Magnetic Nanoparticles in Analytical Chemistry
D.M.A. Neto, J.S. Rocha, P.B.A. Fechine, Leonardo Vivas, Dinesh Pratap Singh, R.M. Freire
Recently magnetic nanoparticles (MNPs) have attracted significant attention for various applications in the analytical chemistry. In this regard this chapter first gives a brief overview of the use of these kinds of nanomaterials in the relevant research areas and subsequently the readers can find the different methodologies to produce MNPs having distinct structural, morphological and surface characteristics which are important to produce for corresponding applications. Various analytical chemistry-based applications of MNPs such as magnetic separation, capture and pre-concentration etc. are described besides the sensor application.
Keywords
Magnetic Nanoparticles, Characteristics, Pre-Concentration, Magnetic Capture, Sensors
Published online 1/30/2020, 44 pages
Citation: D.M.A. Neto, J.S. Rocha, P.B.A. Fechine, Leonardo Vivas, Dinesh Pratap Singh, R.M. Freire, Magnetic Nanoparticles in Analytical Chemistry, Materials Research Proceedings, Vol. 66, pp 173-216, 2020
DOI: https://doi.org/10.21741/9781644900611-5
Part of the book on Magnetochemistry
References
[1] M.C. Coelho, G. Torrão, N. Emami, J. Gr´cio, Nanotechnology in automotive industry: Research strategy and trends for the future—small objects, big impacts, J. Nanosci. Nanotechnol. 12 (2012) 6621–6630. https://doi.org/10.1166/jnn.2012.4573
[2] M.A. Meador, Taking nanotechnology to new heights: The potential impact on future aerospace vehicles, MRS Bull. 40 (2015) 815–821. https://doi.org/10.1557/mrs.2015.224
[3] I. Kamal, Prospects of Some applications of engineered nanomaterials: A review, Open Access J. Biomed. Eng. Biosci. 2 (2018) 245–252. https://doi.org/10.32474/OAJBEB.2018.02.000149
[4] V. Prakash Sharma, U. Sharma, M. Chattopadhyay, V.N. Shukla, Advance applications of nanomaterials: A Review, Mater. Today Proc. 5 (2018) 6376–6380. https://doi.org/10.1016/j.matpr.2017.12.248
[5] D. Brabazon, E. Pellicer, F. Zivic, J. Sort, M.D. Baró, N. Grujovic, K.L. Choy, Review of production routes of nanomaterials, Commerial Nanotechnologies-A case study approach. (2018) 15–29. https://doi.org/10.1007/978-3-319-56979-6_2
[6] S. Singamaneni, V.N. Bliznyuk, C. Binek, E.Y. Tsymbal, Magnetic nanoparticles: recent advances in synthesis, self-assembly and applications, J. Mater. Chem. 21 (2011) 16819–16845. https://doi.org/10.1039/C1JM11845E
[7] S.M. Ng, M. Koneswaran, R. Narayanaswamy, A review on fluorescent inorganic nanoparticles for optical sensing applications, RSC Adv. 6 (2016) 21624–21661. https://doi.org/10.1039/C5RA24987B
[8] R. Wiltschko, W. Wiltschko, The magnetite-based receptors in the beak of birds and their role in avian navigation, J. Comp. Physiol. A Neuroethol. Sensory, Neural, Behav. Physiol. 199 (2013) 89–98. https://doi.org/10.1007/s00359-012-0769-3
[9] D. Acosta-Avalos, E. Wajnberg, P.S. Oliveira, I. Leal, M. Farina, D.M. Esquivel, Isolation of magnetic nanoparticles from Pachycondyla marginata ants, J. Exp. Biol. 202 (1999) 2687–2692. https://doi.org/10.1073/pnas.94.21.11633
[10] L. Yan, S. Zhang, P. Chen, H. Liu, H. Yin, H. Li, Magnetotactic bacteria, magnetosomes and their application, Microbiol. Res. 167 (2012) 507–519. https://doi.org/10.1016/j.micres.2012.04.002
[11] S.A. Gilder, M. Wack, L. Kaub, S.C. Roud, N. Petersen, H. Heinsen, P. Hillenbrand, S. Milz, C. Schmitz, Distribution of magnetic remanence carriers in the human brain, Sci. Rep. 8 (2018) 1–9. https://doi.org/10.1038/s41598-018-29766-z
[12] L. Taylor, H. Schmitt, W. Carrier, M. Nakagawa, Lunar dust problem: From liability to asset, 1st Sp. Explor. Conf. Contin. Voyag. Discov. (2005). https://doi.org/10.2514/6.2005-2510
[13] A. Chiolerio, A. Chiodoni, P. Allia, P. Martino, Magnetite and other Fe-Oxide nanoparticles: Datasheet from · Volume : “Handbook of Nanomaterials Properties” in SpringerMaterials. https://doi.org/10.1007/978-3-642-31107-9_34), (n.d.)
