Magnetic Nanomaterials for Fuel Cells
Tuerxun Duolikun, Paul Thomas, Chin Wei Lai, Bey Fen Leo
In modern days, sustainable energy demand and its storage are the most challenging concern in the modern world. To meet the rising energy demands, there is a need to diversify energy sources which require extensively altered and sustainable materials for energy conversion, storage, generation, distribution and applications. There is significant progress in the field of energy generation, storage and conversion, in particular batteries, supercapacitors and fuel cells. The emergence of magnetic nanomaterials has resulted in considerable contributions towards the advancement in the energy industry. Hence, magnetic nanocomposites are introduced to high-performance fuel cells. This book chapter discusses the importance of magnetic nanomaterials for fuel cell applications. We mainly address the magnetic nanomaterials’ synthesis and their applications to fuel cells. As our society upgraded to industrial 4.0, alternative greener and cleaner energy to fossil fuels are the goal. Starting from the first commercialization of fuel cells by NASA for space vehicle, R&D work continually discovers new potential applications for fuel cells and recently, pays much attention to materials being able to decrease the price, increase work efficiency and being eco-friendly.
Keywords
Magnetic Nanomaterial, Fuel Cell, Energy Production, Electrochemistry, Catalysts
Published online 1/30/2020, 19 pages
Citation: Tuerxun Duolikun, Paul Thomas, Chin Wei Lai, Bey Fen Leo, Magnetic Nanomaterials for Fuel Cells, Materials Research Proceedings, Vol. 66, pp 217-235, 2020
DOI: https://doi.org/10.21741/9781644900611-6
Part of the book on Magnetochemistry
References
[1] E. Ogungbemi, O. Ijaodola, F. Khatib, T. Wilberforce, Z. El Hassan, J. Thompson, M. Ramadan, A. Olabi, Fuel cell membranes–Pros and cons, Energy 172 (2019) 155-172. https://doi.org/10.1016/j.energy.2019.01.034
[2] J. Larminie, A. Dicks, M.S. McDonald, Fuel cell systems explained: J. Wiley Chichester, UK, 2003. https://doi.org/10.1002/9781118878330
[3] G. Merle, M. Wessling, K. Nijmeijer, Anion exchange membranes for alkaline fuel cells: A review, J. Membrane Sci. 377 (2011) 1-35. https://doi.org/10.1016/j.memsci.2011.04.043
[4] E.P. Murray, T. Tsai, S.A. Barnett, A direct-methane fuel cell with a ceria-based anode, Nature 400 (1999) 649. https://doi.org/10.1038/23220
[5] S. M. Haile, Fuel cell materials and components, Acta Materialia 51 (2003) 5981-6000. https://doi.org/10.1016/j.actamat.2003.08.004
[6] Wikipedia. “Fuel cell,” 06 May, 2019; https://en.wikipedia.org/wiki/Fuel_cell.
[7] J.-S. Lai, M. W. Ellis, Fuel cell power systems and applications, Proceedings of the IEEE, 105 (2017) 2166-2190. https://doi.org/10.1109/JPROC.2017.2723561
[8] V. Mehta, J. S. Cooper, Review and analysis of PEM fuel cell design and manufacturing, J. Power Sources114 (2003) 32-53. https://doi.org/10.1016/S0378-7753(02)00542-6
[9] H. Wang, A. Gaillard, D. Hissel, Online electrochemical impedance spectroscopy detection integrated with step-up converter for fuel cell electric vehicle, Int. J. Hydrogen Energy 44 (2019) 1110-1121. https://doi.org/10.1016/j.ijhydene.2018.10.242
[10] L. NISSAN MOTOR CO. New X-TRAIL Fuel Cell Vehicle (FCV), 8 May, 2019; https://www.nissan-global.com/EN/TECHNOLOGY/OVERVIEW/fcv.html.
