2013.09.169
[141] A. Gangwar, S. Varghese, S.S. Meena, C. Prajapat, N. Gupta, N. Prasad, Fe3C nanoparticles for magnetic hyperthermia application, J. Magn. Magn. Mater. 481 (2019) 251-256. https://doi.org/10.1016/j.jmmm.2019.03.028
[142] S.E. Minaei, S. Khoei, S. Khoee, F. Vafashoar, V.P. Mahabadi, In vitro anti-cancer efficacy of multi-functionalized magnetite nanoparticles combining alternating magnetic hyperthermia in glioblastoma cancer cells, Mater. Sci. Eng. C 101 (2019) 575-587. https://doi.org/10.1016/j.msec.2019.04.007
[143] Y. Xia, J. Sun, L. Zhao, F. Zhang, X.-J. Liang, Y. Guo, M.D. Weir, M.A. Reynolds, N. Gu, H.H. Xu, Magnetic field and nano-scaffolds with stem cells to enhance bone regeneration, Biomaterials 183 (2018) 151-170. https://doi.org/10.1016/j.biomaterials.2018.08.040
[144] C. Li, J.P. Armstrong, I.J. Pence, W. Kit-Anan, J.L. Puetzer, S.C. Carreira, A.C. Moore, M.M. Stevens, Glycosylated superparamagnetic nanoparticle gradients for osteochondral tissue engineering, Biomaterials 176 (2018) 24-33. https://doi.org/10.1016/j.biomaterials.2018.05.029
[145] F.D. Cojocaru, V. Balan, M.I. Popa, A. Lobiuc, A. Antoniac, I.V. Antoniac, L. Verestiuc, Biopolymers–Calcium phosphates composites with inclusions of magnetic nanoparticles for bone tissue engineering, Int. J. Biol. Macromol. 125 (2019) 612-620. https://doi.org/10.1016/j.ijbiomac.2018.12.083
[146] Q. Wang, B. Chen, M. Cao, J. Sun, H. Wu, P. Zhao, J. Xing, Y. Yang, X. Zhang, M. Ji, Response of MAPK pathway to iron oxide nanoparticles in vitro treatment promotes osteogenic differentiation of hBMSCs, Biomaterials 86 (2016) 11-20. https://doi.org/10.1016/j.biomaterials.2016.02.004
[147] K. Tschulik, R.G. Compton, Nanoparticle impacts reveal magnetic field induced agglomeration and reduced dissolution rates, PCCP 16 (2014) 13909-13913. https://doi.org/10.1039/C4CP01618A
[148] A.l. Jedlovszky-Hajdú, F.B. Bombelli, M.P. Monopoli, E. Tombácz, K.A. Dawson, Surface coatings shape the protein corona of SPIONs with relevance to their application in vivo, Langmuir 28 (2012) 14983-14991. https://doi.org/10.1021/la302446h
[149] M. Rotherham, J.R. Henstock, O. Qutachi, A.J. El Haj, Remote regulation of magnetic particle targeted Wnt signaling for bone tissue engineering, Nanomed. Nanotechnol. Biol. Med. 14 (2018) 173-184. https://doi.org/10.1016/j.nano.2017.09.008
[150] T. Kim, D. Moore, M. Fussenegger, Genetically programmed superparamagnetic behavior of mammalian cells, J. Biotechnol. 162 (2012) 237-245. https://doi.org/10.1016/j.jbiotec.2012.09.019
[151] A. Treffry, Z. Zhao, M.A. Quail, J.R. Guest, P.M. Harrison, Dinuclear center of ferritin: studies of iron binding and oxidation show differences in the two iron sites, Biochemistry 36 (1997) 432-441. https://doi.org/10.1021/bi961830l
[152] M. Uchida, M.L. Flenniken, M. Allen, D.A. Willits, B.E. Crowley, S. Brumfield, A.F. Willis, L. Jackiw, M. Jutila, M.J. Young, Targeting of cancer cells with ferrimagnetic ferritin cage nanoparticles, J. Am. Chem. Soc. 128 (2006) 16626-16633. https://doi.org/10.1021/ja0655690