[14] R.M. Freire, P.G.C. Freitas, W.S. Galvao, L.S. Costa, T.S. Ribeiro, I.F. Vasconcelos, J.C. Denardin, R.C. de Oliveira, C.P. Sousa, P. de-Lima-Neto, A.N. Correia, P.B.A. Fechine, Nanocrystal growth, magnetic and electrochemical properties of NiZn ferrite, J. Alloys Compd. 738 (2018). https://doi.org/10.1016/j.jallcom.2017.12.088
[15] A. Akbarzadeh, M. Samiei, S. Davaran, Magnetic nanoparticles: Preparation, physical properties, and applications in biomedicine, Nanoscale Res. Lett. 7 (2012) 144. https://doi.org/10.1186/1556-276x-7-144
[16] P. Biehl, M. von der Lühe, S. Dutz, F.H. Schacher, Synthesis, characterization, and applications of magnetic nanoparticles featuring polyzwitterionic coatings, Polymers 10 (2018). https://doi.org/10.3390/polym10010091
[17] R. Serrano, S. Stafford, Recent progress in synthesis and functionalization of multimodal fluorescent-magnetic nanoparticles for biological applications, Appl. Sci. 8 (2018) 172. https://doi.org/10.3390/app8020172
[18] F.D. Guerra, M.F. Attia, D.C. Whitehead, F. Alexis, Nanotechnology for environmental remediation: Materials and applications, Molecules. 23 (2018) 1–23. https://doi.org/10.3390/molecules23071760
[19] J.S. Beveridge, J.R. Stephens, M.E. Williams, The use of magnetic nanoparticles in analytical chemistry, Annu. Rev. Anal. Chem. 4 (2011) 251–273. https://doi.org/10.1146/annurev-anchem-061010-114041
[20] M. Faraji, Recent analytical applications of magnetic nanoparticles, Nanochem Res. 1 (2016) 264–290. https://doi.org/10.7508/ncr.2016.02.014
[21] R. Mout, D.F. Moyano, S. Rana, V.M. Rotello, Surface functionalization of nanoparticles for nanomedicine, Chem. Soc. Rev. 41 (2012) 2539–2544. https://doi.org/10.1039/c2cs15294k
[22] A. Ebrahiminezhad, V. Varma, S. Yang, Y. Ghasemi, A. Berenjian, Synthesis and application of amine functionalized iron oxide nanoparticles on Menaquinone-7 fermentation: A step towards process intensification, Nanomaterials 6 (2015) 1. https://doi.org/10.3390/nano6010001
[23] C.S. Clemente, V.G.P. Ribeiro, J.E.A. Sousa, F.J.N. Maia, A.C.H. Barreto, N.F. Andrade, J.C. Denardin, G. Mele, L. Carbone, S.E. Mazzetto, P.B.A. Fechine, Porphyrin synthesized from cashew nut shell liquid as part of a novel superparamagnetic fluorescence nanosystem, J. Nanoparticle Res. C7 – 1739. 15 (2013) 1–10. https://doi.org/10.1007/s11051-013-1739-6
[24] T.M. Freire, L.M.U. Dutra, D.C. Queiroz, N.M.P.S. Ricardo, K. Barreto, J.C. Denardin, F.R. Wurm, C.P. Sousa, A.N. Correia, P. De Lima-Neto, P.B.A. Fechine, Fast ultrasound assisted synthesis of chitosan-based magnetite nanocomposites as a modified electrode sensor, Carbohydr. Polym. (2016). https://doi.org/10.1016/j.carbpol.2016.05.095
[25] D.M.A. Neto, R.M. Freire, J. Gallo, T.M. Freire, D.C. Queiroz, N.M.P.S. Ricardo, I.F. Vasconcelos, G. Mele, L. Carbone, S.E. Mazzetto, M. Bañobre-Lopez, P.B.A. Fechine, Rapid sonochemical approach produces functionalized Fe3O4 nanoparticles with excellent magnetic, colloidal, and relaxivity properties for MRI application, J. Phys. Chem. C. 121 (2017). https://doi.org/10.1021/acs.jpcc.7b04941
[26] E.E. Nelson, A.E. Guyer, The development of the ventral prefrontal cortex and social flexibility, Dev Cogn Neurosci. 1 (2012) 233–245. https://doi.org/10.1016/j.dcn.2011.01.002
[27] D.M.A. Neto, R.M. Freire, J. Gallo, T.M. Freire, D.C. Queiroz, N.M.P.S. Ricardo, I.F. Vasconcelos, G. Mele, L. Carbone, S.E. Mazzetto, M. Bañobre-López, P.B.A. Fechine, Rapid sonochemical approach produces functionalized Fe3O4 nanoparticles with excellent magnetic, colloidal, and relaxivity properties for MRI application, J. Phys. Chem. C. 121 (2017). https://doi.org/10.1021/acs.jpcc.7b04941
[28] P.E. Feuser, L. dos S. Bubniak, M.C. dos S. Silva, A. da C. Viegas, A. Castilho Fernandes, E. Ricci-Junior, M. Nele, A.C. Tedesco, C. Sayer, P.H.H. de Araújo, Encapsulation of magnetic nanoparticles in poly(methyl methacrylate) by miniemulsion and evaluation of hyperthermia in U87MG cells, Eur. Polym. J. 68 (2015) 355–365. https://doi.org/ 10.1016/j.eurpolymj.2015.04.029
[29] T.K.H. Ta, M.T. Trinh, N.V. Long, T.T.M. Nguyen, T.L.T. Nguyen, T.L. Thuoc, B.T. Phan, D. Mott, S. Maenosono, H. Tran-Van, V.H. Le, Synthesis and surface functionalization of Fe3O4-SiO2 core-shell nanoparticles with 3-glycidoxypropyltrimethoxysilane and 1,1′-carbonyldiimidazole for bio-applications, Colloids Surfaces A Physicochem. Eng. Asp. 504 (2016) 376–383. https://doi.org/10.1016/j.colsurfa.2016.05.008
[30] Q. Nguyen, C.N. Chinnasamy, S.D. Yoon, S. Sivasubramanian, T. Sakai, A. Baraskar, S. Mukerjee, C. Vittoria, V.G. Harris, Functionalization of FeCo alloy nanoparticles with highly dielectric amorphous oxide coatings, J. Appl. Phys. 103 (2008) 127–130. https://doi.org/10.1063/1.2839593
[31] T.A. Pham, N.A. Kumar, Y.T. Jeong, Facile preparation of boronic acid functionalized Fe-core/Au-shell magnetic nanoparticles for covalent immobilization of adenosine, Colloids Surfaces A Physicochem. Eng. Asp. 370 (2010) 95–101. https://doi.org/ 10.1016/j.colsurfa.2010.08.053
[32] H. Fatima, K.S. Kim, Magnetic nanoparticles for bioseparation, Korean J. Chem. Eng. 34 (2017) 589–599. https://doi.org/10.1007/s11814-016-0349-2
[33] J. Li, Y. Zhou, M. Li, N. Xia, Q. Huang, H. Do, Y.-N. Liu, F. Zhou, Carboxymethylated dextran-coated magnetic iron oxide nanoparticles for regenerable bioseparation, J. Nanosci. Nanotechnol. 11 (2011) 10187–10192. https://doi.org/10.1166/jnn.2011.5002
