Magnetic Nanomaterials for Hydrogen Storage

$28.50

Magnetic Nanomaterials for Hydrogen Storage

Ertuğrul Kaya, Haydar Göksu, Husnu Gerengi, Kubilay Arikan, Mohd Imran Ahamed, Fatih Şen

Nowadays, technological developments have increased with the help of magnetic materials in many fields. These materials are mostly preferred in areas such as magnetic cooling and storage as well as environmental improvements. It has also become preferable in the field of magnetic detection and in the use of medical care properties of magnetic nanoparticles. It is also preferred in areas including magnetic resonance imaging (MRI) and drug delivery systems (DDS). In the use of magnetic nanomaterials, magnetic properties, size, surface properties, synthesis methods should be paid attention. The magnetic properties of nanomaterials on the nanoscale depend on the particle size of the material used. Materials having particle size below a critical value lead to forming monodisperse particles. Many studies have been done on the production of magnetic nanomaterials. Most of these applications are based on the efficiency of particle moment and field distortion and change in the relevant variables. Nanomaterials are preferred due to their properties such as mass absorption and surface adsorption, which have recently become important in hydrogen storage. They also act by regulating the diffusion rate in hydrogen decomposition and absorption. Magnetic nanomaterials have high adsorption capacity due to atomic groups on the ligand surface. This shows that it can be used in energy transformation and storage. In this section, the latest studies on the hydrogen storage capacity of magnetic nanomaterials are conveyed and provide an essential point of view in hydrogen storage.

Keywords
Hydrogen Storage, Magnetic Nanomaterials, Hydrogen Energy

Published online 1/30/2020, 23 pages

Citation: Ertuğrul Kaya, Haydar Göksu, Husnu Gerengi, Kubilay Arikan, Mohd Imran Ahamed, Fatih Şen, Magnetic Nanomaterials for Hydrogen Storage, Materials Research Proceedings, Vol. 66, pp 236-258, 2020

DOI: https://doi.org/10.21741/9781644900611-7

Part of the book on Magnetochemistry

References
[1] T.F. Massoud, S.S. Gambhir, Molecular imaging in living subjects: Seeing fundamental biological processes in a new light., Genes Dev. 17 (2003) 545–580. https://doi.org/10.1101/gad.1047403.
[2] H. Bin Na, I.C. Song, T. Hyeon, Inorganic Nanoparticles for MRI Contrast Agents, Adv. Mater. 21 (2009) 2133–2148. https://doi.org/10.1002/adma.200802366.
[3] Z. Yang, T. Zhao, X. Huang, X. Chu, T. Tang, Y. Ju, Q. Wang, Y. Hou, S. Gao, Modulating the phases of iron carbide nanoparticles: from a perspective of interfering with the carbon penetration of Fe@Fe3O4 by selectively adsorbed halide ions, Chem. Sci. 8 (2017) 473–481. https://doi.org/10.1039/C6SC01819J.
[4] S. Chandra, M.D. Patel, H. Lang, D. Bahadur, Dendrimer-functionalized magnetic nanoparticles: A new electrode material for electrochemical energy storage devices, J. Power Sources 280 (2015) 217–226. https://doi.org/10.1016/J.JPOWSOUR.2015.01.075.
[5] N. Tran, T.J. Webster, Magnetic nanoparticles: biomedical applications and challenges, J. Mater. Chem. 20 (2010) 8760. https://doi.org/10.1039/c0jm00994f.
[6] S. He, L. Zhong, J. Duan, Y. Feng, B. Yang, L. Yang, Bioremediation of Wastewater by Iron Oxide-Biochar Nanocomposites Loaded with Photosynthetic Bacteria, Front. Microbiol. 8 (2017) 823. https://doi.org/10.3389/fmicb.2017.00823.
[7] K. Zhu, Y. Ju, J. Xu, Z. Yang, S. Gao, Y. Hou, Magnetic nanomaterials: Chemical design, synthesis, and potential applications, Acc. Chem. Res. 51 (2018) 404–413. https://doi.org/10.1021/acs.accounts.7b00407.
[8] K. Saikia, K. Bhattacharya, D. Sen, S.D. Kaushik, J. Biswas, S. Lodha, B. Gogoi, A.K. Buragohain, W. Kockenberger, P. Deb, Solvent evaporation driven entrapment of magnetic nanoparticles in mesoporous frame for designing a highly efficient MRI contrast probe, Appl. Surf. Sci. 464 (2019) 567–576. https://doi.org/10.1016/J.APSUSC.2018.09.117.
[9] Y. Zhu, H. Da, X. Yang, Y. Hu, Preparation and characterization of core-shell monodispersed magnetic silica microspheres, Colloids Surfaces A Physicochem. Eng. Asp. 231 (2003) 123–129. https://doi.org/10.1016/J.COLSURFA.2003.08.020.
