Magnetic Nanomaterials for Separations

$28.50

Magnetic Nanomaterials for Separations

Sunil Kumar and Rashmi Madhuri

Magnetic nanomaterials have low cost, high removal capacity, reusability, high surface-volume ratio, and high reactivity towards eluent compounds, therefore, are highly suitable for separation purposes. Their only drawback associated with magnetic nanoparticles (MNPs) is their poor stability in harsh conditions. Therefore, in general, for their wider applications modified MNPs are used. Magnetic nanomaterials were modified or coated with various kinds of materials to protect their outer surface from strong pH, high temperature, etc. Here, in this chapter, we focused on the modification of MNPs and their role in separation science. For example, modifications with inorganic materials (like silica, metal, and carbon) improve the reactivity of MNPs and reduce their agglomeration. Similarly, modification with organic materials (like surfactants and polymer) may improve stability of MNPs and avoid their agglomeration. Here, we have included the role of modified MNPs for successful separation of protein, nucleic acid, heavy metal ions, dyes, etc.
Keywords

Keywords
Separation, Magnetic Nanoparticles, Metal Ions, Carbonaceous Nanomaterials, Surfactants, Polymers

Published online 1/30/2020, 43 pages

Citation: Sunil Kumar and Rashmi Madhuri, Magnetic Nanomaterials for Separations, Materials Research Proceedings, Vol. 66, pp 87-129, 2020

DOI: https://doi.org/10.21741/9781644900611-3

Part of the book on Magnetochemistry

References
[1] N. Sanvicens, M. Pilar Marco, Multifunctional nanoparticles-properties and prospects for their use in human medicine, Trends Biotechnol. 26 (2008) 425-433. https://doi.org/10.1016/j.tibtech.2008.04.005
[2] L.M. Rossi, N.J.S Costa, F.P. Silva, R. Wojcieszak, Magnetic nanomaterials in catalysis advanced catalysts for magnetic separation and beyond, Green Chem. 16 (2014) 2906-2933. https://doi.org/10.1039/c4gc00164h
[3] M. Chellappa, U. Vijayalakshmi, Fabrication of Fe3O4-silica core-shell magnetic nano-particles and its characterization for biomedical applications, Mater Today Proc. 9 (2019) 371-379. https://doi.org/10.1016/j.matpr.2019.02.166
[4] H. Shokrollahi, A. Khorramdin, G. Isapour, Magnetic resonance imaging by using nano-magnetic particles, J. Magn. Magn. Mater. 369 (2014) 176-183. https://doi.org/10.1016/j.jmmm.2014.06.023
[5] L. Chen, T. Wang, J. Tong, Application of derivatized magnetic materials to the separation and the preconcentration of pollutants in water samples, TrAC, Trends Anal. Chem. 7 (2011) 1095-1108. https://doi.org/10.1016/j.trac.2011.02.013
[6] N. Ali, H. Zaman, M. Bilal, M.S. Nazir, H. M. Iqbal, Environmental perspectives of interfacially active and magnetically recoverable composite materials-A review, Sci. Total Environ. 670 (2019) 523-538. https://doi.org/10.1016/j.scitotenv.2019.03.209
[7] T.H. Tran, H.L. Nguyen, D.S. Hwang, J.Y. Lee, H.G. Cha, J.M. Koo, S.Y. Hwang, J. Park, D.X. Oh, Five different chitin nanomaterials from identical source with different advantageous functions and performances, Carbohydr. Polym. 205 (2019) 392-400. https://doi.org/10.1016/j.carbpol.2018.10.089
[8] S. Mohamed M.S. Veeranarayanan, T. Maekawa, D.S. Kumar, External stimulus responsive inorganic nanomaterials for cancer theranostics, Adv. Drug Deliver Rev. 138 (2019) 18-40. https://doi.org/10.1016/j.addr.2018.10.007
[9] S.C. Tjong, Synthetic architecture of inorganic nanomaterials, Nanocrystalline Materials, Elsevier (2006).
[10] Z. Chen, C. Wu, Z. Zhang, W. Wu, X. Wang, Z. Yu, Synthesis, functionalization, and nanomedical applications of functional magnetic nanoparticles, Chin. Chem. Lett. 29 (2018) 1601-1608. https://doi.org/10.1016/j.cclet.2018.08.007
[11] M. R. Parker, The physics of magnetic separation, Contemp Phys. 18 (1977) 279-306. https://doi.org/10.1080/00107517708231486
[12] L. Mohammed, H. G. Gomaa, D. Ragab, J. Zhu, Magnetic nanoparticles for environmental and biomedical applications: A review, Particuology 30 (2017) 1-14. https://doi.org/10.1016/j.partic.2016.06.001
[13] M. Kubovcikova, M. Koneracka, O. Strbak, M. Molcan, V. Zavisova, I. Antal, I. Khmara, Poly-L-lysine designed magnetic nanoparticles for combined hyperthermia, magnetic resonance imaging and cancer cell detection, J. Magn. Magn. Mater. 475 (2019) 316-326. https://doi.org/10.1016/j.jmmm.2018.11.027
[14] K. Wang, X. Xu, L. Lu, A. Li, X. Han, Y. Wu, J. Miao, Y. Jiang, Magnetically recoverable Ag/Bi2Fe4O9 nanoparticles as a visible-light-driven photocatalyst, Chem. Phys. Lett. 715 (2019) 129-133. https://doi.org/10.1016/j.cplett.2018.11.021
[15] Z. Wang, J. Guo, J. Ma, L. Shao, Highly regenerable alkali-resistant magnetic nanoparticles inspired by mussels for rapid selective dye removal offer high-efficiency environmental remediation, J. Mater. Chem. A 39 (2015) 19960-19968. https://doi.org/10.1039/C5TA04840K
[16] W. Song, D.A. Gregory, H.A. janabi, M. Muthana, Z. Cai, X. Zhao, Magnetic-silk/polyethyleneimine core-shell nanoparticles for targeted gene delivery into human breast cancer cells, Int. J. Pharm. 555 (2019) 322-336. https://doi.org/10.1016/j.ijpharm.2018.11.030