[34] G. Simonsen, M. Strand, G. Øye, Potential applications of magnetic nanoparticles within separation in the petroleum industry, J. Pet. Sci. Eng. (2018). https://doi.org/10.1016/j.petrol.2018.02.048
[35] S. Ko, E.S. Kim, S. Park, H. Daigle, T.E. Milner, C. Huh, M. V. Bennetzen, G.A. Geremia, Amine functionalized magnetic nanoparticles for removal of oil droplets from produced water and accelerated magnetic separation, J. Nanoparticle Res. 19 (2017). https://doi.org/10.1007/s11051-017-3826-6
[36] M.R. Jafari Nasr, M.R. Rahimpour, M. Arjmand, S.A. Vaziri, Application of a novel magnetic nanoparticle as demulsifier for dewatering in crude oil emulsion AU – Farrokhi, Fatemeh, Sep. Sci. Technol. 53 (2018) 551–558. https://doi.org/10.1080/01496395.2017.1373676
[37] M. Feng, P. Zhang, H.C. Zhou, V.K. Sharma, Water-stable metal-organic frameworks for aqueous removal of heavy metals and radionuclides: A review, Chemosphere. 209 (2018) 783–800. https://doi.org/10.1016/j.chemosphere.2018.06.114
[38] S.N. Paulina A. Kobielska, Ashlee J. Howarth, Omar K. Farha, Metal-organic frameworks for heavy metal removal from water, Coord. Chem. Rev. 353 (2018) 92–107. https://doi.org/10.1016/j.ccr.2017.12.010
[39] Q. Yang, Q. Zhao, S. Ren, Q. Lu, X. Guo, Z. Chen, Fabrication of core-shell Fe3O4@MIL-100(Fe) magnetic microspheres for the removal of Cr(VI) in aqueous solution, J. Solid State Chem. 244 (2016) 25–30. https://doi.org/10.1016/j.jssc.2016.09.010
[40] L. Huang, M. He, B. Chen, B. Hu, A designable magnetic MOF composite and facile coordination-based post-synthetic strategy for the enhanced removal of Hg2+ from water, J. Mater. Chem. A. 3 (2015) 11587–11595. https://doi.org/10.1039/C5TA01484K
[41] J.-B. Huo, L. Xu, J.-C.E. Yang, H.-J. Cui, B. Yuan, M.-L. Fu, Magnetic responsive Fe3O4-ZIF-8 core-shell composites for efficient removal of As(III) from water, Colloids Surfaces A Physicochem. Eng. Asp. 539 (2018) 59–68. https://doi.org/ 10.1016/j.colsurfa.2017.12.010
[42] M.C.Mascolo, Y. Pei, T.A. Ring, Room Temperature co-precipitation synthesis of magnetite nanoparticles in a large pH window with different bases, Materials 6 (2013) 5549–5567. https://doi.org/10.3390/ma6125549
[43] A.A.C.H. Barreto, V.V.R. Santiago, R.R.M. Freire, S.S.E. Mazzetto, J.J.C. Denardin, G. Mele, I.M.I. Cavalcante, M.M.E.N.P. Ribeiro, N.N.M.P.S. Ricardo, T. Gonçalves, L. Carbone, T.T.L.G. Lemos, O.D.L.O. Pessoa, P.P.B.A. Fechine, Magnetic nanosystem for cancer therapy using oncocalyxone a, an antitumor secondary metabolite isolated from a Brazilian plant, Int. J. Mol. Sci. 14 (2013) 18269. https://doi.org/10.3390/ijms140918269
[44] S. Rajput, C.U. Pittman, D. Mohan, Magnetic magnetite (Fe3O4) nanoparticle synthesis and applications for lead (Pb2+) and chromium (Cr6+) removal from water, J. Colloid Interface Sci. 468 (2016) 334–346. https://doi.org/ 10.1016/j.jcis.2015.12.008
[45] A.C.H.C.H. Barreto, V.R.R. Santiago, R.M.M. Freire, S.E.E. Mazzetto, J.M.M. Sasaki, I.F.F. Vasconcelos, J.C.C. Denardin, G. Mele, L. Carbone, P.B.A.B.A. Fechine, grain size control of the magnetic nanoparticles by solid state route modification, J. Mater. Eng. Perform. 22 (2012) 2073–2079. https://doi.org/10.1007/s11665-013-0480-8
[46] W. Zhang, S. Jia, Q. Wu, J. Ran, S. Wu, Y. Liu, Convenient synthesis of anisotropic Fe3O4 nanorods by reverse co-precipitation method with magnetic field-assisted, Mater. Lett. 65 (2011) 1973–1975. https://doi.org/10.1016/j.matlet.2011.03.101
[47] S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L. Vander Elst, R.N. Muller, Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications, Chem. Rev. 108 (2008) 2064–2110. https://doi.org/10.1021/cr068445e
[48] H.-C. Roth, S.P. Schwaminger, M. Schindler, F.E. Wagner, S. Berensmeier, Influencing factors in the CO-precipitation process of superparamagnetic iron oxide nano particles: A model based study, J. Magn. Magn. Mater. 377 (2015) 81–89. https://doi.org/https://doi.org/10.1016/j.jmmm.2014.10.074
[49] N.A. Frey, S. Peng, K. Cheng, S. Sun, Magnetic nanoparticles: synthesis, functionalization, and applications in bioimaging and magnetic energy storage, Chem. Soc. Rev. 38 (2009) 2532–2542. https://doi.org/10.1039/b815548h
[50] A. Mashhadi Malekzadeh, A. Ramazani, S.J. Tabatabaei Rezaei, H. Niknejad, Design and construction of multifunctional hyperbranched polymers coated magnetite nanoparticles for both targeting magnetic resonance imaging and cancer therapy, J. Colloid Interface Sci. 490 (2017) 64–73. https://doi.org/ 10.1016/j.jcis.2016.11.014
[51] M.S.A. Darwish, Effect of carriers on heating efficiency of oleic acid-stabilized magnetite nanoparticles, J. Mol. Liq. 231 (2017) 80–85. https://doi.org/ 10.1016/j.molliq.2017.01.094
[52] S. Mumtaz, L.-S. Wang, S.Z. Hussain, M. Abdullah, Z. Huma, Z. Iqbal, B. Creran, V.M. Rotello, I. Hussain, Dopamine coated Fe3O4 nanoparticles as enzyme mimics for the sensitive detection of bacteria, Chem. Commun. 53 (2017) 12306–12308. https://doi.org/10.1039/C7CC07149C
[53] Y.M. Wang, X. Cao, G.H. Liu, R.Y. Hong, Y.M. Chen, X.F. Chen, H.Z. Li, B. Xu, D.G. Wei, Synthesis of Fe3O4 magnetic fluid used for magnetic resonance imaging and hyperthermia, J. Magn. Magn. Mater. 323 (2011) 2953–2959. https://doi.org/ 10.1016/j.jmmm.2011.05.060