[10] S.V. Gopal, R. Mini, V.B. Jothy, I.H. Joe, Synthesis and Characterization of Iron Oxide Nanoparticles using DMSO as a Stabilizer, Mater. Today Proc. 2 (2015) 1051–1055. https://doi.org/10.1016/J.MATPR.2015.06.036.
[11] M. Takafuji, S. Ide, H. Ihara, Z. Xu, Preparation of Poly(1-vinylimidazole)-Grafted Magnetic Nanoparticles and Their Application for Removal of Metal Ions, Chem. Mater. 16 (2004) 1977–1983. https://doi.org/10.1021/cm030334y.
[12] Y. Hwang, J.-S. Park, Y.J. Choi, Y.J. Suh, H.-S. Lee, D.S. Kang, J.K. Lee, Prevention of Coalescence During Annealing of FePt Nanoparticles Assembled by Convective Coating, J. Nanosci. Nanotechnol. 10 (2010) 3516–3520. https://doi.org/10.1166/jnn.2010.2285.
[13] R. Kumar, Magnetocaloric Effect in Cryocooler Regenerator Materials and its Applications, Mater. Today Proc. 4 (2017) 5544–5551. https://doi.org/10.1016/J.MATPR.2017.06.011.
[14] Y. Ao, J. Xu, X. Shen, D. Fu, C. Yuan, Magnetically separable composite photocatalyst with enhanced photocatalytic activity, J. Hazard. Mater. 160 (2008) 295–300. https://doi.org/10.1016/J.JHAZMAT.2008.02.114.
[15] J. Ge, T. Huynh, Y. Hu, Y. Yin, Hierarchical magnetite/silica nanoassemblies as magnetically recoverable catalyst–supports, Nano Lett. 8 (2008) 931–934. https://doi.org/10.1021/nl080020f.
[16] Y. Li, X. Zhao, Q. Xu, Q. Zhang, D. Chen, Facile preparation and enhanced capacitance of the polyaniline/sodium alginate nanofiber network for supercapacitors, Langmuir. 27 (2011) 6458–6463. https://doi.org/10.1021/la2003063.
[17] M. Mikhaylova, D.K. Kim, N. Bobrysheva, M. Osmolowsky, V. Semenov, T. Tsakalakos, M. Muhammed, Superparamagnetism of magnetite nanoparticles: dependence on surface modification, Langmuir. 20 (2004) 2472–2477. https://doi.org/10.1021/la035648e.
[18] L. Wu, A. Mendoza-Garcia, Q. Li, S. Sun, Organic phase syntheses of magnetic nanoparticles and their applications, Chem. Rev. 116 (2016) 10473–10512. https://doi.org/10.1021/acs.chemrev.5b00687.
[19] L. Mohammed, H.G. Gomaa, D. Ragab, J. Zhu, Magnetic nanoparticles for environmental and biomedical applications: A review, Particuology. 30 (2017) 1–14. https://doi.org/10.1016/j.partic.2016.06.001.
[20] A.K. Andriola Silva, R. Di Corato, F. Gazeau, T. Pellegrino, C. Wilhelm, Magnetophoresis at the nanoscale: tracking the magnetic targeting efficiency of nanovectors, Nanomedicine. 7 (2012) 1713–1727. https://doi.org/10.2217/nnm.12.40.
[21] A.S. Teja, P.Y. Koh, Synthesis, properties, and applications of magnetic iron oxide nanoparticles, Prog. Cryst. Growth Charact. Mater. 55 (2009) 22–45. https://doi.org/10.1016/J.PCRYSGROW.2008.08.003.
[22] M. Getzlaff, Solid State Magnetism, in: Fundam. Magn., Springer Berlin Heidelberg, Berlin, Heidelberg, 2008: pp. 25–39. https://doi.org/10.1007/978-3-540-31152-2_3.
[23] M.D. Simon, A.K. Geim, Diamagnetic levitation: Flying frogs and floating magnets (invited), J. Appl. Phys. 87 (2000) 6200–6204. https://doi.org/10.1063/1.372654.
[24] J.-H. Lee, J. Jang, J. Choi, S.H. Moon, S. Noh, J. Kim, J.-G. Kim, I.-S. Kim, K.I. Park, J. Cheon, Exchange-coupled magnetic nanoparticles for efficient heat induction, Nat. Nanotechnol. 6 (2011) 418–422. https://doi.org/10.1038/nnano.2011.95.
[25] S. Sun, H. Zeng, Size-Controlled synthesis of magnetite nanoparticles, J. Am. Chem. Soc. 124 (2002) 8204–8205. https://doi.org/10.1021/ja026501x.
[26] D. Ho, X. Sun, S. Sun, Monodisperse magnetic nanoparticles for theranostic applications, Acc. Chem. Res. 44 (2011) 875–882. https://doi.org/10.1021/ar200090c.