[17] A. Sharifi, S.Y. Motlagh, H. Badfar, Numerical investigation of magnetic drug targeting using magnetic nanoparticles to the Aneurysmal Vessel, J. Magn. Magn. Mater. 474 (2019) 236-245. https://doi.org/10.1016/j.jmmm.2018.10.147
[18] A. Ito, R. Teranishi, K. Kamei, M. Yamaguchi, A. Ono, S. Masumoto, Y. Sonoda, M. Horie, Y. Kawabe, M. Kamihira, Magnetically triggered transgene expression in mammalian cells by localized cellular heating of magnetic nanoparticles, J. Biosci. Bioeng. (2019). https://doi.org/10.1016/j.jbiosc.2019.03.008
[19] A.O. Adeoye, J.F. Kayode, B.I. Oladapo, S.O. Afolabi, Experimental analysis and optimization of synthesized magnetic nanoparticles coated with PMAMPC-MNPs for bioengineering application, St. Petersburg Polytechnical University Journal: Phys. Mathematics, 3 (2017) 333-338. https://doi.org/10.1016/j.spjpm.2017.10.003
[20] A. Sharma, A.I.Y. Tok, C. Lee, R. Ganapathy, P. Alagappan, B. Liedberg, Magnetic field assisted preconcentration of biomolecules for lateral flow assaying, Sens. Actuators, B 285 (2019) 431-437. https://doi.org/10.1016/j.snb.2019.01.073
[21] T. Chungcharoen, K Netjaibun, T. Pratabkong, P. Suwannasam, W. Limmun. Effects of inner angle of bowl, flow rate and speed on the efficiency of glycerol separation from the raw biodiesel using cylindrical bowl centrifuge, Energy Procedia 138 (2017) 405-410. https://doi.org/10.1016/j.egypro.2017.10.184
[22] A. Azzouz, S. K. Kailasa, S.S. Lee, A. J. Rascón, E. Ballesteros, M. Zhang, K.H. Kim, Review of nanomaterials as sorbents in solid-phase extraction for environmental samples, TrAC, Trends Anal. Chem. 113 (2018) 256-279. https://doi.org/10.1016/j.trac.2019.02.017
[23] L. Chen, C.H. Zhou, S. Fiore, D.S. Tong, H. Zhang, C.S. Li, S.F. Ji, W.H. Yu. Functional magnetic nanoparticle/clay mineral nanocomposites: Preparation, magnetism and versatile applications, Appl. Clay. Sci. 127 (2016) 143-163. https://doi.org/10.1016/j.clay.2016.04.009
[24] A. Canakci, T. Varol, S. Ozsahin, Analysis of the effect of a new process control agent technique on the mechanical milling process using a neural network model: measurement and modelling, Measurement 46 (2013) 1818-1827. https://doi.org/10.1016/j.measurement.2013.02.005
[25] J. Alonso, J.M. Barandiarán, L.F. Barquín, A.G-Arribas. Magnetic nanoparticles, synthesis, properties, and applications, In magnetic nanostructured materials, Elsevier, 2018, 1-40. https://doi.org/10.1016/B978-0-12-813904-2.00001-2
[26] B. Balaraju, S. Kaleemulla, C. Krishnamoorthi, Structural and magnetic properties of NiO-MnO2 nanocomposites prepared by mechanical milling, J. Magn. Magn. Mater. 464 (2018) 36-43. https://doi.org/10.1016/j.jmmm.2018.05.039
[27] C.D. Pham, J. Chang, M.A. Zurbuchen, J. P. Chang, Magnetic properties of CoFe2O4 thin films synthesized by radical-enhanced atomic layer deposition, ACS Appl. Mater. Interfaces 9 (2017) 36980-36988. https://doi.org/10.1021/acsami.7b08097
[28] D.M. Mattox, Handbook of physical vapor deposition (PVD) processing. William Andrew, 2010. https://doi.org/10.1016/B978-0-8155-2037-5.00008-3
[29] P.M. Martin, Deposition technologies, an overview. Handbook of deposition technologies for films and coatings, Third Edition, Elsevier Inc., 2010, 1-31. https://doi.org/10.1016/B978-0-8155-2031-3.00001-6
[30] H. Alijani, M. H. Beyki, Z. Shariatinia, M. Bayat, F. Shemirani, A new approach for one step synthesis of magnetic carbon nanotubes/diatomite earth composite by chemical vapor deposition method: Application for removal of lead ions, Chem. Eng. J. 253 (2014) 456-463. https://doi.org/10.1016/j.cej.2014.05.021
[31] C. Peng, J. Wang, N. Zhou, G. Sun. Fabrication of nanopowders by electrical explosion of a copper wire in water, Curr. Appl. Phys. 16 (2016) 284-287. https://doi.org/10.1016/j.cap.2015.12.009
[32] F. Lv, H. Qi, P. Liu, J. Liu, Molecular dynamics simulation of the thermal pulse explosion of metal nanowire, AIP Advances 8 (2018) 075307. https://doi.org/10.1063/1.5037662
[33] I.V Beketov, A.P. Safronov, A.V. Bagazeev, A. Larrañaga, G.V. Kurlyandskaya, A.I. Medvedev, In situ modification of Fe and Ni magnetic nanopowders produced by the electrical explosion of wire, J. Alloys Compd. 586 (2014), S483-S488. https://doi.org/10.1016/j.jallcom.2013.01.152
[34] K. Song, W. Kim, CY. Suh, D. Shin, K.S. Ko, K. Ha, Magnetic iron oxide nanoparticles prepared by electrical wire explosion for arsenic removal, Powder Technol. 246 (2013) 572-574. https://doi.org/10.1016/j.powtec.2013.06.023
[35] P. Chandane, J. Ladke, C. Jori, S. Deshmukh, S. Zinjarde, M. Chakankar, H. Hocheng, U. Jadhav, Synthesis of magnetic Fe3O4 nanoparticles from scrap iron and use of their peroxidase like activity for phenol detection, J Environ. Chem Eng. 7 (2019), 103083. https://doi.org/10.1016/j.jece.2019.103083
[36] Y.V.M. Reddy, B. Sravani, S. Agarwal, V.K. Gupta, G. Madhavi, Electrochemical sensor for detection of uric acid in the presence of ascorbic acid and dopamine using the poly (DPA)/SiO2@Fe3O4 modified carbon paste electrode, J. Electroanal. Chem. 820 (2018) 168-175. https://doi.org/10.1016/j.jelechem.2018.04.059
[37] Z. Chen, C. Wu, Z. Zhang, W. Wu, X. Wang, Z. Yu, Synthesis, functionalization, and nanomedical applications of functional magnetic nanoparticles, Chin. Chem. Lett. 29 (2018) 1601-1608. https://doi.org/10.1016/j.cclet.2018.08.007