[54] V.T.A. Nguyen, M. Gauthier, O. Sandre, Templated Synthesis of magnetic nanoparticles through the self-assembly of polymers and surfactants, Nanomaterials 4 (2014) 628–685. https://doi.org/10.3390/nano4030628
[55] Gozde Unsoy, S. Yalcin, R. Khodadust, G. Gungor, G. Ufuk, Synthesis optimization and characterization of chitosan-coated iron oxide nanoparticles produced for biomedical applications, J. Nanoparticle Res. 14 (2012) 964. https://doi.org/10.1007/s11051-012-0964-8
[56] R.M.M. Freire, P.G.C.G.C. Freitas, T.S.S. Ribeiro, I.F.F. Vasconcelos, J.C.C. Denardin, G. Mele, L. Carbone, S.E.E. Mazzetto, P.B.A.B.A. Fechine, Effect of solvent composition on the structural and magnetic properties of MnZn ferrite nanoparticles obtained by hydrothermal synthesis, Microfluid. Nanofluidics. 17 (2014) 233–244. https://doi.org/10.1007/s10404-013-1290-x
[57] M. Jiang, X. Peng, Anisotropic Fe3O4/Mn3O4 Hybrid Nanocrystals with Unique Magnetic Properties, Nano Lett. 17 (2017) 3570–3575. https://doi.org/10.1021/acs.nanolett.7b00727
[58] H. Sun, B. Chen, X. Jiao, Z. Jiang, Z. Qin, D. Chen, Solvothermal Synthesis of Tunable Electroactive Magnetite Nanorods by Controlling the Side Reaction, J. Phys. Chem. C. 116 (2012) 5476–5481. https://doi.org/10.1021/jp211986a
[59] W.L. Suchanek, R.E. Riman, Hydrothermal Synthesis of Advanced Ceramic Powders, Adv. Sci. Technol. 45 (2006) 184–193. https://doi.org/10.4028/www.scientific.net/AST.45.184
[60] R.E. Riman, W.L. Suchanek, K. Byrappa, C.-W. Chen, P. Shuk, C.S. Oakes, Solution synthesis of hydroxyapatite designer particulates, Solid State Ionics. 151 (2002) 393–402. https://doi.org/10.1016/S0167-2738(02)00545-3
[61] Y. Yu, W. Yang, X. Sun, W. Zhu, X.-Z. Li, D.J. Sellmyer, S. Sun, Monodisperse MPt (M = Fe, Co, Ni, Cu, Zn) Nanoparticles Prepared from a Facile Oleylamine Reduction of Metal Salts, Nano Lett. 14 (2014) 2778–2782. https://doi.org/10.1021/nl500776e
[62] S. Sun, H. Zeng, Size-Controlled Synthesis of Magnetite Nanoparticles, J. Am. Chem. Soc. 124 (2002) 8204–8205. https://doi.org/10.1021/ja026501x
[63] S.H. Sun, H. Zeng, D.B. Robinson, S. Raoux, P.M. Rice, Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles, J Am Chem Soc. 126 (2004)
[64] S.H. Sun, C.B. Murray, D. Weller, L. Folks, A. Moser, Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices, Science (80-. ). 287 (2000)
[65] S. Sun, Recent Advances in Chemical Synthesis, Self-Assembly, and Applications of FePt Nanoparticles, Adv. Mater. 18 (2006) 393–403. https://doi.org/10.1002/adma.200501464
[66] C. Wang, S. Peng, L.-M. Lacroix, S. Sun, Synthesis of high magnetic moment CoFe nanoparticles via interfacial diffusion in core/shell structured Co/Fe nanoparticles, Nano Res. 2 (2009) 380–385. https://doi.org/10.1007/s12274-009-9037-4
[67] M. V Kovalenko, M.I. Bodnarchuk, R.T. Lechner, G. Hesser, F. Schäffler, W. Heiss, Fatty acid salts as stabilizers in size- and shape-controlled nanocrystal synthesis: The case of inverse spinel iron oxide, J. Am. Chem. Soc. 129 (2007) 6352–6353. https://doi.org/10.1021/ja0692478
[68] P. Guardia, A. Riedinger, S. Nitti, G. Pugliese, S. Marras, A. Genovese, M.E. Materia, C. Lefevre, L. Manna, T. Pellegrino, One pot synthesis of monodisperse water soluble iron oxide nanocrystals with high values of the specific absorption rate, J. Mater. Chem. B. 2 (2014) 4426–4434. https://doi.org/10.1039/C4TB00061G
[69] D. Kim, N. Lee, M. Park, B.H. Kim, K. An, T. Hyeon, Synthesis of uniform ferrimagnetic magnetite nanocubes, J. Am. Chem. Soc. 131 (2009) 454–455. https://doi.org/10.1021/ja8086906
[70] D.M.A. Neto, R.M. Freire, J. Gallo, T.M. Freire, D.C. Queiroz, N.M.P.S. Ricardo, I.F. Vasconcelos, G. Mele, L. Carbone, S.E. Mazzetto, M. Bañobre-López, P.B.A. Fechine, Rapid sonochemical approach produces functionalized Fe3O4 nanoparticles with excellent magnetic, colloidal, and relaxivity properties for MRI application, J. Phys. Chem. C. 121 (2017) 24206–24222. https://doi.org/10.1021/acs.jpcc.7b04941
[71] W.S. Galvão, D.M.A. Neto, R.M. Freire, P.B.A. Fechine, Superparamagnetic nanoparticles with spinel structure: a review of synthesis and biomedical applications, Solid State Phenom. (2015). https://doi.org/10.4028/www.scientific.net/SSP.241.139
[72] Y. Snoussi, S. Bastide, M. Abderrabba, M.M. Chehimi, Sonochemical synthesis of Fe3O4@NH2-mesoporous silica@Polypyrrole/Pd: A core/double shell nanocomposite for catalytic applications, Ultrason. Sonochem. 41 (2018) 551–561. https://doi.org/ 10.1016/j.ultsonch.2017.10.021
[73] J.S. Beveridge, J.R. Stephens, M.E. Williams, The use of magnetic nanoparticles in analytical chemistry, Annu. Rev. Anal. Chem. 4 (2011) 251–273. https://doi.org/10.1146/annurev-anchem-061010-114041
[74] T.A.P. Rocha-Santos, Sensors and biosensors based on magnetic nanoparticles, TrAC Trends Anal. Chem. 62 (2014) 28–36. https://doi.org/ 10.1016/j.trac.2014.06.016
[75] K. El-Boubbou, Magnetic iron oxide nanoparticles as drug carriers: Clinical relevance, Nanomedicine. 13 (2018) 953–971. https://doi.org/10.2217/nnm-2017-0336
[76] J. Estelrich, E. Escribano, J. Queralt, M.A. Busquets, Iron Oxide Nanoparticles for Magnetically-Guided and Magnetically-Responsive Drug Delivery., Int. J. Mol. Sci. 16 (2015) 8070–8101. https://doi.org/10.3390/ijms16048070
[77] F. Fiorillo, Characterization and measurement of magnetic materials, A volume in Elsevier Series in Electromagnetism, Academic Press, 2004.