[27] K. Ulbrich, K. Holá, V. Šubr, A. Bakandritsos, J. Tuček, R. Zbořil, Targeted drug delivery with polymers and magnetic Nanoparticles: Covalent and noncovalent approaches, release control, and clinical studies, Chem. Rev. 116 (2016) 5338–5431. https://doi.org/10.1021/acs.chemrev.5b00589.
[28] R. Tietze, S. Lyer, S. Dürr, T. Struffert, T. Engelhorn, M. Schwarz, E. Eckert, T. Göen, S. Vasylyev, W. Peukert, F. Wiekhorst, L. Trahms, A. Dörfler, C. Alexiou, Efficient drug-delivery using magnetic nanoparticles — biodistribution and therapeutic effects in tumour bearing rabbits, Nanomedicine Nanotechnology, Biol. Med. 9 (2013) 961–971. https://doi.org/10.1016/J.NANO.2013.05.001.
[29] S. Majidi, F. Zeinali Sehrig, S.M. Farkhani, M. Soleymani Goloujeh, A. Akbarzadeh, Current methods for synthesis of magnetic nanoparticles, Artif. Cells, Nanomedicine, Biotechnol. 44 (2016) 722–734. https://doi.org/10.3109/21691401.2014.982802.
[30] M. Timko, A. Dzarova, J. Kovac, A. Skumiel, A. Józefczak, T. Hornowski, H. Gojżewski, V. Zavisova, M. Koneracka, A. Sprincova, O. Strbak, P. Kopcansky, N. Tomasovicova, Magnetic properties and heating effect in bacterial magnetic nanoparticles, J. Magn. Magn. Mater. 321 (2009) 1521–1524. https://doi.org/10.1016/J.JMMM.2009.02.077.
[31] J. Baumgartner, L. Bertinetti, M. Widdrat, A.M. Hirt, D. Faivre, Formation of Magnetite nanoparticles at low temperature: From superparamagnetic to stable single domain particles, PLoS One. 8 (2013) e57070. https://doi.org/10.1371/journal.pone.0057070.
[32] D. Faivre, D. Schüler, Magnetotactic bacteria and magnetosomes, Chem. Rev. 108 (2008) 4875–4898. https://doi.org/10.1021/cr078258w.
[33] A. Aseri, G.S. Kumar, N. Anjali, S.K. Trivedi, A. Jawed, Magnetic nanoparticles: Magnetic nano-technology using biomedical applications and future prospects, Int. J. Pharm. Sci. Rev. Res. 31 (2015) 119–131.
[34] Z. Hedayatnasab, F. Abnisa, W.M.A.W. Daud, Review on magnetic nanoparticles for magnetic nanofluid hyperthermia application, Mater. Design 123 (2017) 174-196. https://doi.org/10.1016/j.matdes.2017.03.036.
[35] G. Leteba, C. Lang, G.M. Leteba, C.I. Lang, Synthesis of bimetallic platinum nanoparticles for biosensors, Sensors. 13 (2013) 10358–10369. https://doi.org/10.3390/s130810358.
[36] I. Astefanoaei, A. Stancu, H. Chiriac, Magnetic hyperthermia with Fe – Cr- Nb – B magnetic particles, in: AIP Conf. Proc., AIP Publishing LLC , 2017: p. 040006. https://doi.org/10.1063/1.4972384.
[37] J. Jakobi, S. Petersen, A. Menéndez-Manjón, P. Wagener, S. Barcikowski, Magnetic alloy nanoparticles from laser ablation in cyclopentanone and their embedding into a photoresist, Langmuir. 26 (2010) 6892–6897. https://doi.org/10.1021/la101014g.
[38] I. Robinson, S. Zacchini, L.D. Tung, S. Maenosono, N.T.K. Thanh, Synthesis and characterization of magnetic nanoalloys from bimetallic carbonyl clusters, Chem. Mater. 21 (2009) 3021–3026. https://doi.org/10.1021/cm9008442.
[39] Q. Zhou, Y. Wang, J. Xiao, H. Fan, C. Chen, Preparation and characterization of magnetic nanomaterial and its application for removal of polycyclic aromatic hydrocarbons, J. Hazard. Mater. 371 (2019) 323–331. https://doi.org/10.1016/J.JHAZMAT.2019.03.027.
[40] J. Wang, S. Zheng, Y. Shao, J. Liu, Z. Xu, D. Zhu, Amino-functionalized Fe3O4@SiO2 core–shell magnetic nanomaterial as a novel adsorbent for aqueous heavy metals removal, J. Colloid Interface Sci. 349 (2010) 293–299. https://doi.org/10.1016/J.JCIS.2010.05.010.
[41] S. Su, B. Chen, M. He, B. Hu, Z. Xiao, Determination of trace/ultratrace rare earth elements in environmental samples by ICP-MS after magnetic solid phase extraction with Fe3O4@SiO2@polyaniline–graphene oxide composite, Talanta 119 (2014) 458–466. https://doi.org/10.1016/J.TALANTA.2013.11.027.