[38] S. Nigam, K. C. Barick, D. Bahadu, Development of citrate-stabilized Fe3O4 nanoparticles: conjugation and release of doxorubicin for therapeutic applications, J. Magn. Magn. Mater. 323 (2011) 237-243. https://doi.org/10.1016/j.jmmm.2010.09.009
[39] M. SA. Darwish, Effect of carriers on heating efficiency of oleic acid-stabilized magnetite nanoparticles, J. Mol. Liq. 231 (2017) 80-85. https://doi.org/10.1016/j.molliq.2017.01.094
[40] R. Valenzuela, M. C. Fuentes, C. Parra, J. Baeza, N. Duran, S. K. Sharma, M. Knobel, J. Freer, Influence of stirring velocity on the synthesis of magnetite nanoparticles (Fe3O4) by the co-precipitation method, J. Alloys Compd. 488 (2009) 227-231. https://doi.org/10.1016/j.jallcom.2009.08.087
[41] L.B. Mello, L.C. Varanda, F.A. Sigoli, I.O. Mazali, Co-precipitation synthesis of (Zn-Mn)-co-doped magnetite nanoparticles and their application in magnetic hyperthermia, J. Alloys Compd. 779 (2019) 698-705. https://doi.org/10.1016/j.jallcom.2018.11.280
[42] J. Sánchez, D. Alicia C-Hernández, J C.E. Bocardo, J.M.A. Robles, P.Y.R. Rodríguez, R.A.J. Terán, P.B-Pérez, L.E.D-L. Prado, Synthesis of MnxGa1− xFe2O4 magnetic nanoparticles by thermal decomposition method for medical diagnosis applications, J. Magn. Magn. Mater. 427 (2017): 272-275. https://doi.org/10.1016/j.jmmm.2016.10.098
[43] A. Ahab, F. Rohman, F. Iskandar, F. Haryanto, I. Arif, A simple straightforward thermal decomposition synthesis of PEG-covered Gd2O3 (Gd2O3@ PEG) nanoparticles, Adv. Powder Technol. 27 (2016) 1800-1805. https://doi.org/10.1016/j.apt.2016.06.012
[44] X.H. Yi, F.X. Wang, X.D. Du, H. Fu, C.C. Wang, Highly efficient photocatalytic Cr (VI) reduction and organic pollutants degradation of two new bifunctional 2D Cd/Co-based MOFs, Polyhedron 152 (2018) 216-224. https://doi.org/10.1016/j.poly.2018.06.041
[45] M. Chen, L.L. Shao, J.J Li, W.J Pei, M.K. Chen, X.H Xie. One-step hydrothermal synthesis of hydrophilic Fe3O4/carbon composites and their application in removing toxic chemicals, RSC Adv. 6 (2016) 35228-35238. https://doi.org/10.1039/C6RA01408A
[46] J.E Szulejko, K.H. Kim, R.J.C. Brown, M.S. Bae, Review of progress in solvent-extraction techniques for the determination of polyaromatic hydrocarbons as airborne pollutants, TrAC, Trends Anal. Chem. 61 (2014) 40-48. https://doi.org/10.1016/j.trac.2014.07.001
[47] J. Sánchez, D. Alicia C-Hernández, J.C. E-Bocardo, J.M. A-Robles, P.Y.R. Rodríguez, R. A. J-Terán, P. B-Pérez, L.E. D-L. Prado, Synthesis of MnxGa1− xFe2O4 magnetic nanoparticles by thermal decomposition method for medical diagnosis applications, J. Magn. Magn. Mater. 427 (2017): 272-275. https://doi.org/10.1016/j.jmmm.2016.10.098
[48] H. Emadi, M. S-Niasari, A. Sobhani, Synthesis of some transition metal (M: 25Mn, 27Co, 28Ni, 29Cu, 30Zn, 47Ag, 48Cd) sulfide nanostructures by hydrothermal method, Adv. Colloid Interface Sci. 246 (2017) 52-74. https://doi.org/10.1016/j.cis.2017.06.007
[49] D.K. Dinkar, B. Das, R. Gopalan, B.S. Dehiya, Effects of surfactant on the structural and magnetic properties of hydrothermally synthesized NiFe2O4 nanoparticles, Mater. Chem. Phys. 218 (2018), 70-76. https://doi.org/10.1016/j.matchemphys.2018.07.020
[50] Y. Lu, Y. Zheng, S. You, F. Wang, Z. Gao, J. Shen, W. Yang, M. Yin, Bifunctional magnetic-fluorescent nanoparticles: synthesis, characterization, and cell imaging, ACS Appl. Mater. Interfaces 7 (2015): 5226-5232. https://doi.org/10.1021/am508266p
[51] M.S.A. Darwish, N.H.A Nguyen, A. Ševců, I. Stibor, S. K. Smoukov. Dual-modality self-heating and antibacterial polymer-coated nanoparticles for magnetic hyperthermia, Mater. Sci. Eng., C. 63 (2016) 88-95. https://doi.org/10.1016/j.msec.2016.02.052
[52] K.M Yenkie, W.Z. Wu, R.L. Clark, B.F. Pfleger, T.W. Root, C.T. Maravelias, A roadmap for the synthesis of separation networks for the recovery of bio-based chemicals: matching biological and process feasibility, Biotechnol. Adv. 34 (2016) 1362-1383. https://doi.org/10.1016/j.biotechadv.2016.10.003
[53] T. Chungcharoen, K. Netjaibun, T. Pratabkong, P. Suwannasam, W. Limmun, Effects of inner angle of bowl, flow rate and speed on the efficiency of glycerol separation from the raw biodiesel using cylindrical bowl centrifuge, Energy Procedia 138 (2017) 405-410. https://doi.org/10.1016/j.egypro.2017.10.184
[54] X. Jiang, W. Xiao, G. He, Falling film melt crystallization (III): Model development, separation effect compared to static melt crystallization and process optimization, Chem. Eng. Sci. 117 (2014): 198-209. https://doi.org/10.1016/j.ces.2014.06.027
[55] Y. Xu, X. Lv, G. Yang, J. Zhan, M. Li, T. Long, C.T. Ho, S. Li, Simultaneous separation of six pure polymethoxyflavones from sweet orange peel extract by high performance counter current chromatography, Food Chem. 292 (2019) 160-165. https://doi.org/10.1016/j.foodchem.2019.04.031
[56] A. Tripodi, D. Manzini, M. Compagnoni, G. Ramis, I. Rossetti, Alternative integrated distillation strategies for the purification of acetonitrile from ethanol ammoxidation, J. Ind. Eng. Chem. 59 (2018) 35-49. https://doi.org/10.1016/j.jiec.2017.10.003
[57] M. A Varfolomeev, V. B. Novikov, R. N. Nagrimanov, B. N. Solomonov, Modified solution calorimetry approach for determination of vaporization and sublimation enthalpies of branched-chain aliphatic and alkyl aromatic compounds at T= 298.15 K, J. Chem. Thermodyn. 91 (2015) 204-210 https://doi.org/10.1016/j.jct.2015.07.037