[153] A. Ito, R. Teranishi, K. Kamei, M. Yamaguchi, A. Ono, S. Masumoto, Y. Sonoda, M. Horie, Y. Kawabe, M. Kamihira, Magnetically triggered transgene expression in mammalian cells by localized cellular heating of magnetic nanoparticles, J. Biosci. Bioeng. 128(3) (2019) 355-364. https://doi.org/10.1016/j.jbiosc.2019.03.008
[154] F. Xiong, H. Wang, Y. Feng, Y. Li, X. Hua, X. Pang, S. Zhang, L. Song, Y. Zhang, N. Gu, Cardioprotective activity of iron oxide nanoparticles, Sci. Rep. 5 (2015) 8579. https://doi.org/10.1038/srep08579
[155] S.L. Arias, A. Shetty, J. Devorkin, J.-P. Allain, Magnetic targeting of smooth muscle cells in vitro using a magnetic bacterial cellulose to improve cell retention in tissue-engineering vascular grafts, Acta Biomater. 77 (2018) 172-181. https://doi.org/10.1016/j.actbio.2018.07.013
[156] J.E. Bae, M.I. Huh, B.-K. Ryu, J.-Y. Do, S.U. Jin, M.J. Moon, J.C. Jung, Y. Chang, E. Kim, S.G. Chi, The effect of static magnetic fields on the aggregation and cytotoxicity of magnetic nanoparticles, Biomaterials 32 (2011) 9401-9414. https://doi.org/10.1016/j.biomaterials.2011.08.075
[157] G. Katti, S.A. Ara, A. Shireen, Magnetic resonance imaging (MRI)–A review, Int. J. Dental clinics 3 (2011) 65-70.
[158] U.A. van der Heide, M. Frantzen-Steneker, E. Astreinidou, M.E. Nowee, P.J. van Houdt, MRI basics for radiation oncologists, Clinical and Translational Radiation Oncology 18 (2019) 74-79. https://doi.org/10.1016/j.ctro.2019.04.008
[159] B.R. Vahid, M. Haghighi, Biodiesel production from sunflower oil over MgO/MgAl2O4 nanocatalyst: Effect of fuel type on catalyst nanostructure and performance, Energy Convers. Manage. 134 (2017) 290-300. https://doi.org/10.1016/j.enconman.2016.12.048
[160] M. Bautista, O. Bomati-Miguel, X. Zhao, M. Morales, T. Gonzalez-Carreno, R.P. de Alejo, J. Ruiz-Cabello, S. Veintemillas-Verdaguer, Comparative study of ferrofluids based on dextran-coated iron oxide and metal nanoparticles for contrast agents in magnetic resonance imaging, Nanotechnology 15 (2004) S154. https://doi.org/10.1088/0957-4484/15/4/008
[161] D. Zhu, F. Liu, L. Ma, D. Liu, Z. Wang, Nanoparticle-based systems for T1-weighted magnetic resonance imaging contrast agents, International Journal of Molecular Sciences 14 (2013) 10591-10607. https://doi.org/10.3390/ijms140510591
[162] E. Chabanova, V. Logager, J.M. Moller, H. Dekker, J. Barentsz, H.S. Thomsen, Imaging liver metastases with a new oral manganese-based contrast agent, Acad. Radiol. 13 (2006) 827-832. https://doi.org/10.1016/j.acra.2006.03.013
[163] M.L. Belyanin, E.V. Stepanova, R.R. Valiev, V.D. Filimonov, V.Y. Usov, O.Y. Borodin, H. Ågren, Design, synthesis and evaluation of a new Mn–Contrast agent for MR imaging of myocardium based on the DTPA-phenylpentadecanoic acid complex, Chem. Phys. Lett. 665 (2016) 111-116. https://doi.org/10.1016/j.cplett.2016.10.058