[42] R.M. Cornell, U. Schwertmann, The iron oxides : structure, properties, reactions, occurrences, and uses, Wiley-VCH, 2003.
M. Tamaddon, S. Javadpour, I.J. Bruce, PEG conjugated citrate-capped magnetite nanoparticles for biomedical applications, J. Magn. Magn. Mater. 328 (2013) 91–95. https://doi.org/10.1016/J.JMMM.2012.09.042.
[44] S. Sundar, R. Mariappan, S. Piraman, Synthesis and characterization of amine modified magnetite nanoparticles as carriers of curcumin-anticancer drug, Powder Technol. 266 (2014) 321–328. https://doi.org/10.1016/J.POWTEC.2014.06.033.
[45] S. Zhang, X. Liu, L. Zhou, W. Peng, Magnetite nanostructures: One-pot synthesis, superparamagnetic property and application in magnetic resonance imaging, Mater. Lett. 68 (2012) 243–246. https://doi.org/10.1016/J.MATLET.2011.10.070.
[46] M.R. Shishehbore, A. Afkhami, H. Bagheri, Salicylic acid functionalized silica-coated magnetite nanoparticles for solid phase extraction and preconcentration of some heavy metal ions from various real samples, Chem. Cent. J. 5 (2011) 41. https://doi.org/10.1186/1752-153X-5-41.
[47] E. Kang, J. Park, Y. Hwang, M. Kang, J.G. Park, T. Hyeon, Direct synthesis of highly crystalline and monodisperse manganese ferrite nanocrystals, J. Phys. Chem. B. 108 (2004) 13932–13935. https://doi.org/10.1021/jp049041y.
[48] J. Jang, H. Nah, J.-H. Lee, S.H. Moon, M.G. Kim, J. Cheon, Critical enhancements of mrı contrast and hyperthermic effects by dopant-controlled magnetic nanoparticles, Angew. Chem. Int. Ed. 121 (2009) 1260–1264. https://doi.org/10.1002/ange.200805149.
[49] R. Ali, A. Mahmood, M.A. Khan, A.H. Chughtai, M. Shahid, I. Shakir, M.F. Warsi, Impacts of Ni–Co substitution on the structural, magnetic and dielectric properties of magnesium nano-ferrites fabricated by micro-emulsion method, J. Alloys Compd. 584 (2014) 363–368. https://doi.org/10.1016/J.JALLCOM.2013.08.114.
[50] N. Kang, D. Xu, Y. Han, X. Lv, Z. Chen, T. Zhou, L. Ren, X. Zhou, Magnetic targeting core/shell Fe3O4/Au nanoparticles for magnetic resonance/photoacoustic dual-modal imaging, Mater. Sci. Eng. C. 98 (2019) 545–549. https://doi.org/10.1016/J.MSEC.2019.01.013.
[51] N.T. Lan, N.P. Duong, T.D. Hien, Influences of cobalt substitution and size effects on magnetic properties of coprecipitated Co–Fe ferrite nanoparticles, J. Alloys Compd. 509 (2011) 5919–5925. https://doi.org/10.1016/J.JALLCOM.2011.03.050.
[52] R. S., P. M., Multi-functional core-shell Fe3O4@Au nanoparticles for cancer diagnosis and therapy, Colloids Surf. B Biointerf. 174 (2019) 252–259. https://doi.org/10.1016/J.COLSURFB.2018.11.004.
[53] D. Alcantara, S. Lopez, M.L. García-Martin, D. Pozo, Iron oxide nanoparticles as magnetic relaxation switching (MRSw) sensors: Current applications in nanomedicine, Nanomedicine Nanotechnology, Biol. Med. 12 (2016) 1253–1262. https://doi.org/10.1016/J.NANO.2016.01.005.
[54] F. Yan, R. Sun, Facile synthesis of bifunctional Fe3O4/Au nanocomposite and their application in catalytic reduction of 4-nitrophenol, Mater. Res. Bull. 57 (2014) 293–299. https://doi.org/10.1016/J.MATERRESBULL.2014.06.012.
[55] Z. Beji, M. Sun, L.S. Smiri, F. Herbst, C. Mangeney, S. Ammar, Polyol synthesis of non-stoichiometric Mn–Zn ferrite nanocrystals: structural /microstructural characterization and catalytic application, RSC Adv. 5 (2015) 65010–65022. https://doi.org/10.1039/C5RA07562A.
[56] L. Zhang, X. Zhu, H. Sun, G. Chi, J. Xu, Y. Sun, Control synthesis of magnetic Fe3O4–chitosan nanoparticles under UV irradiation in aqueous system, Curr. Appl. Phys. 10 (2010) 828–833. https://doi.org/10.1016/J.CAP.2009.10.002.
[57] L. Qian, J. Peng, Z. Xiang, Y. Pan, W. Lu, Effect of annealing on magnetic properties of Fe/Fe3O4 soft magnetic composites prepared by in-situ oxidation and hydrogen reduction methods, J. Alloys Compd. 778 (2019) 712–720. https://doi.org/10.1016/J.JALLCOM.2018.11.184.