[58] Y.R. Zhang, S.Q. Wang, S.L. Shen, B.X. Zhao, A novel water treatment magnetic nanomaterial for removal of anionic and cationic dyes under severe condition, Chem. Eng. J. 233 (2013) 258-264. https://doi.org/10.1016/j.cej.2013.07.009
[59] S. Štěpánová, V. Kašička, Recent applications of capillary electromigration methods to separation and analysis of proteins, Anal. Chim. Acta. 933 (2016) 23-42. https://doi.org/10.1016/j.aca.2016.06.006
[60] J.H. Chang, J. Lee, Y. Jeong, J.H. Lee, I.J. Kim, S.E. Park, Hydrophobic partitioning approach to efficient protein separation with magnetic nanoparticles, Anal. Biochem. 405 (2010) 135-137. https://doi.org/10.1016/j.ab.2010.05.027
[61] S.K Mwilu, E. Siska, R.B.N. Baig, R.S. Varma, E. Heithmar, K.R. Rogers, Separation and measurement of silver nanoparticles and silver ions using magnetic particles, Sci. Total Environ. 472 (2014) 316-323. https://doi.org/10.1016/j.scitotenv.2013.10.077
[62] I. Ali, C. Peng, D. Lin, D. P. Saroj, I. Naz, Z.M. Khan, M. Sultan, M. Ali, Encapsulated green magnetic nanoparticles for the removal of toxic Pb2+ and Cd2+ from water development, characterization and application, J. Environ. Manage. 234 (2019) 273-289. https://doi.org/10.1016/j.jenvman.2018.12.112
[63] H. Heidari, B.L. Khosrowshahi, Magnetic solid phase extraction with carbon-coated Fe3O4 nanoparticles coupled to HPLC-UV for the simultaneous determination of losartan, carvedilol, and amlodipine besylate in plasma samples, J. Chromatogr. B. 1114-1115 (2019) 24-30. https://doi.org/10.1016/j.jchromb.2019.03.025
[64] Z. Jiaqi, D. Yimin, L. Danyang, W. Shengyun, Z. Liling, Z. Yi, Synthesis of carboxyl-functionalized magnetic nanoparticle for the removal of methylene blue, Colloids Surf. A 572 (2019) 58-66. https://doi.org/10.1016/j.colsurfa.2019.03.095
[65] J. Wu, P. Su, J. Huang, S. Wang, Y. Yang, Synthesis of teicoplanin-modified hybrid magnetic mesoporous silica nanoparticles and their application in chiral separation of racemic compounds, J. Colloid Interface Sci. 399 (2013) 107-114. https://doi.org/10.1016/j.jcis.2013.02.045
[66] M. Zhang, J. Qiao, L. Qi. Dual-functional polymer-modified magnetic nanoparticles for isolation of lysozyme, Anal. Chim. Acta 1035 (2018) 70-76. https://doi.org/10.1016/j.aca.2018.07.019
[67] R. Gao, X. Cui, Y. Hao, L. Zhang, D. Liu, Y. Tang, A highly-efficient imprinted magnetic nanoparticle for selective separation and detection of 17β-estradiol in milk, Food Chem. 194 (2016) 1040-1047. https://doi.org/10.1016/j.foodchem.2015.08.112
[68] N. Baimani, P.A. Azar, S. W. Husain, H.A. Panahi, A. Mehramizi, Providing hyper-branched dendrimer conjugated with β-cyclodextrin based on magnetic nanoparticles for the separation of methylprednisolone acetate, J. Chromatogr. A 1571 (2018) 38-46. https://doi.org/10.1016/j.chroma.2018.08.005
[69] W.W. Ye, Y.T. Ding, Y. Sun, F. Tian, M. Yang, A Nanoporous Alumina Membrane Based Impedance Biosensor for Histamine Detection with Magnetic Nanoparticles Separation and Amplification, Procedia Eng. 27 (2017) 116-117. https://doi.org/10.1016/j.protcy.2017.04.051
[70] B. Sun, X. Ni, Y. Cao, G. Cao, Electrochemical sensor based on magnetic molecularly imprinted nanoparticles modified magnetic electrode for determination of Hb, Biosens. Bioelectron. 91 (2017) 354-358. https://doi.org/10.1016/j.bios.2016.12.056
[71] E. Akkaya, G.D. Bozyiğit, S. Bakirdere, Simultaneous determination of 4-tert-octylphenol, chlorpyrifos-ethyl and penconazole by GC-MS after sensitive and selective preconcentration with stearic acid coated magnetic nanoparticles, Microchem. J. 146 (2019) 1190-1194. https://doi.org/10.1016/j.microc.2019.01.077
[72] D. Xu, X. Ming, M. Gan, X. Wu, Y. Dong, D. Wang, H. Wei, F. Xu, Rapid detection of Cronobacter spp. in powdered infant formula by thermophilic helicase-dependent isothermal amplification combined with silica-coated magnetic particles separation, J. Immunol. Methods 462 (2018) 54-58. https://doi.org/10.1016/j.jim.2018.08.008
[73] P. Wang, X. Wang, S. Yu, Y. Zou, J. Wang, Z. Chen, N.S. Alharbi, Silica coated Fe3O4 magnetic nanospheres for high removal of organic pollutants from wastewater, Chem. Eng. J. 306 (2016) 280-288. https://doi.org/10.1016/j.cej.2016.07.068
[74] A.S Timin, A.V. Solomonov, A. Kumagai, A. Miyawaki, S. Yu Khashirova, A. Zhansitov, E.V. Rumyantsev, Magnetic polymer-silica composites as bioluminescent sensors for bilirubin detection, Mater. Chem. Phys. 183 (2016) 422-429. https://doi.org/10.1016/j.matchemphys.2016.08.048
[75] Y. Pei, Q. Han, L. Tang, L. Zhao, L. Wu, Fabrication and characterisation of hydrophobic magnetite composite nanoparticles for oil/water separation, Mater. Technol. 31 (2016) 38-43. https://doi.org/10.1179/1753555715Y.0000000024
[76] R. Molaei, H. Tajik, M. Moradi, Magnetic solid phase extraction based on mesoporous silica-coated iron oxide nanoparticles for simultaneous determination of biogenic amines in an Iranian traditional dairy product; Kashk, Food Control. 101 (2019) 1-8. https://doi.org/10.1016/j.foodcont.2019.02.011