[11] M. Rahimnejad, M. Ghasemi, G. Najafpour, M. Ismail, A. W. Mohammad, A. Ghoreyshi, S. H. Hassan, Synthesis, characterization and application studies of self-made Fe3O4/PES nanocomposite membranes in microbial fuel cell, Electrochim. Acta 85 (2012) 700-706. https://doi.org/10.1016/j.electacta.2011.08.036
[12] X. Teng, X. Liang, S. Rahman, H. Yang, Porous nanoparticle membranes: Synthesis and application as fuel‐cell catalysts, Adv. Mater. 17 (2005) 2237-2241. https://doi.org/10.1002/adma.200500614
[13] M.F. Tai, C.W. Lai, S.B. Abdul Hamid, Facile synthesis polyethylene glycol coated magnetite NPs for high colloidal stability, J. Nanomater. 2016 (2016) 8612505. https://doi.org/10.1155/2016/8612505
[14] K. Zhu, Y. Ju, J. Xu, Z. Yang, S. Gao, Y. Hou, Magnetic nanomaterials: Chemical design, synthesis, and potential applications, Acc. Chem. Res. 51 (2018) 404-413. https://doi.org/10.1021/acs.accounts.7b00407
[15] N. Hasanabadi, S.R. Ghaffarian, M.M. Hasani-Sadrabadi, Magnetic field aligned nanocomposite proton exchange membranes based on sulfonated poly (ether sulfone) and Fe2O3 NPs for direct methanol fuel cell application, Int. J. Hydrogen Energy 36 (2011) 15323-15332. https://doi.org/10.1016/j.ijhydene.2011.08.068
[16] A.H. Lu, E.L. Salabas, F. Schüth, Magnetic NPs: Synthesis, protection, functionalization, and application, Angew. Chem. Int. Ed. 46 (2007) 1222-1244. https://doi.org/10.1002/anie.200602866
[17] G. Sharma, V. K. Gupta, S. Agarwal, A. Kumar, S. Thakur, and D. Pathania, Fabrication and characterization of Fe@MoPO NPs: Ion exchange behavior and photocatalytic activity against malachite green, J. Molecular Liquids 219 (2016) 1137-1143. https://doi.org/10.1016/j.molliq.2016.04.046
[18] N. Atar, T. Eren, M. L. Yola, H. Karimi-Maleh, B. Demirdögen, Magnetic iron oxide and iron oxide@gold nanoparticle anchored nitrogen and sulfur-functionalized reduced graphene oxide electrocatalyst for methanol oxidation, RSC Adv. 5 (2015) 26402-26409. https://doi.org/10.1039/C5RA03735B
[19] J. Li, S. Sharma, X. Liu, Y.-T. Pan, J. S. Spendelow, M. Chi, Y. Jia, P. Zhang, D. A. Cullen, Z. Xi, Hard-magnet L10-CoPt NPs advance fuel cell catalysis, Joule 3 (2019) 124-135. https://doi.org/10.1016/j.joule.2018.09.016
[20] M. Mahmoudi, S. Sant, B. Wang, S. Laurent, T. Sen, Superparamagnetic iron oxide NPs (SPIONs): Development, surface modification and applications in chemotherapy, Adv. Drug Delivery Rev. 63 (2011) 24-46. https://doi.org/10.1016/j.addr.2010.05.006
[21] W. Wu, Q. He, C. Jiang, Magnetic iron oxide NPs: Synthesis and surface functionalization strategies, Nanoscale Res. Lett. 3 (2008) 397. https://doi.org/10.1007/s11671-008-9174-9
[22] F. Grasset, S. Mornet, A. Demourgues, J. Portier, J. Bonnet, A. Vekris, E. Duguet, Synthesis, magnetic properties, surface modification and cytotoxicity evaluation of Y3Fe5− xAlxO12 (0⩽ x⩽ 2) garnet submicron particles for biomedical applications, J. Magn. Magn. Mater. 234 (2001) 409-418. https://doi.org/10.1016/S0304-8853(01)00386-9
[23] P. Vaqueiro, M.A. López-Quintela, Synthesis of yttrium aluminium garnet by the citrate gel process, J. Mater. Chem. 8 (1998) 161-163. https://doi.org/10.1039/a705635d
[24] M. Inoue, T. Nishikawa, T. Inui, Glycothermal synthesis of rare earth iron garnets, J. Mater. Res. 13 (1998) 856-860. https://doi.org/10.1557/JMR.1998.0114
[25] P. Vaqueiro, M. A. López-Quintela, J. Rivas, Synthesis of yttrium iron garnet NPsviacoprecipitation in microemulsion, J. Mater. Chem. 7 (1997) 501-504. https://doi.org/10.1039/a605403j
[26] S. Taketomi, Y. Ozaki, K. Kawasaki, S. Yuasa, H. Miyajima, Transparent magnetic fluid: Preparation of YIG ultrafine particles, J. Magn. Magn. Mater. 122 (1993) 6-9. https://doi.org/10.1016/0304-8853(93)91027-5
[27] P. Grosseau, A. Bachiorrini, B. Guilhot, Elaboration de poudres de yig par coprecipitation, J. Thermal Anal. Calorimetry 46 (1996) 1633-1644. https://doi.org/10.1007/BF01980769
[28] O. B. Miguel, M. Morales, C. Serna, S. Veintemillas-Verdaguer, Magnetic NPs prepared by laser pyrolysis, IEEE transactions on Magnetics 38 (2002) 2616-2618. https://doi.org/10.1109/TMAG.2002.801961
[29] F. Bensebaa, Nanoparticle technologies: From lab to market: Academic Press, 2012.