[58] S. Wodarz, T. Hasegawa, S. Ishio, T. Homma, Structural control of ultra-fine CoPt nanodot arrays via electrodeposition process, J. Magn. Magn. Mater. 430 (2017) 52–58. https://doi.org/10.1016/J.JMMM.2017.01.061.
[59] V.V. Pham, V.-T. Ta, C. Sunglae, Synthesis of NiPt alloy nanoparticles by galvanic replacement method for direct ethanol fuel cell, Int. J. Hydrogen Energy. 42 (2017) 13192–13197. https://doi.org/10.1016/J.IJHYDENE.2017.01.236.
[60] Z. Meng, Z. Wei, K. Fu, L. Lv, Z.-Q. Yu, W.-Y. Wong, Amphiphilic bimetallic polymer as single-source precursors for the one-pot synthesis of L10-phase FePt nanoparticles, J. Organomet. Chem. 892 (2019) 83–88. https://doi.org/10.1016/J.JORGANCHEM.2019.04.015.
[61] M.M. Goswami, A. Das, D. De, Wetchemical synthesis of FePt nanoparticles: Tuning of magnetic properties and biofunctionalization for hyperthermia therapy, J. Magn. Magn. Mater. 475 (2019) 93–97. https://doi.org/10.1016/J.JMMM.2018.11.024.
[62] S. Srivastava, N.S. Gajbhiye, Exchange coupled L10-FePt/fcc-FePt nanomagnets: Synthesis, characterization and magnetic properties, J. Magn. Magn. Mater. 401 (2016) 969–976. https://doi.org/10.1016/J.JMMM.2015.10.064.
[63] Y. Shi, M. Lin, X. Jiang, S. Liang, Recent advances in FePt Nanoparticles for biomedicine, J. Nanomater. 2015 (2015) 1–13. https://doi.org/10.1155/2015/467873.
[64] S. Sun, C.B. Murray, D. Weller, L. Folks, A. Moser, Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices, Science 287 (2000) 1989–92. https://doi.org/10.1126/science.287.5460.1989.
[65] W. Ge, W. Gao, J. Zhu, Y. Li, In situ synthesis of Hägg iron carbide (Fe5C2) nanoparticles with a high coercivity and saturation magnetization, J. Alloys Compd. 781 (2019) 1069–1073. https://doi.org/10.1016/J.JALLCOM.2018.12.154.
[66] A. Schneider, G. Inden, Carbon diffusion in cementite (Fe3C) and Hägg carbide (Fe5C2), Calphad 31 (2007) 141–147. https://doi.org/10.1016/J.CALPHAD.2006.07.008.
[67] C.M. Fang, M.A. van Huis, H.W. Zandbergen, Structure and stability of Fe2C phases from density-functional theory calculations, Scr. Mater. 63 (2010) 418–421. https://doi.org/10.1016/J.SCRIPTAMAT.2010.04.042.
[68] S. Li, P. Ren, C. Yang, X. Liu, Z. Yin, W. Li, H. Yang, J. Li, X. Wang, Y. Wang, R. Cao, L. Lin, S. Yao, X. Wen, D. Ma, Fe5C2 nanoparticles as low-cost HER electrocatalyst: the importance of Co substitution, Sci. Bull. 63 (2018) 1358–1363. https://doi.org/10.1016/J.SCIB.2018.09.016.
[69] J.M. Silveyra, E. Ferrara, D.L. Huber, T.C. Monson, Soft magnetic materials for a sustainable and electrified world., Science 362 (2018) eaao0195. https://doi.org/10.1126/science.aao0195.
[70] A.M. Leary, P.R. Ohodnicki, M.E. McHenry, Soft magnetic materials in high-frequency, high-power conversion applications, JOM: J. Minerals Metals Mater. Soc. 64 (2012) 772–781. https://doi.org/10.1007/s11837-012-0350-0.
[71] Q. Zhang, W. Zhang, K. Peng, In-situ synthesis and magnetic properties of core-shell structured Fe/Fe3O4 composites, J. Magn. Magn. Mater. 484 (2019) 418–423. https://doi.org/10.1016/J.JMMM.2019.04.053.
[72] Y. Lee, M.A. Garcia, N.A. Frey Huls, S. Sun, Synthetic tuning of the catalytic properties of Au-Fe3O4 nanoparticles, Angew. Chem. Int. Ed. 49 (2010) 1271–1274. https://doi.org/10.1002/anie.200906130.
[73] Q. Wei, Z. Xiang, J. He, G. Wang, H. Li, Z. Qian, M. Yang, Dumbbell-like Au-Fe3O4 nanoparticles as label for the preparation of electrochemical immunosensors, Biosens. Bioelectron. 26 (2010) 627–631. https://doi.org/10.1016/J.BIOS.2010.07.012.