[78] N.Ž. Knežević, I. Gadjanski, J.-O. Durand, Magnetic nanoarchitectures for cancer sensing, imaging and therapy, J. Mater. Chem. B. 7 (2019) 9–23. https://doi.org/10.1039/C8TB02741B
[79] S.P. Pujari, L. Scheres, A.T.M. Marcelis, H. Zuilhof, Covalent surface modification of oxide surfaces, Angew. Chemie – Int. Ed. 53 (2014) 6322–6356. https://doi.org/10.1002/anie.201306709
[80] S. Carinelli, M. Martí, S. Alegret, M.I. Pividori, Biomarker detection of global infectious diseases based on magnetic particles, New Biotechnol. 32 (2015) 521–532. https://doi.org/ 10.1016/j.nbt.2015.04.002
[81] W. Wu, Z. Wu, T. Yu, C. Jiang, W.-S. Kim, Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications, Sci. Technol. Adv. Mater. 16 (2015) 023501. https://doi.org/10.1088/1468-6996/16/2/023501
[82] K. Hola, Z. Markova, G. Zoppellaro, J. Tucek, R. Zboril, Tailored functionalization of iron oxide nanoparticles for MRI, drug delivery, magnetic separation and immobilization of biosubstances, Biotechnol. Adv. 33 (2015) 1162–1176. https://doi.org/ 10.1016/j.biotechadv.2015.02.003
[83] H. Cai, X. An, J. Cui, J. Li, S. Wen, K. Li, M. Shen, L. Zheng, G. Zhang, X. Shi, Facile hydrothermal synthesis and surface functionalization of polyethyleneimine-coated iron oxide nanoparticles for biomedical applications., ACS Appl. Mater. Interfaces 5 (2013) 1722–31. https://doi.org/10.1021/am302883m
[84] J. Zeng, L. Jing, Y. Hou, M. Jiao, R. Qiao, Q. Jia, C. Liu, F. Fang, H. Lei, M. Gao, Anchoring Group Effects of Surface Ligands on Magnetic Properties of Fe3O4 Nanoparticles: Towards High Performance MRI Contrast Agents, Adv. Mater. 26 (2014) 2694–2698. https://doi.org/10.1002/adma.201304744
[85] R.M. Bezerra, D.M.A. Neto, W.S. Galvão, N.S. Rios, A.C.L. d. M. Carvalho, M.A. Correa, F. Bohn, R. Fernandez-Lafuente, P.B.A. Fechine, M.C. de Mattos, J.C.S. dos Santos, L.R.B. Gonçalves, Design of a lipase-nano particle biocatalysts and its use in the kinetic resolution of medicament precursors, Biochem. Eng. J. 125 (2017) 104-115. https://doi.org/10.1016/j.bej.2017.05.024
[86] C. Monteil, N. Bar, B. Moreau, R. Retoux, A. Bee, D. Talbot, D. Villemin, Phosphonated polyethylenimine-coated nanoparticles: Size- and zeta-potential-adjustable nanomaterials, Part. Part. Syst. Charact. 31 (2014) 219–227. https://doi.org/10.1002/ppsc.201300185
[87] S.A. McCarthy, G.-L. Davies, Y.K. Gun’ko, Preparation of multifunctional nanoparticles and their assemblies, Nat. Protoc. 7 (2012) 1677-1693. https://doi.org/10.1038/nprot.2012.082
[88] T. Gillich, C. Acikgöz, L. Isa, A.D. Schlüter, N.D. Spencer, M. Textor, PEG-stabilized core–shell nanoparticles: Impact of linear versus dendritic polymer shell architecture on colloidal properties and the reversibility of temperature-induced aggregation, ACS Nano 7 (2013) 316–329. https://doi.org/10.1021/nn304045q
[89] C. Grüttner, K. Müller, J. Teller, F. Westphal, A. Foreman, R. Ivkov, Synthesis and antibody conjugation of magnetic nanoparticles with improved specific power absorption rates for alternating magnetic field cancer therapy, J. Magn. Magn. Mater. 311 (2007) 181–186. https://doi.org/ 10.1016/j.jmmm.2006.10.1151
[90] C. Fang, O. Veiseh, F. Kievit, N. Bhattarai, F. Wang, Z. Stephen, C. Li, D. Lee, R.G. Ellenbogen, M. Zhang, Functionalization of iron oxide magnetic nanoparticles with targeting ligands: their physicochemical properties and in vivo behavior, Nanomedicine 5 (2010) 1357–1369. https://doi.org/10.2217/nnm.10.55
[91] D.L.J. Thorek, ew R. Elias, A. Tsourkas, Comparative analysis of nanoparticle-antibody conjugations: Carbodiimide versus click chemistry, Mol. Imaging. 8 (2009) 221-229. https://doi.org/10.2310/7290.2009.00021
[92] A.Z. Wang, V. Bagalkot, C.C. Vasilliou, F. Gu, F. Alexis, L. Zhang, M. Shaikh, K. Yuet, M.J. Cima, R. Langer, P.W. Kantoff, N.H. Bander, S. Jon, O.C. Farokhzad, Superparamagnetic iron oxide nanoparticle–aptamer bioconjugates for combined prostate cancer imaging and therapy, ChemMedChem 3 (2008) 1311–1315. https://doi.org/10.1002/cmdc.200800091
[93] N. Kohler, G.E. Fryxell, M. Zhang, A bifunctional poly(ethylene glycol) silane immobilized on metallic oxide-based nanoparticles for conjugation with cell targeting agents, J. Am. Chem. Soc. 126 (2004) 7206–7211. https://doi.org/10.1021/ja049195r
[94] K. Kluchova, R. Zboril, J. Tucek, M. Pecova, L. Zajoncova, I. Safarik, M. Mashlan, I. Markova, D. Jancik, M. Sebela, H. Bartonkova, V. Bellesi, P. Novak, D. Petridis, Superparamagnetic maghemite nanoparticles from solid-state synthesis – Their functionalization towards peroral MRI contrast agent and magnetic carrier for trypsin immobilization, Biomaterials 30 (2009) 2855–2863. https://doi.org/ 10.1016/j.biomaterials.2009.02.023