[30] V. Uskoković, M. Drofenik, Synthesis of materials within reverse micelles, Surf. Rev. Lett. 12 (2005) 239-277. https://doi.org/10.1142/S0218625X05007001
[31] H. Beygi, A. Babakhani, Microemulsion synthesis and magnetic properties of FexNi(1− x) alloy NPs, J. Magn. Magn. Mater. 421 (2017) 77-183. https://doi.org/10.1016/j.jmmm.2016.07.071
[32] G. Sharma, A.Kumar, S. Sharma, M. Naushad, R.P. Dwivedi, Z.A. ALOthman, G. T. Mola, Novel development of NPs to bimetallic NPs and their composites: A review, J. King Saud Uni. Sci. 31 (2017) 257-269. https://doi.org/10.1016/j.jksus.2017.06.012
[33] M. Inoue, Glycothermal synthesis of metal oxides, J. Phys. Condensed Matter 16 (2004) S1291. https://doi.org/10.1088/0953-8984/16/14/042
[34] H. Hara, S. Takeshita, T. Isobe, Y. Nanai, T. Okuno, T. Sawayama, S. Niikura, Glycothermal synthesis and photoluminescent properties of Ce3+-doped YBO3 mesocrystals, J. Alloys Compds 577 (2013) 320-326. https://doi.org/10.1016/j.jallcom.2013.05.203
[35] W. Chen, J. Zhang, F. Chen, Glycothermal synthesis of fluorinated Fe3O4 microspheres with distinct peroxidase-like activity, Advanced Powder Technol. 30 (2019) 999-1005. https://doi.org/10.1016/j.apt.2019.02.014
[36] D.S. Bae, K.S. Han, S.B. Cho, S.H. Choi, Synthesis of ultrafine Fe3O4 powder by glycothermal process, Mater. Lett. 37 (1998) 255-258. https://doi.org/10.1016/S0167-577X(98)00101-3
[37] A.E. Danks, S.R. Hall, Z. Schnepp, The evolution of ‘sol–gel’chemistry as a technique for materials synthesis, Mater. Horizons 3 (2016) 91-112. https://doi.org/10.1039/C5MH00260E
[38] R. Jin, B. Lin, D. Li, H. Ai, Superparamagnetic iron oxide NPs for MR imaging and therapy: design considerations and clinical applications, Current opinion in pharmacology, 18 (2014) 18-27. https://doi.org/10.1016/j.coph.2014.08.002
[39] C. Hui, C. Shen, T. Yang, L. Bao, J. Tian, H. Ding, C. Li, H.J. Gao, Large-scale Fe3O4 NPs soluble in water synthesized by a facile method, J. Phys. Chem. C 112 (2008) 11336-11339. https://doi.org/10.1021/jp801632p
[40] J.P. Jolivet, É. Tronc, C. Chanéac, Synthesis of iron oxide-based magnetic nanomaterials and composites, Comptes Rendus Chimie, 5 (2002) 659-664. https://doi.org/10.1016/S1631-0748(02)01422-4
[41] Y.V. Kolen’ko, M. Bañobre-López, C. Rodríguez-Abreu, E. Carbó-Argibay, A. Sailsman, Y. Piñeiro-Redondo, M.F. Cerqueira, D.Y. Petrovykh, K. Kovnir, O.I. Lebedev, Large-scale synthesis of colloidal Fe3O4 NPs exhibiting high heating efficiency in magnetic hyperthermia, J. Phys. Chem. C 118 (2014) 8691-8701. https://doi.org/10.1021/jp500816u
[42] R. Borny, T. Lechleitner, T. Schmiedinger, M. Hermann, R. Tessadri, G. Redhammer, J. Neumüller, D. Kerjaschki, G. Berzaczy, G. Erman, Nucleophilic cross‐linked, dextran coated iron oxide NPs as basis for molecular imaging: synthesis, characterization, visualization and comparison with previous product, Contrast Media & Molecular Imaging 10 (2015) 18-27. https://doi.org/10.1002/cmmi.1595
[43] M. Filippousi, M. Angelakeris, M. Katsikini, E. Paloura, I. Efthimiopoulos, Y. Wang, D. Zamboulis, G. Van Tendeloo, Surfactant effects on the structural and magnetic properties of iron oxide NPs, J. Phys. Chem. C, 118 (2014) 16209-16217. https://doi.org/10.1021/jp5037266
[44] N.N. Song, H.T. Yang, X. Ren, Z.A. Li, Y. Luo, J. Shen, W. Dai, X.Q. Zhang, Z.H. Cheng, Non-monotonic size change of monodisperse Fe3O4 NPs in the scale-up synthesis, Nanoscale 5 (2013) 2804-2810. https://doi.org/10.1039/c3nr33950e