[74] M. Kaur, K. Pal, Review on hydrogen storage materials and methods from an electrochemical viewpoint, J. Energy Storage 23 (2019) 234–249. https://doi.org/10.1016/J.EST.2019.03.020.
[75] T. Zhao, X. Li, H. Yan, Metal catalyzed preparation of carbon nanomaterials by hydrogen–oxygen detonation method, Combust. Flame 196 (2018) 108–115. https://doi.org/10.1016/J.COMBUSTFLAME.2018.06.011.
[76] B. Sakintuna, F. Lamari-Darkrim, M. Hirscher, Metal hydride materials for solid hydrogen storage: A review, Int. J. Hydrogen Energy 32 (2007) 1121–1140. https://doi.org/10.1016/j.ijhydene.2006.11.022.
[77] T.A. Hamad, A.A. Agll, Y.M. Hamad, S. Bapat, M. Thomas, K.B. Martin, J.W. Sheffield, Hydrogen recovery, cleaning, compression, storage, dispensing, distribution system and End-Uses on the university campus from combined heat, hydrogen and power system, Int. J. Hydrogen Energy 39 (2014) 647–653. https://doi.org/10.1016/J.IJHYDENE.2013.10.111.
[78] Y. Hu, J. Lei, Z. Wang, S. Yang, X. Luo, G. Zhang, W. Chen, H. Gu, Rapid response hydrogen sensor based on nanoporous Pd thin films, Int. J. Hydrogen Energy 41 (2016) 10986–10990. https://doi.org/10.1016/J.IJHYDENE.2016.04.101.
[79] L.M. Das, On-board hydrogen storage systems for automotive application, Int. J. Hydrogen Energy 21 (1996) 789–800. https://doi.org/10.1016/0360-3199(96)00006-7.
[80] K. Manickam, P. Mistry, G. Walker, D. Grant, C.E. Buckley, T.D. Humphries, M. Paskevicius, T. Jensen, R. Albert, K. Peinecke, M. Felderhoff, Future perspectives of thermal energy storage with metal hydrides, Int. J. Hydrogen Energy 44 (2019) 7738–7745. https://doi.org/10.1016/J.IJHYDENE.2018.12.011.
[81] B.D. Salih, M.A. Alheety, A.R. Mahmood, A. Karadag, D.J. Hashim, Hydrogen storage capacities of some new Hg(II) complexes containing 2-acetylethiophene, Inorg. Chem. Commun. 103 (2019) 100–106. https://doi.org/10.1016/J.INOCHE.2019.03.019.
[82] B. Hardy, D. Tamburello, C. Corgnale, Hydrogen storage adsorbent systems acceptability envelope, Int. J. Hydrogen Energy 43 (2018) 19528–19539. https://doi.org/10.1016/J.IJHYDENE.2018.08.140.
[83] S.S. Mao, S. Shen, L. Guo, Nanomaterials for renewable hydrogen production, storage and utilization, Prog. Nat. Sci. Mater. Int. 22 (2012) 522–534. https://doi.org/10.1016/J.PNSC.2012.12.003.
[84] S. Fu, Z. Sun, P. Huang, Y. Li, N. Hu, Some basic aspects of polymer nanocomposites: A critical review, Nano Mater. Sci. 1 (2019) 2–30. https://doi.org/10.1016/J.NANOMS.2019.02.006.
[85] R. Colorado-Peralta, R. Peña-Rodríguez, M.A. Leyva-Ramírez, A. Flores-Parra, M. Sánchez, I. Hernández-Ahuactzi, L.E. Chiñas, D.J. Ramírez, J.M. Rivera, Metal-organic structures with formate and sulfate anions: Synthesis, crystallographic studies and hydrogen storage by PM7 and ONIOM, J. Mol. Struct. 1189 (2019) 210–218. https://doi.org/10.1016/J.MOLSTRUC.2019.03.102.
[86] C. Acar, I. Dincer, Comparative assessment of hydrogen production methods from renewable and non-renewable sources, Int. J. Hydrogen Energy 39 (2014) 1–12. https://doi.org/10.1016/J.IJHYDENE.2013.10.060.
[87] J. Andersson, S. Grönkvist, Large-scale storage of hydrogen, Int. J. Hydrogen Energy 44 (2019) 11901–11919. https://doi.org/10.1016/J.IJHYDENE.2019.03.063.
[88] E.R. López, F. Dorado, A. de Lucas-Consuegra, Electrochemical promotion for hydrogen production via ethanol steam reforming reaction, Appl. Catal. B Environ. 243 (2019) 355–364. https://doi.org/10.1016/J.APCATB.2018.10.062.
[89] Q. Lei, B. Wang, P. Wang, S. Liu, Hydrogen generation with acid/alkaline amphoteric water electrolysis, J. Energy Chem. 38 (2019) 162–169. https://doi.org/10.1016/J.JECHEM.2018.12.022.