[164] S.M. Kim, G.H. Im, D.-G. Lee, J.H. Lee, W.J. Lee, I.S. Lee, Mn2+-doped silica nanoparticles for hepatocyte-targeted detection of liver cancer in T1-weighted MRI, Biomaterials 34 (2013) 8941-8948. https://doi.org/10.1016/j.biomaterials.2013.08.009
[165] J.R. Young, I. Orosz, M. Franke, H. Kim, D. Woodworth, B. Ellingson, N. Salamon, W. Pope, Gadolinium deposition in the paediatric brain: T1-weighted hyperintensity within the dentate nucleus following repeated gadolinium-based contrast agent administration, Clin. Radiol. 73 (2018) 290-295. https://doi.org/10.1016/j.crad.2017.11.005
[166] D.R. Roberts, K.R. Holden, Progressive increase of T1 signal intensity in the dentate nucleus and globus pallidus on unenhanced T1-weighted MR images in the pediatric brain exposed to multiple doses of gadolinium contrast, Brain Dev. 38 (2016) 331-336. https://doi.org/10.1016/j.braindev.2015.08.009
[167] E. Kanal, Gadolinium based contrast agents (GBCA): Safety overview after 3 decades of clinical experience, Magn. Reson. Imaging 34 (2016) 1341-1345. https://doi.org/10.1016/j.mri.2016.08.017
[168] G. Grechnev, A. Logosha, A. Panfilov, I. Zhuravleva, Effects of pressure on magnetic properties of gadolinium, Physica B: Condensed Matter 407 (2012) 4143-4147. https://doi.org/10.1016/j.physb.2012.06.038
[169] B. Want, F. Ahmad, P. Kotru, Magnetic moment measurements of gadolinium, holmium and ytterbium tartrate trihydrate crystals, J. Alloys Compd. 448 (2008) L5-L6. https://doi.org/10.1016/j.jallcom.2007.01.003
[170] T. Kanda, Y. Nakai, H. Oba, K. Toyoda, K. Kitajima, S. Furui, Gadolinium deposition in the brain, Magn. Reson. Imaging 34 (2016) 1346-1350. https://doi.org/10.1016/j.mri.2016.08.024
[171] J. Ramalho, M. Ramalho, M. Jay, L.M. Burke, R.C. Semelka, Gadolinium toxicity and treatment, Magn. Reson. Imaging 34 (2016) 1394-1398. https://doi.org/10.1016/j.mri.2016.09.005
[172] N. Murata, K. Murata, L.F. Gonzalez-Cuyar, K.R. Maravilla, Gadolinium tissue deposition in brain and bone, Magn. Reson. Imaging 34 (2016) 1359-1365. https://doi.org/10.1016/j.mri.2016.08.025
[173] M. Rogosnitzky, S. Branch, Gadolinium-based contrast agent toxicity: a review of known and proposed mechanisms, BioMetals 29 (2016) 365-376. https://doi.org/10.1007/s10534-016-9931-7
[174] T. Grobner, F. Prischl, Gadolinium and nephrogenic systemic fibrosis, Kidney Int. 72 (2007) 260-264. https://doi.org/10.1007/s10534-016-9931-7
[175] L.M. Canzoniero, M. Taglialatela, G. Di Renzo, L. Annunziato, Gadolinium and neomycin block voltage-sensitive Ca2+ channels without interfering with the Na+ Ca2+ antiporter in brain nerve endings, European Journal of Pharmacology: Molecular Pharmacology 245 (1993) 97-103. https://doi.org/10.1016/0922-4106(93)90116-Q
[176] A. Lacampagne, F. Gannier, J. Argibay, D. Garnier, J.-Y. Le Guennec, The stretch-activated ion channel blocker gadolinium also blocks L-type calcium channels in isolated ventricular myocytes of the guinea-pig, Biochimica et Biophysica Acta (BBA)-Biomembranes 1191 (1994) 205-208. https://doi.org/10.1016/0005-2736(94)90250-X