[77] M.T. Aljarrah, M.S.A-Harahsheh, M. Mayyas, M. Alrebaki, In situ synthesis of quaternary ammonium on silica-coated magnetic nanoparticles and its application for the removal of uranium (VI) from aqueous media, J. Environ. Chem. Eng. 6, (2018) 5662-5669. https://doi.org/10.1016/j.jece.2018.08.070
[78] F. Chen, X. Ming, X.X. Chen, M. Gan, B.G. Wang, F. Xu, H. Wei, Immunochromatographic strip for rapid detection of Cronobacter in powdered infant formula in combination with silica-coated magnetic nanoparticles separation and 16S rRNA probe, Biosens. Bioelectron. 61 (2014) 306-313. https://doi.org/10.1016/j.bios.2014.05.033
[79] F. Javaheri, S. Hassanajili, Synthesis of Fe3O4@ SiO2@ MPS@ P4VP nanoparticles for nitrate removal from aqueous solutions, J. Appl. Polym. Sci. 133 (2016) 71348-51154. https://doi.org/10.1002/app.44330
[80] S. B. Ulaeto J. K. Pancrecious, T. P. D. Rajan, B. C. Pai, Smart Coatings,In Noble Metal-Metal Oxide Hybrid Nanoparticles, Woodhead Publishing, 2019, 341-372. https://doi.org/10.1016/B978-0-12-814134-2.00017-6
[81] H.P. Peng, R.P. Liang, J.D. Qiu, Facile synthesis of Fe3O4@Al2O3 core-shell nanoparticles and their application to the highly specific capture of heme proteins for direct electrochemistry, Biosens. Bioelectron. 26 (2011) 3005-3011. https://doi.org/10.1016/j.bios.2010.12.003
[82] L. Chai, Y. Wang, N. Zhao, W. Yang, X. You, Sulfate-doped Fe3O4/Al2O3 nanoparticles as a novel adsorbent for fluoride removal from drinking water, Water Res. 47 (2013) 4040-4049. https://doi.org/10.1016/j.watres.2013.02.057
[83] Y. Li, Y. Liu, J. Tang, H. Lin, N. Yao, X. Shen, C. Deng, P. Yang, X. Zhang, Fe3O4@ Al2O3 magnetic core-shell microspheres for rapid and highly specific capture of phosphopeptides with mass spectrometry analysis, J. Chromatogr. A 1172 (2007) 57-71. https://doi.org/10.1016/j.chroma.2007.09.062
[84] L. Sun, X. Sun, X. Du, Y. Yue, L. Chen, H. Xu, Q. Zeng, H. Wang, L. Ding, Determination of sulfonamides in soil samples based on alumina-coated magnetite nanoparticles as adsorbents, Anal. Chim. Acta. 665 (2010) 185-192. https://doi.org/10.1016/j.aca.2010.03.044
[85] J.C. Liu, P.J. Tsai, Y.C. Lee, Y-C. Chen, Affinity capture of uropathogenic Escherichia coli using pigeon ovalbumin-bound Fe3O4@Al2O3 magnetic nanoparticles, Anal. Chem. 80 (2008) 5425-5432. https://doi.org/10.1021/ac800487v
[86] X.T. Peng, L. Jiang, Y. Gong, X.Z. Hu, L. J. Peng, Y.Q. Feng, Preparation of mesoporous ZrO2-coated magnetic microsphere and its application in the multi-residue analysis of pesticides and PCBs in fish by GC-MS/MS, Talanta 132 (2015) 118-125. https://doi.org/10.1016/j.talanta.2014.08.069
[87] W. Wang, H. Zhang, L. Zhang, H. Wan, S. Zheng, Z. Xu, Adsorptive removal of phosphate by magnetic Fe3O4@C@ ZrO2, Colloids Surf., A 469 (2015) 100-106. https://doi.org/10.1016/j.colsurfa.2015.01.002
[88] G. Yuan, C. Zhao, H. Tu, M. Li, J. Liu, J. Liao, Y. Yang, J. Yang, N. Liu, Removal of Co (II) from aqueous solution with Zr-based magnetic metal-organic framework composite, Inorg. Chim. Acta. 483 (2018) 488-495. https://doi.org/10.1016/j.ica.2018.08.057
[89] G-Y. Zhang, S-Y. Deng, W-R. Cai, S. Cosnier, X-J. Zhang, D. Shan, Magnetic zirconium hexacyanoferrate (II) nanoparticle as tracing tag for electrochemical DNA assay, Anal. Chem. 87 (2015) 9093-9100. https://doi.org/10.1021/acs.analchem.5b02395
[90] J. López, J.M.A-Torres, L.A. Arce-Saldaña, A. Portillo-López, S. González-Martínez, J. S. Betancourt, M. E. Gómez, Ag nanoparticles embedded in a magnetic composite for magnetic separation applications, J. Alloys Compd. 786 (2019) 839-847. https://doi.org/10.1016/j.jallcom.2019.02.029
[91] R. Das, V.S. Sypu, H. K. Paumo, M. Bhaumik, V. Maharaj, A. Maity, Silver decorated magnetic nanocomposite (Fe3O4@PPy-MAA/Ag) as highly active catalyst towards reduction of 4-nitrophenol and toxic organic dyes, Appl. Catal. B 244 (2019) 546-558. https://doi.org/10.1016/j.apcatb.2018.11.073
[92] H. Veisi, S.B. Moradi, A. Saljooqi, P. Safarimehr, Silver nanoparticle-decorated on tannic acid-modified magnetite nanoparticles (Fe3O4@TA/Ag) for highly active catalytic reduction of 4-nitrophenol, Rhodamine B and Methylene blue, Mater. Sci. Eng. C 100 (2019) 445-452. https://doi.org/10.1016/j.msec.2019.03.036
[93] L. Wang, J. Luo, S. Shan, E. Crew, J. Yin, C-J. Zhong, B. Wallek, S. SS. Wong, Bacterial inactivation using silver-coated magnetic nanoparticles as functional antimicrobial agents, Anal. Chem. 83 (2011) 8688-8695. https://doi.org/10.1021/ac202164p
[94] D. Qi, H. Zhang, J. Tang, C. Deng, X. Zhang, Facile synthesis of mercaptophenylboronic acid-functionalized core− shell structure Fe3O4@C@Au magnetic microspheres for selective enrichment of glycopeptides and glycoproteins, J. Phys. Chem. C 114, (2010) 9221-9226. https://doi.org/10.1021/jp9114404
[95] J. Wang, X. Wu, C. Wang, Z. Rong, H. Ding, H. Li, S. Li, Facile synthesis of Au-coated magnetic nanoparticles and their application in bacteria detection via a SERS method, ACS Appl. Mater. Interfaces 8 (2016) 19958-19967. https://doi.org/10.1021/acsami.6b07528
[96] A. C. Dutta, N. Agnihotri, R. Doong, A. De, Label-free and nondestructive separation technique for isolation of targeted DNA from DNA-protein mixture using magnetic Au-Fe3O4 nanoprobes, Anal. Chem. 89 (2017) 12244-12251. https://doi.org/10.1021/acs.analchem.7b03095