[45] A. Demortiere, P. Panissod, B. Pichon, G. Pourroy, D. Guillon, B. Donnio, S. Begin-Colin, Size-dependent properties of magnetic iron oxide nanocrystals, Nanoscale 3 (2011) 225-232. https://doi.org/10.1039/C0NR00521E
[46] B. Qi, L. Ye, R. Stone, C. Dennis, T. M. Crawford, O.T. Mefford, Influence of ligand–precursor molar ratio on the size evolution of modifiable iron oxide NPs, J. Phys. Chem. C 117 (2013) 5429-5435. https://doi.org/10.1021/jp311509v
[47] J. Park, K. An, Y. Hwang, J.-G. Park, H.-J. Noh, J.-Y. Kim, J.-H. Park, N.-M. Hwang, T. Hyeon, Ultra-large-scale syntheses of monodisperse nanocrystals, Nat. Materi. 3 (2004) 89. https://doi.org/10.1038/nmat1251
[48] J. Kudr, Y. Haddad, L. Richtera, Z. Heger, M. Cernak, V. Adam, O. Zitka, Magnetic NPs: From design and synthesis to real world applications, Nanomaterials 7 (2017) 243. https://doi.org/10.3390/nano7090243
[49] W. Matizamhuka, The impact of magnetic materials in renewable energy-related technologies in the 21st century industrial revolution: The case of South Africa, Adv. Mater. Sci. Eng. 2018 (2018) 3149412. https://doi.org/10.1155/2018/3149412
[50] B. Moazzenchi, M. Montazer, Click electroless plating of nickel NPs on polyester fabric: Electrical conductivity, magnetic and EMI shielding properties, Colloids Surf. A: Physicochemical and Engineering Aspects, 571 (2019) 110-124. https://doi.org/10.1016/j.colsurfa.2019.03.065
[51] K.C. Liu, M.A. Anderson, Porous nickel oxide/nickel films for electrochemical capacitors, J. Electrochem. Soc. 143 (1996) 124-130. https://doi.org/10.1149/1.1836396
[52] S. Deki, H. Yanagimoto, S. Hiraoka, K. Akamatsu, and K. Gotoh, NH2-terminated poly (ethylene oxide) containing nanosized NiO particles: Synthesis, characterization, and structural considerations, Chem. Mater. 15 (2003) 4916-4922. https://doi.org/10.1021/cm021754a
[53] L. Xiang, X. Deng, Y. Jin, Experimental study on synthesis of NiO nano-particles, Scripta Materialia, 47 (2002) 219-224. https://doi.org/10.1016/S1359-6462(02)00108-2
[54] P. You, S.K. Kamarudin, Recent progress of carbonaceous materials in fuel cell applications: An overview, Chem. Eng. J. 309 (2017) 489-502. https://doi.org/10.1016/j.cej.2016.10.051
[55] W. R. W. Daud, R. Rosli, E. Majlan, S. Hamid, R. Mohamed, T. Husaini, PEM fuel cell system control: A review, Renewable Energy 113 (2017) 620-638. https://doi.org/10.1016/j.renene.2017.06.027
[56] M. Wöhr, K. Bolwin, W. Schnurnberger, M. Fischer, W. Neubrand, G. Eigenberger, Dynamic modelling and simulation of a polymer membrane fuel cell including mass transport limitation, Int. J. Hydrogen Energy 23 (1998) 213-218. https://doi.org/10.1016/S0360-3199(97)00043-8
[57] T. Suzuki, K. Kudo, and Y. Morimoto, Model for investigation of oxygen transport limitation in a polymer electrolyte fuel cell, J. Power Sources 222 (2013) 379-389, 2013. https://doi.org/10.1016/j.jpowsour.2012.08.068
[58] L. Li, S. Bei, R. Liu, Q. Xu, K. Zheng, Y. She, Y. He, Design of a radial vanadium redox microfluidic fuel cell: A new way to break the size limitation, Int. J. Energy Res. 43 (2019) 3028-3037. https://doi.org/10.1002/er.4473
[59] Z. Abdul Rahim, N. Yusof, M. Mohammad Haniff, F. Mohammad, M. Syono, N. Daud, Electrochemical measurements of multiwalled carbon nanotubes under different plasma treatments, Materials, 11 (2018) 1902. https://doi.org/10.3390/ma11101902