[177] T. Kimitsuki, T. Nakagawa, K. Hisashi, S. Komune, S. Komiyama, Gadolinium blocks mechano-electric transducer current in chick cochlear hair cells, Hearing Res. 101 (1996) 75-80. https://doi.org/10.1016/S0378-5955(96)00134-7
[178] L.M. Boland, T.A. Brown, R. Dingledine, Gadolinium block of calcium channels: influence of bicarbonate, Brain Res. 563 (1991) 142-150. https://doi.org/10.1016/0006-8993(91)91527-8
[179] F. Knoepp, J. Bettmer, M. Fronius, Gadolinium released by the linear gadolinium-based contrast-agent Gd-DTPA decreases the activity of human epithelial Na+ channels (ENaCs), Biochimica et Biophysica Acta (BBA)-Biomembranes 1859 (2017) 1040-1048. https://doi.org/10.1016/j.bbamem.2017.02.019
[180] J. Zhao, Z.Q. Zhou, J.C. Jin, L. Yuan, H. He, F.L. Jiang, X.G. Yang, J. Dai, Y. Liu, Mitochondrial dysfunction induced by different concentrations of gadolinium ion, Chemosphere 100 (2014) 194-199. https://doi.org/10.1016/j.chemosphere.2013.11.031
[181] R. Weissleder, M. Nahrendorf, M.J. Pittet, Imaging macrophages with nanoparticles, Nature materials 13 (2014) 125-138. https://doi.org/10.1038/nmat3780
[182] R. Jin, B. Lin, D. Li, H. Ai, Superparamagnetic iron oxide nanoparticles for MR imaging and therapy: design considerations and clinical applications, Curr. Opin. Pharmacol. 18 (2014) 18-27. https://doi.org/10.1016/j.coph.2014.08.002
[183] B. Bahrami, M. Hojjat-Farsangi, H. Mohammadi, E. Anvari, G. Ghalamfarsa, M. Yousefi, F. Jadidi-Niaragh, Nanoparticles and targeted drug delivery in cancer therapy, Immunol. Lett. 190 (2017) 64-83. https://doi.org/10.1016/j.imlet.2017.07.015
[184] D. Hao, T. Ai, F. Goerner, X. Hu, V.M. Runge, M. Tweedle, MRI contrast agents: basic chemistry and safety, J. Magn. Reson. Imaging 36 (2012) 1060-1071. https://doi.org/10.1002/jmri.23725
[185] Z. Zhou, M. Qutaish, Z. Han, R.M. Schur, Y. Liu, D.L. Wilson, Z.-R. Lu, MRI detection of breast cancer micrometastases with a fibronectin-targeting contrast agent, Nature communications 6 (2015) 7984. https://doi.org/10.1038/ncomms8984
[186] C.Y. Yeh, J.K. Hsiao, Y.P. Wang, C.H. Lan, H.C. Wu, Peptide-conjugated nanoparticles for targeted imaging and therapy of prostate cancer, Biomaterials 99 (2016) 1-15. https://doi.org/10.1016/j.biomaterials.2016.05.015
[187] D.A. Richards, A. Maruani, V. Chudasama, Antibody fragments as nanoparticle targeting ligands: a step in the right direction, Chemical science 8 (2017) 63-77. https://doi.org/10.1039/C6SC02403C
[188] R.M. Patil, N.D. Thorat, P.B. Shete, P.A. Bedge, S. Gavde, M.G. Joshi, S.A. Tofail, R.A. Bohara, Comprehensive cytotoxicity studies of superparamagnetic iron oxide nanoparticles, Biochemistry and Biophysics Reports 13 (2018) 63-72. https://doi.org/10.1016/j.bbrep.2017.12.002
[189] C. Briguori, D. Tavano, A. Colombo, Contrast agent-associated nephrotoxicity, Prog. Cardiovasc. Dis. 45 (2003) 493-503. https://doi.org/10.1053/pcad.2003.YPCAD16