[97] Z. Luo, Y. Wang, X. Lu, J. Chen, F. Wei, Z. Huang, C. Zhou, Y. Duan, Fluorescent aptasensor for antibiotic detection using magnetic bead composites coated with gold nanoparticles and a nicking enzyme, Anal. Chim. Acta 984 (2017) 177-184. https://doi.org/10.1016/j.aca.2017.06.037
[98] K. Khun, Z. H. Ibupoto, J. Lu, M. S. AlSalhi, M. Atif, A. A. Ansari, M. Willander, Potentiometric glucose sensor based on the glucose oxidase immobilized iron ferrite magnetic particle/chitosan composite modified gold coated glass electrode, Sens. Actuators B 173 (2012) 698-703. https://doi.org/10.1016/j.snb.2012.07.074
[99] L. Jiang, Q. Ye, J. Chen, Z. Chen, Y. Gu. Preparation of magnetically recoverable bentonite-Fe3O4-MnO2 composite particles for Cd (II) removal from aqueous solutions, J. Colloid Interface Sci. 513 (2018) 748-759. https://doi.org/10.1016/j.jcis.2017.11.063
[100] Z. Wen, Y. Zhang, Y. Wang, L. Li, R. Chen, Redox transformation of arsenic by magnetic thin-film MnO2 nanosheet-coated flowerlike Fe3O4 nanocomposites, Chem. Eng. J. 312 (2017) 39-49. https://doi.org/10.1016/j.cej.2016.11.112
[101] Y.G. Kang, H. Yoon, C-S. Lee, E.J. Kim, Y.S. Chang, Advanced oxidation and adsorptive bubble separation of dyes using MnO2-coated Fe3O4 nanocomposite, Water Res. 151 (2019) 413-422. https://doi.org/10.1016/j.watres.2018.12.038
[102] C. M. Gonzalez, J. Hernandez, Jason G. Parsons, J.L.G. Torresdey, A study of the removal of selenite and selenate from aqueous solutions using a magnetic iron/manganese oxide nanomaterial and ICP-MS, Microchem. J. 96, (2010) 324-329. https://doi.org/10.1016/j.microc.2010.05.005
[103] V. Iswarya, M. Bhuvaneshwari, N. Chandrasekaran, A. Mukherjee, Trophic transfer potential of two different crystalline phases of TiO2 NPs from Chlorella sp. to Ceriodaphnia dubia, Aquat. Toxicol. 197 (2018) 89-97. https://doi.org/10.1016/j.aquatox.2018.02.003
[104] S.V. Mousavi, A. Bozorgian, N. Mokhtari, M.A. Gabris, H.R. Nodeh, W.A.W. Ibrahim. A novel cyanopropylsilane-functionalized titanium oxide magnetic nanoparticle for the adsorption of nickel and lead ions from industrial wastewater: Equilibrium, kinetic and thermodynamic studies, Microchem. J. 145 (2019) 914-920. https://doi.org/10.1016/j.microc.2018.11.048
[105] J. Bi, X. Huang, J. Wang, T. Wang, H. Wu, J. Yang, H. Lu, H. Hao, Oil-phase cyclic magnetic adsorption to synthesize Fe3O4@C@TiO2-nanotube composites for simultaneous removal of Pb (II) and Rhodamine B, Chem. Eng. J. 366 (2019) 50-61. https://doi.org/10.1016/j.cej.2019.02.017
[106] M.A Habila, Z.A.A. Othman, A.M.E. Toni, J.P. Labis, M. Soylak, Synthesis and application of Fe3O4@ SiO2@TiO2 for photocatalytic decomposition of organic matrix simultaneously with magnetic solid phase extraction of heavy metals prior to ICP-MS analysis, Talanta, 154 (2016) 539-547. https://doi.org/10.1016/j.talanta.2016.03.081
[107] R. Abazari, A. R. Mahjoub, S. Sanati, Magnetically recoverable Fe3O4-ZnO/AOT nanocomposites: synthesis of a core-shell structure via a novel and mild route for photocatalytic degradation of toxic dyes, J. Mol. Liq. 223 (2016) 1133-1142. https://doi.org/10.1016/j.molliq.2016.09.038
[108] N. Li, J. Zhang, Y. Tian, J. Zhao, J. Zhang, W. Zuo, Precisely controlled fabrication of magnetic 3D γ-Fe2O3@ZnO core-shell photocatalyst with enhanced activity: ciprofloxacin degradation and mechanism insight, Chem. Eng. J. 308 (2017) 377-385. https://doi.org/10.1016/j.cej.2016.09.093
[109] M. Chen, L-L. Shao, J. J. Li, W-J. Pei, M-K. Chen, X-H. Xie, One-step hydrothermal synthesis of hydrophilic Fe3O4/carbon composites and their application in removing toxic chemicals, RSC Advances 6 (2016) 35228-35238. https://doi.org/10.1039/C6RA01408A
[110] Y. Zhang, R. Li, J. Fang, C. Wang, Z. Cai, Simultaneous determination of eighteen nitro-polyaromatic hydrocarbons in PM2.5 by atmospheric pressure gas chromatography-tandem mass spectrometry, Chemosphere 198 (2018) 303-310. https://doi.org/10.1016/j.chemosphere.2018.01.131
[111] Y. Yan, Z. Zheng, C. Deng, X. Zhang, P. Yang, Selective enrichment of phosphopeptides by titania nanoparticles coated magnetic carbon nanotubes, Talanta 118 (2014)14-20. https://doi.org/10.1016/j.talanta.2013.09.036
[112] X.H. Yi, F.X. Wang, X.D. Du, H. Fu, C.C. Wang, Highly efficient photocatalytic Cr (VI) reduction and organic pollutants degradation of two new bifunctional 2D Cd/Co-based MOFs, Polyhedron 152 (2018) 216-224. https://doi.org/10.1016/j.poly.2018.06.041
[113] M. Chen, L-L. Shao, J-J. Li, W.-J. Pei, M-K. Chen, X-H. Xie, One-step hydrothermal synthesis of hydrophilic Fe3O4/carbon composites and their application in removing toxic chemicals, RSC Advances 6 (2016) 35228-35238. https://doi.org/10.1039/C6RA01408A
[114] N. You, X.F. Wang, J.Y. Li, H.T. Fan, H. Shen, Q. Zhang, Synergistic removal of arsanilic acid using adsorption and magnetic separation technique based on Fe3O4@ graphene nanocomposite, J. Ind. Eng. Chem. 70 (2019) 346-354. https://doi.org/10.1016/j.jiec.2018.10.035
[115] C. Du, Y. Shui, Y. Bai, Y. Cheng, Q. Wang, X. Zheng, Y. Zhao, Bottom-up formation of carbon-based magnetic honeycomb material from metal-organic framework-guest polyhedra for the capture of Rhodamine B, ACS Omega 4 (2019) 5578-5585. https://doi.org/10.1021/acsomega.8b03664