[95] M. Pereira, E.P.C. Lai, Capillary electrophoresis for the characterization of quantum dots after non-selective or selective bioconjugation with antibodies for immunoassay, J. Nanobiotechnol. 6 (2008) 10. https://doi.org/10.1186/1477-3155-6-10
[96] L. Johansson, K. Gunnarsson, S. Bijelovic, K. Eriksson, A. Surpi, E. Göthelid, P. Svedlindh, S. Oscarsson, A magnetic microchip for controlled transport of attomole levels of proteins, Lab Chip 10 (2010) 654–661. https://doi.org/10.1039/B919893H
[97] V. Biju, Chemical modifications and bioconjugate reactions of nanomaterials for sensing, imaging, drug delivery and therapy, Chem. Soc. Rev. 43 (2014) 744–764. https://doi.org/10.1039/C3CS60273G
[98] J. He, M. Huang, D. Wang, Z. Zhang, G. Li, Journal of Pharmaceutical and Biomedical Analysis Magnetic separation techniques in sample preparation for biological analysis : A review, J. Pharm. Biomed. Anal. 101 (2014) 84–101. https://doi.org/10.1016/j.jpba.2014.04.017
[99] N. Kishikawa, N. Kuroda, Analytical techniques for the determination of biologically active quinones in biological and environmental samples, J. Pharm. Biomed. Anal. 87 (2014) 261–270. https://doi.org/ 10.1016/j.jpba.2013.05.035
[100] F. Aflatouni, M. Soleimani, Preparation of a new polymerized ionic liquid-modified magnetic nano adsorbent for the extraction and preconcentration of nitrate and nitrite anions from environmental water samples, Chromatographia 81 (2018) 1475–1486. https://doi.org/10.1007/s10337-018-3590-5
[101] B. Zargar, A. Khazaeifar, Synthesis of an ion-imprinted sorbent by surface imprinting of magnetized carbon nanotubes for determination of trace amounts of cadmium ions, Microchim. Acta. 184 (2017) 4521–4529. https://doi.org/10.1007/s00604-017-2489-4
[102] L. Chen, W. Lu, J. You, J. Li, X. Zhang, Y. Sheng, One-pot synthesis of magnetic iron oxide nanoparticle-multiwalled carbon nanotube composites for enhanced removal of Cr(VI) from aqueous solution, J. Colloid Interface Sci. 505 (2017) 1134–1146. https://doi.org/10.1016/j.jcis.2017.07.013
[103] S.A. Mohamedsaid, M. Soylak, S. Ozdemir, E. Kilinc, A. Yıldırım, Application of magnetized fungal solid phase extractor with Fe2O3 nanoparticle for determination and preconcentration of Co(II) and Hg(II) from natural water samples, Microchem. J. 143 (2018) 198–204. https://doi.org/10.1016/j.microc.2018.07.032
[104] Y. Zhang, R. Liu, Y. Hu, G. Li, Microwave heating in preparation of magnetic molecularly imprinted polymer beads for trace triazines analysis in complicated samples, Anal. Chem. 81 (2009) 967–976. https://doi.org/10.1021/ac8018262
[105] C. Zhou, Z. Du, G. Li, Y. Zhang, Z. Cai, Oligomers matrix-assisted dispersion of high content of carbon nanotubes into monolithic column for online separation and enrichment of proteins from complex biological samples, Analyst 138 (2013) 5783–5790. https://doi.org/10.1039/C3AN00951C
[106] J.R. Wiśniewski, D.F. Zielinska, M. Mann, Comparison of ultrafiltration units for proteomic and N-glycoproteomic analysis by the filter-aided sample preparation method, Anal. Biochem. 410 (2011) 307–309. https://doi.org/ 10.1016/j.ab.2010.12.004
[107] X. Xu, R.A. Sherry, S. Niu, D. Li, Y. Luo, Net primary productivity and rain-use efficiency as affected by warming, altered precipitation, and clipping in a mixed-grass prairie, Glob. Chang. Biol. 19 (2013) 2753–2764. https://doi.org/10.1111/gcb.12248
[108] Y. Liu, G. Yan, M. Gao, X. Zhang, Magnetic capture of polydopamine-encapsulated Hela cells for the analysis of cell surface proteins, J. Proteomics 172 (2018) 76–81. https://doi.org/ 10.1016/j.jprot.2017.10.009
[109] C. Rejeeth, X. Pang, R. Zhang, W. Xu, X. Sun, B. Liu, J. Lou, J. Wan, H. Gu, W. Yan, K. Qian, Extraction, detection, and profiling of serum biomarkers using designed Fe3O4@SiO2@HA core–shell particles, Nano Res. 11 (2018) 68–79. https://doi.org/10.1007/s12274-017-1591-6
[110] V. Natarov, D. Kotsikau, V. Survilo, A. Gilep, V. Pankov, Facile bulk preparation and structural characterization of agglomerated γ-Fe2O3/SiO2 nanocomposite particles for nucleic acids isolation and analysis, Mater. Chem. Phys. 219 (2018) 109–119. https://doi.org/ 0.1016/j.matchemphys.2018.08.011
[111] S. Carinelli, C. Xufré, S. Alegret, M. Martí, M.I. Pividori, Talanta CD4 quanti fi cation based on magneto ELISA for AIDS diagnosis in low resource settings, Talanta 160 (2016) 36–45. https://doi.org/10.1016/j.talanta.2016.06.055