[190] J. Ramalho, R. Semelka, M. Ramalho, R. Nunes, M. AlObaidy, M. Castillo, Gadolinium-based contrast agent accumulation and toxicity: An update, Am. J. Neuroradiol. 37 (2016) 1192-1198. https://doi.org/10.3174/ajnr.A4615
[191] D.-E. Lee, H. Koo, I.-C. Sun, J.H. Ryu, K. Kim, I.C. Kwon, Multifunctional nanoparticles for multimodal imaging and theragnosis, Chem. Soc. Rev. 41 (2012) 2656-2672. https://doi.org/10.1039/C2CS15261D
[192] C. Janko, T. Ratschker, K. Nguyen, L. Zschiesche, R. Tietze, S. Lyer, C. Alexiou, Functionalized superparamagnetic iron oxide nanoparticles (SPIONs) as platform for the targeted multimodal tumor therapy, Front. Oncol. 9 (2019). https://doi.org/10.3389/fonc.2019.00059
[193] Y.-X.J. Wang, Current status of superparamagnetic iron oxide contrast agents for liver magnetic resonance imaging, World J. Gastroenterol. 21 (2015) 13400-13402. https://doi.org/10.3748/wjg.v21.i47.13400
[194] D.G. You, G. Saravanakumar, S. Son, H.S. Han, R. Heo, K. Kim, I.C. Kwon, J.Y. Lee, J.H. Park, Dextran sulfate-coated superparamagnetic iron oxide nanoparticles as a contrast agent for atherosclerosis imaging, Carbohydr. Polym. 101 (2014) 1225-1233. https://doi.org/10.1016/j.carbpol.2013.10.068
[195] H. Jung, B. Park, C. Lee, J. Cho, J. Suh, J. Park, Y. Kim, J. Kim, G. Cho, H. Cho, Dual MRI T1 and T2(*) contrast with size-controlled iron oxide nanoparticles, Nanomed. Nanotechnol. Biol. Med. 10 (2014) 1679-1689. https://doi.org/10.1016/j.nano.2014.05.003
[196] N. Xiao, W. Gu, H. Wang, Y. Deng, X. Shi, L. Ye, T1–T2 dual-modal MRI of brain gliomas using PEGylated Gd-doped iron oxide nanoparticles, J. Colloid Interface Sci. 417 (2014) 159-165. https://doi.org/10.1016/j.jcis.2013.11.020
[197] G.H. Im, S.M. Kim, D.G. Lee, W.J. Lee, J.H. Lee, I.S. Lee, Fe3O4/MnO hybrid nanocrystals as a dual contrast agent for both T1-and T2-weighted liver MRI, Biomaterials 34 (2013) 2069-2076. https://doi.org/10.1016/j.biomaterials.2012.11.054
[198] H. Yang, Y. Zhuang, Y. Sun, A. Dai, X. Shi, D. Wu, F. Li, H. Hu, S. Yang, Targeted dual-contrast T1-and T2-weighted magnetic resonance imaging of tumors using multifunctional gadolinium-labeled superparamagnetic iron oxide nanoparticles, Biomaterials 32 (2011) 4584-4593. https://doi.org/10.1016/j.biomaterials.2011.03.018
[199] A. Alipour, Z. Soran-Erdem, M. Utkur, V.K. Sharma, O. Algin, E.U. Saritas, H.V. Demir, A new class of cubic SPIONs as a dual-mode T1 and T2 contrast agent for MRI, Magn. Reson. Imaging 49 (2018) 16-24. https://doi.org/10.1016/j.mri.2017.09.013
[200] A. Alalaiwe, The clinical pharmacokinetics impact of medical nanometals on drug delivery system, Nanomed. Nanotechnol. Biol. Med. 17 (2019) 47-61. https://doi.org/10.1016/j.nano.2019.01.004
[201] L.Z. Benet, D. Kroetz, L. Sheiner, J. Hardman, L. Limbird, Pharmacokinetics: the dynamics of drug absorption, distribution, metabolism, and elimination, Goodman and Gilman’s the pharmacological basis of therapeutics (1996) 3-27.