[116] J. Guo, I. Filpponen, L.S. Johansson, P. Mohammadi, M. Latikka, M.B. Linder, R. H.A. Ras, O. J. Rojas, Complexes of magnetic nanoparticles with cellulose nanocrystals as regenerable, highly efficient, and selective platform for protein separation, Biomacromolecules 18 (2017) 898-905. https://doi.org/10.1021/acs.biomac.6b01778
[117] O.P Artykulnyi, V.I. Petrenko, L.A. Bulavin, O.I. Ivankov, M.V. Avdeev, Impact of poly (ethylene glycol) on the structure and interaction parameters of aqueous micellar solutions of anionic surfactants, J. Mol. Liq. 276 (2019) 806-811. https://doi.org/10.1016/j.molliq.2018.12.035
[118] S.Ö. Engin, H. Akbaş, M. Boz, Synthesis and physicochemical properties of double-chain cationic surfactants, J. Chem. Eng. Data. 61 (2015) 142-150. https://doi.org/10.1021/acs.jced.5b00367
[119] X. Gu, F. Zhang, Y. Li, J. Zhang, S. Chen, C. Qu, G. Chen, Investigation of cationic surfactants as clean flow improvers for crude oil and a mechanism study, J. Petrol. Sci. Eng. 164 (2018) 87-90. https://doi.org/10.1016/j.petrol.2018.01.045
[120] N. Timmer, P. Scherpenisse, J.L.M. Hermens, S.T.J. Droge, Evaluating solid phase (micro-) extraction tools to analyze freely ionizable and permanently charged cationic surfactants, Anal. Chim. Acta 1002 (2018) 26-38. https://doi.org/10.1016/j.aca.2017.11.051
[121] S. Zhang, W. Wu, Q. Zheng, Evaluation of modified Fe3O4 magnetic nanoparticle graphene for dispersive solid-phase extraction to determine trace PAHs in seawater, Anal. Methods 7 (2015) 9587-9595. https://doi.org/10.1039/C5AY02470F
[122] A. Middea, L.S. Spinelli, F.G. Souza Jr, R. Neumann, T.L. Fernandes, O.F.M. Gomes, Preparation and characterization of an organo-palygorskite-Fe3O4 nanomaterial for removal of anionic dyes from wastewater, Appl. Clay Sci. 139 (2017) 45-53. https://doi.org/10.1016/j.clay.2017.01.017
[123] T. Doura, F. Tamanoi, M. Nakamura, Miniaturization of thiol-organosilica nanoparticles induced by an anionic surfactant, J. Colloid Interface Sci. 526 (2018) 51-62. https://doi.org/10.1016/j.jcis.2018.04.090
[124] Y. Huang, L. Meng, M. Guo, P. Zhao, H. Zhang, S. Chen, J. Zhang, S. Feng, Synthesis, Properties, and Aggregation Behavior of Tetrasiloxane-Based Anionic Surfactants, Langmuir 34 (2018) 4382-4389. https://doi.org/10.1021/acs.langmuir.8b00825
[125] J. Cai, M. Lei, Q. Zhang, J.R. He, T. Chen, S. Liu, S-H. Fu, T.T. Li, G. Liu, P. Fei, Electrospun composite nanofiber mats of Cellulose@Organically modified montmorillonite for heavy metal ion removal: Design, characterization, evaluation of absorption performance, Compos Part A. Appl Sci Manuf. 92 (2017) 10-16. https://doi.org/10.1016/j.compositesa.2016.10.034
[126] H. Niu, S. Zhang, X. Zhang, Y. Cai, Alginate-polymer-caged, C18-functionalized magnetic titanate nanotubes for fast and efficient extraction of phthalate esters from water samples with complex matrix, ACS Appl. Mater. Interfaces 2 (2010) 1157-1163. https://doi.org/10.1021/am100010x
[127] C. Kaewsaneha, P. Tangboriboonrat, D. Polpanich, A. Elaissari, Multifunctional fluorescent-magnetic polymeric colloidal particles: Preparations and bioanalytical applications, ACS Appl. Mater. Interfaces 7 (2015) 23373-23386. https://doi.org/10.1021/acsami.5b07515
[128] B.D. Fairbanks, P.A. Gunatillake, L. Meagher, Biomedical applications of polymers derived by reversible addition-fragmentation chain-transfer (RAFT), Adv. Drug Delivery Rev. 91 (2015) 141-152. https://doi.org/10.1016/j.addr.2015.05.016
[129] S. Palchoudhury, J.R. Lead, A facile and cost-effective method for separation of oil-water mixtures using polymer-coated iron oxide nanoparticles, Environ. Sci. Technol. 48 (2014) 14558-14563. https://doi.org/10.1021/es5037755
[130] K. Ni, J. Yang, Y. Ren, D. Wei, Facile synthesis of glutathione-functionalized Fe3O4@ polydopamine for separation of GST-tagged protein, Mater. Lett. 128 (2014) 392-395. https://doi.org/10.1016/j.matlet.2014.04.124
[131] E. Ghasemi, A. Heydari, M. Sillanpää, Central composite design for optimization of removal of trace amounts of toxic heavy metal ions from aqueous solution using magnetic Fe3O4 functionalized by guanidine acetic acid as an efficient nano-adsorbent, Microchem. J. 147 (2019) 133-141. https://doi.org/10.1016/j.microc.2019.02.056
[132] S. Venkateswarlu, M. Yoon, Core-shell ferromagnetic nanorod based on amine polymer composite (Fe3O4@ DAPF) for fast removal of Pb (II) from aqueous solutions, ACS Appl. Mater. Interfaces. 7 (2015) 25362-25372. https://doi.org/10.1021/acsami.5b07723
[133] S. Venkateswarlu, A. Panda, E. Kim, M. Yoon, Biopolymer-Coated Magnetite Nanoparticles and Metal-Organic Framework Ternary Composites for Cooperative Pb (II) Adsorption, ACS Appl. NanoMater. 1 (2018) 4198-4210. https://doi.org/10.1021/acsanm.8b00957
[134] J.E Szulejko, K.H. Kim, R.J.C. Brown, M.S. Bae, Review of progress in solvent-extraction techniques for the determination of polyaromatic hydrocarbons as airborne pollutants, TrAC, Trends Anal. Chem. 61 (2014) 40-48. https://doi.org/10.1016/j.trac.2014.07.001
[135] Q. Zhou, Y. Wang, J. Xiao, H. Fan, C. Chen, Preparation and characterization of magnetic nanomaterial and its application for removal of polycyclic aromatic hydrocarbons, J. Hazard. Mater. 371 (2019) 323-331. https://doi.org/10.1016/j.jhazmat.2019.03.027