[112] G. Yao, D. Qi, C. Deng, X. Zhang, Functionalized magnetic carbonaceous microspheres for trypsin immobilization and the application to fast proteolysis, J. Chromatogr. A. 1215 (2008) 82–91. https://doi.org/ 10.1016/j.chroma.2008.10.114
[113] S. Padash Hooshyar, R.Z. Mehrabian, H. Ahmad Panahi, M. Habibi Jouybari, H. Jalilian, Synthesis and characterization of PEGylated dendrimers based on magnetic nanoparticles for letrozole extraction and determination in body fluids and pharmaceutical samples, Microchem. J. 143 (2018) 190–197. https://doi.org/ 10.1016/j.microc.2018.08.012
[114] P.-C. Lin, P.-H. Chou, S.-H. Chen, H.-K. Liao, K.-Y. Wang, Y.-J. Chen, C.-C. Lin, Ethylene Glycol-Protected Magnetic Nanoparticles for a Multiplexed Immunoassay in Human Plasma, Small. 2 (2006) 485–489. https://doi.org/10.1002/smll.200500387
[115] J. Gao, K. Meyer, K. Borucki, P.M. Ueland, Multiplex Immuno-MALDI-TOF MS for Targeted Quantification of Protein Biomarkers and Their Proteoforms Related to Inflammation and Renal Dysfunction, Anal. Chem. 90 (2018) 3366–3373. https://doi.org/10.1021/acs.analchem.7b04975
[116] P.-C. Lin, M.-C. Tseng, A.-K. Su, Y.-J. Chen, C.-C. Lin, Functionalized magnetic nanoparticles for small-molecule isolation, identification, and quantification, Anal. Chem. 79 (2007) 3401–3408. https://doi.org/10.1021/ac070195u
[117] S. Tang, G.H. Chia, Y. Chang, H.K. Lee, Automated dispersive solid-phase extraction using dissolvable Fe3O4 layered double hydroxide core-shell microspheres as sorbent, Anal. Che. 86 (2014)11070-11076. https://doi.org/10.1021/ac503323e
[118] W. Zhang, Y. Zhang, Q. Jiang, W. Zhao, A. Yu, H. Chang, X. Lu, F. Xie, B. Ye, S. Zhang, Tetraazacalix[2]arence[2]triazine Coated Fe3O4/SiO2 magnetic nanoparticles for simultaneous dispersive solid phase extraction and determination of trace multitarget analytes, Anal. Chem. 88 (2016) 10523–10532. https://doi.org/10.1021/acs.analchem.6b02583
[119] C. Bendicho, C. Bendicho-Lavilla, I. Lavilla, Nanoparticle-assisted chemical speciation of trace elements, TrAC Trends Anal. Chem. 77 (2016) 109–121. https://doi.org/ 10.1016/j.trac.2015.12.015
[120] K. Aguilar-Arteaga, J.A. Rodriguez, E. Barrado, Magnetic solids in analytical chemistry: A review, Anal. Chim. Acta. 674 (2010) 157–165. https://doi.org/ 10.1016/j.aca.2010.06.043
[121] L. Xie, R. Jiang, F. Zhu, H. Liu, G. Ouyang, Application of functionalized magnetic nanoparticles in sample preparation, Anal. Bioanal. Chem. 406 (2014) 377–399. https://doi.org/10.1007/s00216-013-7302-6
[122] A.A. Hernández-hernández, G.A. Álvarez-romero, E. Contreras-lópez, K. Aguilar-arteaga, A. Castañeda-ovando, Food analysis by microextraction methods based on the use of magnetic nanoparticles as supports: Recent advances, Food Anal. Methods 10 (2017) 2974–2993. https://doi.org/10.1007/s12161-017-0863-9
[123] M. Hasanzadeh, N. Shadjou, M. de la Guardia, Iron and iron-oxide magnetic nanoparticles as signal-amplification elements in electrochemical biosensing, TrAC – Trends Anal. Chem. 72 (2015) 1–9. https://doi.org/10.1016/j.trac.2015.03.016
[124] V. Urbanova, M. Magro, A. Gedanken, D. Baratella, F. Vianello, R. Zboril, Nanocrystalline iron oxides, composites, and related materials as a platform for electrochemical, magnetic, and chemical biosensors, Chem. Mater. 26 (2014) 6653–6673. https://doi.org/10.1021/cm500364x
[125] F. Scholz, Electroanalytical methods, Springer Heidelberg Dordrecht London New York, 2010
[126] P. Yáñez-Sedeño, S. Campuzano, J.M. Pingarrón, Electrochemical sensors based on magnetic molecularly imprinted polymers: A review, Anal. Chim. Acta. 960 (2017) 1–17. https://doi.org/https://doi.org/10.1016/j.aca.2017.01.003
[127] S. Ansari, Application of magnetic molecularly imprinted polymer as a versatile and highly selective tool in food and environmental analysis: Recent developments and trends, TrAC Trends Anal. Chem. 90 (2017) 89–106. https://doi.org/https://doi.org/10.1016/j.trac.2017.03.001
[128] Q. Han, X. Shen, W. Zhu, C. Zhu, X. Zhou, H. Jiang, Magnetic sensing film based on Fe3O4@Au-GSH molecularly imprinted polymers for the electrochemical detection of estradiol, Biosens. Bioelectron. 79 (2016) 180–186. https://doi.org/https://doi.org/10.1016/j.bios.2015.12.017
[129] J.E. Lofgreen, G.A. Ozin, Controlling morphology and porosity to improve performance of molecularly imprinted sol–gel silica, Chem. Soc. Rev. 43 (2014) 911–933. https://doi.org/10.1039/C3CS60276A
[130] N. Wongkaew, M. Simsek, C. Griesche, A.J. Baeumner, Functional nanomaterials and nanostructures enhancing electrochemical biosensors and lab-on-a-chip performances : Recent progress , applications , and future perspective, Chem. Rev. 119 (2018) 120–194. https://doi.org/10.1021/acs.chemrev.8b00172