[202] S. Chillistone, J.G. Hardman, Modes of drug elimination and bioactive metabolites, Anaesthesia & Intensive Care Medicine 18 (2017) 458-461. https://doi.org/10.1016/j.mpaic.2017.06.005
[203] B.J. Pleuvry, Modes of drug elimination, Anaesthesia & Intensive Care Medicine 6 (2005) 277-279. https://doi.org/10.1383/anes.2005.6.8.277
[204] C.-Y. Wu, Y.-C. Chen, Riboflavin immobilized Fe3O4 magnetic nanoparticles carried with n-butylidenephthalide as targeting-based anticancer agents, Artifi. cells Nanomedicine Biotechnol. 47 (2019) 210-220. https://doi.org/10.1080/21691401.2018.1548473
[205] J.C. Chen, L.M. Li, J.Q. Gao, Biomaterials for local drug delivery in central nervous system, Int. J. Pharm. 560 (2019) 92-100. https://doi.org/10.1016/j.ijpharm.2019.01.071
[206] J.Y. Yoon, K.J. Yang, K.Y. Lee, S.N. Park, D.K. Kim, J.D. Kim, Intratympanic delivery of oligoarginine-conjugated nanoparticles as a gene (or drug) carrier to the inner ear, Biomaterials 73 (2015) 243-253. https://doi.org/10.1016/j.biomaterials.2015.09.025
[207] D. Dheer, J. Nicolas, R. Shankar, Cathepsin-sensitive nanoscale drug delivery systems for cancer therapy and other diseases, Adv. Drug Del. Rev. 151-152 (2019) 130-151. https://doi.org/10.1016/j.addr.2019.01.010
[208] Z. Karami, S. Sadighian, K. Rostamizadeh, S.H. Hosseini, S. Rezaee, M. Hamidi, Magnetic brain targeting of naproxen-loaded polymeric micelles: pharmacokinetics and biodistribution study, Mater. Sci. Eng. C 100 (2019) 771-780. https://doi.org/10.1016/j.msec.2019.03.004
[209] N. Mauro, C. Scialabba, R. Puleio, P. Varvarà, M. Licciardi, G. Cavallaro, G. Giammona, SPIONs embedded in polyamino acid nanogels to synergistically treat tumor microenvironment and breast cancer cells, Int. J. Pharm. 555 (2019) 207-219. https://doi.org/10.1016/j.ijpharm.2018.11.046
[210] K. Min, H. Jo, K. Song, M. Cho, Y.-S. Chun, S. Jon, W.J. Kim, C. Ban, Dual-aptamer-based delivery vehicle of doxorubicin to both PSMA (+) and PSMA (−) prostate cancers, Biomaterials 32 (2011) 2124-2132. https://doi.org/10.1016/j.biomaterials.2010.11.035
[211] M. Wang, W. Liu, Y. Zhang, M. Dang, Y. Zhang, J. Tao, K. Chen, X. Peng, Z. Teng, Intercellular adhesion molecule 1 antibody-mediated mesoporous drug delivery system for targeted treatment of triple-negative breast cancer, J. Colloid Interface Sci. 538 (2019) 630-637. https://doi.org/10.1016/j.jcis.2018.12.032
[212] Y. Krishnan, H.A. Rees, C.P. Rossitto, S.-E. Kim, H.-H.K. Hung, E.H. Frank, B.D. Olsen, D.R. Liu, P.T. Hammond, A.J. Grodzinsky, Green fluorescent proteins engineered for cartilage-targeted drug delivery: Insights for transport into highly charged avascular tissues, Biomaterials 183 (2018) 218-233. https://doi.org/10.1016/j.biomaterials.2018.08.050
[213] M. Licciardi, C. Scialabba, R. Puleio, G. Cassata, L. Cicero, G. Cavallaro, G. Giammona, Smart copolymer coated SPIONs for colon cancer chemotherapy, Int. J. Pharm. 556 (2019) 57-67. https://doi.org/10.1016/j.ijpharm.2018.11.069
[214] S. Mohapatra, M. Asfer, M. Anwar, S. Ahmed, F.J. Ahmad, A.A. Siddiqui, Carboxymethyl Assam Bora rice starch coated SPIONs: Synthesis, characterization and in vitro localization in a micro capillary for simulating a targeted drug delivery system, Int. J. Biol. Macromol. 115 (2018) 920-932. https://doi.org/10.1016/j.ijbiomac.2018.04.152
[215] T.N. Britos, C.E. Castro, B.M. Bertassoli, G. Petri, F.L. Fonseca, F.F. Ferreira, P.S. Haddad, In vivo evaluation of thiol-functionalized superparamagnetic iron oxide nanoparticles, Mater. Sci. Eng. C 99 (2019) 171-179. https://doi.org/10.1016/j.msec.2019.01.118
[216] H. Jeon, J. Kim, Y.M. Lee, J. Kim, H.W. Choi, J. Lee, H. Park, Y. Kang, I.-S. Kim, B.-H. Lee, Poly-paclitaxel/cyclodextrin-SPION nano-assembly for magnetically guided drug delivery system, J. Controlled Release 231 (2016) 68-76. https://doi.org/10.1016/j.jconrel.2016.01.006