[90] C. Herradón, R. Molina, J. Marugán, J.Á. Botas, Experimental assessment of the cyclability of the Mn2O3/MnO thermochemical cycle for solar hydrogen production, Int. J. Hydrogen Energy 44 (2019) 91–100. https://doi.org/10.1016/J.IJHYDENE.2018.06.158.
[91] Y. Guan, M. Deng, X. Yu, W. Zhang, Two-stage photo-biological production of hydrogen by marine green alga Platymonas subcordiformis, Biochem. Eng. J. 19 (2004) 69–73. https://doi.org/10.1016/J.BEJ.2003.10.006.
[92] X. Gan, D. Lei, K.-Y. Wong, Two-dimensional layered nanomaterials for visible-light-driven photocatalytic water splitting, Mater. Today Energy 10 (2018) 352–367. https://doi.org/10.1016/J.MTENER.2018.10.015.
[93] J. Wang, Y. Yin, Fermentative hydrogen production using various biomass-based materials as feedstock, Renew. Sustain. Energy Rev. 92 (2018) 284–306. https://doi.org/10.1016/J.RSER.2018.04.033.
[94] S.E. Hosseini, M.A. Wahid, Hydrogen production from renewable and sustainable energy resources: Promising green energy carrier for clean development, Renew. Sustain. Energy Rev. 57 (2016) 850–866. https://doi.org/10.1016/J.RSER.2015.12.112.
[95] L. Schlapbach, A. Züttel, Hydrogen-storage materials for mobile applications, Nature 414 (2001) 353–358. https://doi.org/10.1038/35104634.
[96] H. Feng, L. Tang, G. Zeng, Y. Zhou, Y. Deng, X. Ren, B. Song, C. Liang, M. Wei, J. Yu, Core-shell nanomaterials: Applications in energy storage and conversion, Adv. Colloid Interface Sci. 267 (2019) 26–46. https://doi.org/10.1016/J.CIS.2019.03.001.
[97] X. Guo, P. Brault, G. Zhi, A. Caillard, G. Jin, X. Guo, Structural evolution of plasma-sputtered core–shell nanoparticles for catalytic combustion of methane, J. Phys. Chem. C. 115 (2011) 24164–24171. https://doi.org/10.1021/jp206606r.
[98] C. Chang, P. Gao, D. Bao, L. Wang, Y. Wang, Y. Chen, X. Zhou, S. Sun, G. Li, P. Yang, Ball-milling preparation of one-dimensional Co–carbon nanotube and Co–carbon nanofiber core/shell nanocomposites with high electrochemical hydrogen storage ability, J. Power Sources 255 (2014) 318–324. https://doi.org/10.1016/J.JPOWSOUR.2014.01.034.
[99] D. Bao, P. Gao, X. Shen, C. Chang, L. Wang, Y. Wang, Y. Chen, X. Zhou, S. Sun, G. Li, P. Yang, Mechanical ball-milling preparation of fullerene/cobalt core/shell nanocomposites with high electrochemical hydrogen storage ability, ACS Appl. Mater. Interfaces 6 (2014) 2902–2909. https://doi.org/10.1021/am405458u.
[100] G. Wang, L. Zhang, J. Zhang, A review of electrode materials for electrochemical supercapacitors, Chem. Soc. Rev. 41 (2012) 797–828. https://doi.org/10.1039/C1CS15060J.
[101] Q. Wang, L. Jiao, H. Du, Y. Wang, H. Yuan, Fe3O4 nanoparticles grown on graphene as advanced electrode materials for supercapacitors, J. Power Sources 245 (2014) 101–106. https://doi.org/10.1016/J.JPOWSOUR.2013.06.035.
[102] C. Zhang, J. Li, C. Shi, C. He, E. Liu, N. Zhao, Effect of Ni, Fe and Fe-Ni alloy catalysts on the synthesis of metal contained carbon nano-onions and studies of their electrochemical hydrogen storage properties, J. Energy Chem. 23 (2014) 324–330. https://doi.org/10.1016/S2095-4956(14)60154-6.
[103] S. Taçyıldız, B. Demirkan, Y. Karataş, M. Gulcan, F. Sen, Monodisperse Ru Rh bimetallic nanocatalyst as highly efficient catalysts for hydrogen generation from hydrolytic dehydrogenation of methylamine-borane, J. Mol. Liq. 285 (2019) 1–8. https://doi.org/10.1016/j.molliq.2019.04.019.
[104] B. Şen, A. Aygün, A. Şavk, F. Gülbağça, S.K. Gülbay, M.H. Çalımlı, F. Şen, Binary Palladium–Nickel/Vulcan carbon-based nanoparticles as highly efficient catalyst for hydrogen evolution reaction at room temperature, J. Taiwan Inst. Chem. Eng. 101 (2019) 92–98. https://doi.org/10.1016/J.JTICE.2019.04.040.