[136] L. Talavat, A. Güner, Thermodynamic computational calculations for preparation 5-fluorouracilmagnetic moleculary imprinted polymers and their application in controlled drug release, Inorg. Chem. Commun. 103 (2019) 119-127. https://doi.org/10.1016/j.inoche.2019.02.009
[137] M.D. Álvarez, E. Turiel, A.M. Esteban, Molecularly imprinted polymer monolith containing magnetic nanoparticles for the stir-bar sorptive extraction of thiabendazole and carbendazim from orange samples, Anal. Chim. Acta 1045 (2019) 117-122. https://doi.org/10.1016/j.aca.2018.09.001
[138] Y.C. Lu, M.H. Guo, J. Hao M.X.H. Xiong, Y.J. Liu, Y. Li, Preparation of core-shell magnetic molecularly imprinted polymer nanoparticle for the rapid and selective enrichment of trace diuron from complicated matrices, Ecotoxicol. Environ Saf. 177 (2019) 66-76. https://doi.org/10.1016/j.ecoenv.2019.03.117
[139] M. Hashemi, Z. Nazari, Preparation of molecularly imprinted polymer based on the magnetic multiwalled carbon nanotubes for selective separation and spectrophotometric determination of melamine in milk samples, J. Food Comp. Anal. 69 (2018) 98-106. https://doi.org/10.1016/j.jfca.2018.02.010
[140] W. Xu, Y. Wang, X. Wei, J. Chen, P. Xu, R. Ni, J. Meng, Y. Zhou, Fabrication of magnetic polymers based on deep eutectic solvent for separation of bovine hemoglobin via molecular imprinting technology, Anal. Chim. Acta 1048 (2019) 1-11. https://doi.org/10.1016/j.aca.2018.10.044
[141] P. Tang, H. Zhang, J. Huo, X. Lin, An electrochemical sensor based on iron (II,III)@ graphene oxide@ molecularly imprinted polymer nanoparticles for interleukin-8 detection in saliva, Anal. Methods 7 (2015) 7784-7791. https://doi.org/10.1039/C5AY01361E
[142] N.B. Messaoud, A.A. Lahcen, C. Dridi, A. Amine, Ultrasound assisted magnetic imprinted polymer combined sensor based on carbon black and gold nanoparticles for selective and sensitive electrochemical detection of bisphenol A, Sens. Actuators B 276 (2018) 304-312. https://doi.org/10.1016/j.snb.2018.08.092
[143] M. Li, X. Meng, X. Liang, J. Yuan, X. Hu, Z. Wu, X. Yuan, A novel In(III) ion-imprinted polymer (IIP) for selective extraction of In (III) ions from aqueous solutions, Hydrometallurgy 176 (2018) 243-252. https://doi.org/10.1016/j.hydromet.2018.02.006
[144] M. Li, C. Feng, M. Li, Q. Zeng, Q. Gan, H. Yang, Synthesis and characterization of a surface-grafted Cd (II) ion-imprinted polymer for selective separation of Cd(II) ion from aqueous solution, Appl. Surf. Sci. 332 (2015) 463-472. https://doi.org/10.1016/j.apsusc.2015.01.201
[145] M. Hassanzadeh, M. Ghaemy, S. M. Amininasab, Z. Shami, An effective approach for fast selective separation of Cr(VI) from water by ion-imprinted polymer grafted on the electro-spun nanofibrous mat of functionalized polyacrylonitrile, React. Funct. Polym. 130 (2018) 70-80. https://doi.org/10.1016/j.reactfunctpolym.2018.05.013
[146] E. Najafi, F. Aboufazeli, H.R.L.Z. Zhad, O. Sadeghi, V. Amani, A novel magnetic ion imprinted nano-polymer for selective separation and determination of low levels of mercury(II) ions in fish samples, Food Chem. 141 (2013) 4040-4045. https://doi.org/10.1016/j.foodchem.2013.06.118
[147] J. Fu, X. Wang, J. Li, Y. Ding, L. Chen, Synthesis of multi-ion imprinted polymers based on dithizone chelation for simultaneous removal of Hg2+, Cd2+, Ni2+ and Cu2+ from aqueous solutions, RSC Adv. 6 (2016) 44087-44095. https://doi.org/10.1039/C6RA07785D
[148] W.R. Zhao, T.F. Kang, L.P. Lu, S.Y. Cheng, Electrochemical magnetic imprinted sensor based on MWCNTs@CS/CTABr surfactant composites for sensitive sensing of diethylstilbestrol, J. Electroanal. Chem. 818 (2018) 181-190. https://doi.org/10.1016/j.jelechem.2018.04.036
[149] H.P. Peng, R.P. Liang, J.D. Qiu, Facile synthesis of Fe3O4@Al2O3 core-shell nanoparticles and their application to the highly specific capture of heme proteins for direct electrochemistry, Biosens. Bioelectron. 26 (2011) 3005-3011. https://doi.org/10.1016/j.bios.2010.12.003
[150] X.T. Peng, L. Jiang, Y. Gong, X.Z. Hu, L.J. Peng, Y.Q. Feng, Preparation of mesoporous ZrO2-coated magnetic microsphere and its application in the multi-residue analysis of pesticides and PCBs in fish by GC-MS/MS, Talanta 132 (2015) 118-125. https://doi.org/10.1016/j.talanta.2014.08.069
[151] C. Singhal, A. Dubey, A. Mathur, C.S. Pundir, J. Narang, Paper based DNA biosensor for detection of chikungunya virus using gold shells coated magnetic nanocubes, Process Biochem. 74 (2018) 35-42. https://doi.org/10.1016/j.procbio.2018.08.020
[152] H. Niu, S. Zhang, X. Zhang, Y. Cai, Alginate-polymer-caged, C18-functionalized magnetic titanate nanotubes for fast and efficient extraction of phthalate esters from water samples with complex matrix, ACS Appl. Mater. Interfaces 2 (2010) 1157-1163. https://doi.org/10.1021/am100010x
[153] Y. Zhang, S. Ni, X. Wang, W. Zhang, L. Lagerquist, M. Qin, S. Willför, C. Xu, P. Fatehi, Ultrafast adsorption of heavy metal ions onto functionalized lignin-based hybrid magnetic nanoparticles, Chem. Eng. J. 372 (2019) 82-91. https://doi.org/10.1016/j.cej.2019.04.111
[154] E. Najafi, F. Aboufazeli, H.R.L.Z. Zhad, O. Sadeghi, V. Amani, A novel magnetic ion imprinted nano-polymer for selective separation and determination of low levels of mercury (II) ions in fish samples, Food Chem. 141 (2013) 4040-4045. https://doi.org/10.1016/j.foodchem.2013.06.118