[131] Z. Sun, W. Wang, H. Wen, C. Gan, H. Lei, Y. Liu, Sensitive electrochemical immunoassay for chlorpyrifos by using flake-like Fe3O4 modified carbon nanotubes as the enhanced multienzyme label, Anal. Chim. Acta. 899 (2015) 91–99. https://doi.org/10.1016/j.aca.2015.09.057
[132] Z. Zhu, C. Yang, Recent progress in micro fl uidics-based biosensing, Anal. Chem. 9 (2019) 388-404. https://doi.org/10.1021/acs.analchem.8b05007
[133] Y. Song, B. Lin, T. Tian, X. Xu, W. Wang, Q. Ruan, J. Guo, Z. Zhu, C. Yang, Recent progress in microfluidics-based biosensing, Anal. Chem. 91 (2019) 388–404. https://doi.org/10.1021/acs.analchem.8b05007
[134] J.-R. Lee, D.J.B. Bechstein, C.C. Ooi, A. Patel, R.S. Gaster, E. Ng, L.C. Gonzalez, S.X. Wang, Magneto-nanosensor platform for probing low-affinity protein–protein interactions and identification of a low-affinity PD-L1/PD-L2 interaction, Nat. Commun. 7 (2016) 12220. https://doi.org/ 10.1038/ncomms12220
[135] I. Giouroudi, G. Kokkinis, Recent Advances in Magnetic Microfluidic Biosensors, Nanomaterials 7 (2017) 171. https://doi.org/10.3390/nano7070171
[136] M.A. Brown, R.C. Semelka, B.M. Dale, MRI: basic principles and applications, John Wiley & Sons, 2015
[137] E. Peng, F. Wang, J.M. Xue, Nanostructured magnetic nanocomposites as MRI contrast agents, J. Mater. Chem. B. 3 (2015) 2241–2276. https://doi.org/10.1039/C4TB02023E
[138] N. Lee, T. Hyeon, Designed synthesis of uniformly sized iron oxide nanoparticles for efficient magnetic resonance imaging contrast agents, Chem. Soc. Rev. 41 (2012) 2575–2589. https://doi.org/10.1039/c1cs15248c
[139] J. Wahsner, E.M. Gale, A. Rodríguez-Rodríguez, P. Caravan, Chemistry of MRI contrast agents: Current challenges and new frontiers, Chem. Rev. 119 (2019) 957–1057. https://doi.org/10.1021/acs.chemrev.8b00363
[140] J. Lu, J. Sun, F. Li, J. Wang, J. Liu, D. Kim, C. Fan, T. Hyeon, D. Ling, Highly Sensitive Diagnosis of Small Hepatocellular Carcinoma Using pH-Responsive Iron Oxide Nanocluster Assemblies, J. Am. Chem. Soc. 140 (2018) 10071–10074. https://doi.org/10.1021/jacs.8b04169
[141] T. Atanasijevic, A. Jasanoff, Preparation of iron oxide-based calcium sensors for MRI, Nat. Protoc. 2 (2007) 2582. https://doi.org/ 10.1038/nprot.2007.377
[142] T. Atanasijevic, M. Shusteff, P. Fam, A. Jasanoff, Calcium-sensitive MRI contrast agents based on superparamagnetic iron oxide nanoparticles and calmodulin, Proc. Natl. Acad. Sci. 103 (2006) 14707 LP-14712. https://doi.org/10.1073/pnas.0606749103
[143] J. Choi, S. Kim, D. Yoo, T.-H. Shin, H. Kim, M.D. Gomes, S.H. Kim, A. Pines, J. Cheon, Distance-dependent magnetic resonance tuning as a versatile MRI sensing platform for biological targets, Nat. Mater. 16 (2017) 537
[144] D. Alcantara, S. Lopez, M.L. García-Martin, D. Pozo, Iron oxide nanoparticles as magnetic relaxation switching (MRSw) sensors: Current applications in nanomedicine, nanomedicine nanotechnology, Biol. Med. 12 (2016) 1253–1262. https://doi.org/https://doi.org/10.1016/j.nano.2016.01.005
[145] Y. Zhang, H. Yang, Z. Zhou, K. Huang, S. Yang, G. Han, Recent Advances on Magnetic Relaxation Switching Assay-Based Nanosensors, Bioconjug. Chem. 28 (2017) 869–879. https://doi.org/10.1021/acs.bioconjchem.7b00059
[146] Y. Li, J. Liu, Y. Fu, Q. Xie, Y. Li, Magnetic-core@dual-functional-shell nanocomposites with peroxidase mimicking properties for use in colorimetric and electrochemical sensing of hydrogen peroxide, Microchim. Acta 186 (2018) 20. https://doi.org/10.1007/s00604-018-3116-8
[147] N. Lu, M. Zhang, L. Ding, J. Zheng, C. Zeng, Y. Wen, G. Liu, A. Aldalbahi, J. Shi, S. Song, X. Zuo, L. Wang, Yolk–shell nanostructured Fe3O4@C magnetic nanoparticles with enhanced peroxidase-like activity for label-free colorimetric detection of H2O2 and glucose, Nanoscale 9 (2017) 4508–4515. https://doi.org/10.1039/C7NR00819H
[148] J. Shen, Y. Yang, Y. Zhang, H. Yang, Z. Zhou, S. Yang, Functionalized Au-Fe3O4 nanocomposites as a magnetic and colorimetric bimodal sensor for melamine, Sens. Actuators B Chem. 226 (2016) 512–517. https://doi.org/10.1016/j.snb.2015.12.029
[149] H. Lai, F. Xu, L. Wang, A review of the preparation and application of magnetic nanoparticles for surface-enhanced Raman scattering, J. Mater. Sci. 53 (2018) 8677–8698. https://doi.org/10.1007/s10853-018-2095-9
[150] Z. Rong, C. Wang, J. Wang, D. Wang, R. Xiao, S. Wang, Magnetic immunoassay for cancer biomarker detection based on surface-enhanced resonance Raman scattering from coupled plasmonic nanostructures, Biosens. Bioelectron. 84 (2016) 15–21. https://doi.org/ 10.1016/j.bios.2016.04.006