[105] S. Eris, Z. Daşdelen, F. Sen, Enhanced electrocatalytic activity and stability of monodisperse Pt nanocomposites for direct methanol fuel cells, J. Colloid Interface Sci. (2018). https://doi.org/10.1016/j.jcis.2017.11.085.
[106] S. Eris, Z. Daşdelen, F. Sen, Investigation of electrocatalytic activity and stability of Pt@f-VC catalyst prepared by in-situ synthesis for Methanol electrooxidation, Int. J. Hydrogen Energy. 43 (2018) 385–390. https://doi.org/10.1016/J.IJHYDENE.2017.11.063.
[107] B. Şen, B. Demirkan, M. Levent, A. Şavk, F. Şen, Silica-based monodisperse PdCo nanohybrids as highly efficient and stable nanocatalyst for hydrogen evolution reaction, Int. J. Hydrogen Energy. 43 (2018) 20234–20242. https://doi.org/10.1016/j.ijhydene.2018.07.080.
[108] B. Şen, A. Aygün, A. Şavk, S. Akocak, F. Şen, Bimetallic palladium–iridium alloy nanoparticles as highly efficient and stable catalyst for the hydrogen evolution reaction, Int. J. Hydrogen Energy. 43 (2018) 20183–20191. https://doi.org/10.1016/J.IJHYDENE.2018.07.081.
[109] S. Günbatar, A. Aygun, Y. Karataş, M. Gülcan, F. Şen, Carbon-nanotube-based rhodium nanoparticles as highly-active catalyst for hydrolytic dehydrogenation of dimethylamineborane at room temperature, J. Colloid Interface Sci. (2018). https://doi.org/10.1016/j.jcis.2018.06.100.
[110] B. Sen, A. Şavk, F. Sen, Highly efficient monodisperse Pt nanoparticles confined in the carbon black hybrid material for hydrogen liberation, J. Colloid Interface Sci. 520 (2018) 112–118. https://doi.org/10.1016/j.jcis.2018.03.004.
[111] B. Şen, A. Aygün, A. Şavk, M.H. Çalımlı, S.K. Gülbay, F. Şen, Bimetallic palladium-cobalt nanomaterials as highly efficient catalysts for dehydrocoupling of dimethylamine borane, Int. J. Hydrogen Energy (2019). https://doi.org/10.1016/J.IJHYDENE.2019.01.215.
[112] Y. Karataş, A. Aygun, M. Gülcan, F. Şen, A new highly active polymer supported ruthenium nanocatalyst for the hydrolytic dehydrogenation of dimethylamine-borane, J. Taiwan Inst. Chem. Eng. 99 (2019) 60–65. https://doi.org/10.1016/J.JTICE.2019.02.032.
[113] B. Şen, A. Aygün, A. Şavk, S. Duman, M.H. Calimli, E. Bulut, F. Şen, Polymer-graphene hybrid stabilized ruthenium nanocatalysts for the dimethylamine-borane dehydrogenation at ambient conditions, J. Mol. Liq. 279 (2019) 578–583. https://doi.org/10.1016/J.MOLLIQ.2019.02.003.
[114] Y. Karatas, M. Gülcan, F. Sen, Catalytic methanolysis and hydrolysis of hydrazine-borane with monodisperse Ru NPs@nano-CeO2 catalyst for hydrogen generation at room temperature, Int. J. Hydrogen Energy 44 (2019) 13432–13442. https://doi.org/10.1016/j.ijhydene.2019.04.012.
[115] B. Sen, A. Aygün, M. Ferdi Fellah, M. Harbi Calimli, F. Sen, Highly monodispersed palladium-ruthenium alloy nanoparticles assembled on poly(N-vinyl-pyrrolidone) for dehydrocoupling of dimethylamine–borane: An experimental and density functional theory study, J. Colloid Interface Sci. 546 (2019) 83–91. https://doi.org/10.1016/j.jcis.2019.03.057.
[116] B. Şen, A. Aygün, A. Şavk, C. Yenikaya, S. Cevik, F. Şen, Metal-organic frameworks based on monodisperse palladiumcobalt nanohybrids as highly active and reusable nanocatalysts for hydrogen generation, Int. J. Hydrogen Energy 44 (2019) 2988–2996. https://doi.org/10.1016/J.IJHYDENE.2018.12.051.
[117] B. Şen, B. Demirkan, A. Şavk, S. Karahan Gülbay, F. Şen, Trimetallic PdRuNi nanocomposites decorated on graphene Oxide: A superior catalyst for the hydrogen evolution reaction, Int. J. Hydrogen Energy 43 (2018) 17984–17992. https://doi.org/10.1016/j.ijhydene.2018.07.122.
[118] S. Eris, Z. Daşdelen, Y. Yıldız, F. Sen, Nanostructured polyaniline-rGO decorated platinum catalyst with enhanced activity and durability for Methanol oxidation, Int. J. Hydrogen Energy 43 (2018) 1337–1343. https://doi.org/10.1016/J.IJHYDENE.2017.11.051.