Magnetic Nanomaterials for Bio-Sensors based on SERS Effect

$28.50

Magnetic Nanomaterials for Bio-Sensors based on SERS Effect

Cixue Xu, Wenxian Wei, Chengyin Wang

The discovery of surface-enhanced Raman spectroscopy technology especially the magnetic nanoparticle-based SERS technology has promoted the detection of trace amounts of biomolecules. The magnetic action of the nanoparticles causes the analytes to aggregate together, which promotes the detection of small amounts of biomass. Compared to other detection systems, analytical results will be more easily interfered in the complex biomass systems. Fortunately, magnetic nanoparticles can separate the detectors by external magnetic fields to avoid interference from impurities. Magnetic nanoparticles are often used in noble metal recombination to greatly enhance SERS by synergy. Magnetic nanoparticle/precious metal composites combine the advantages of both to improve the SERS effect. Magnetic nanoparticle SERS substrates can detect specific biomass (such as bacteria, antibodies, cells, RNA, etc.) by modifying definite aptamers. In this review, the research progress of SERS and magnetic nanoparticle-based SERS detection mechanism are described in detail. At the same time, different structure magnetic nanoparticle including Fe, Ni, CoFe2O4 used as SERS substrates are introduced and compared in detail. Moreover, the magnetic nanoparticle-based SERS detection types of detected biomass are also discussed.

Keywords
Magnetic Nanoparticles, SERS, Biosensors, Nanocomposites, Applications

Published online 1/30/2020, 33 pages

Citation: Cixue Xu, Wenxian Wei, Chengyin Wang, Magnetic Nanomaterials for Bio-Sensors based on SERS Effect, Materials Research Proceedings, Vol. 66, pp 1-33, 2020

DOI: https://doi.org/10.21741/9781644900611-1

Part of the book on Magnetochemistry

References
[1] R. Das, C.D. Vecitis, A. Schulze, B. Cao, A.F. Ismail, X. Lu, J. Chen, S. Ramakrishna, Recent advances in nanomaterials for water protection and monitoring, Chem. Soc. Rev. 46 (2017) 6946-7020. https://doi.org/10.1039/C6CS00921B
[2] L. Wu, X. Qu, Cancer biomarker detection: recent achievements and challenges, Chem. Soc. Rev. 44 (2015) 2963-2997. https://doi.org/10.1039/C4CS00370E
[3] A. Balzerova, A. Fargasova, Z. Markova, V. Ranc, R. Zboril, Magnetically-assisted surface enhanced raman spectroscopy (MA-SERS) for label-free determination of human immunoglobulin G (IgG) in blood using Fe3O4@Ag nanocomposite, Anal. Chem. 86 (2014) 11107-11114. https://doi.org/10.1021/ac503347h
[4] H. Zhou, J. Liu, J.J. Xu, S.S. Zhang, H.Y. Chen, Optical nano-biosensing interface via nucleic acid amplification strategy: construction and application, Chem. Soc. Rev. 47 (2018) 1996-2019. https://doi.org/10.1039/C7CS00573C
[5] T. Lee, T.H. Kim, J. Yoon, Y.H. Chung, J.Y. Lee, J.W. Choi, Investigation of Hemoglobin/Gold Nanoparticle Heterolayer on Micro-Gap for Electrochemical Biosensor Application, Sensors16 (2016), 660-671. https://doi.org/10.3390/s16050660
[6] Y. Liu, Y. Liu, Y. Xing, X. Guo, Y. Ying, Y. Wu, Y. Wen, H. Yang, Magnetically three-dimensional Au nanoparticles/reduced graphene/ nickel foams for Raman trace detection, Sensor. Actuat. B-Chem.273 (2018) 884-890. https://doi.org/10.1016/j.snb.2018.07.003
[7] C. Wang, J. Xu, J. Wang, Z. Rong, P. Li, R. Xiao, S. Wang, Polyethylenimine-interlayered silver-shell magnetic-core microspheres as multifunctional SERS substrates, J. Mater. Chem. C 3 (2015) 8684-8693. https://doi.org/10.1039/C5TC01839K
[8] T.H. Seefeld, A.R. Halpern, R.M. Corn, On-chip synthesis of protein microarrays from DNA microarrays via coupled in vitro transcription and translation for surface plasmon resonance imaging biosensor applications, J. Am. Chem. Soc. 134 (2012) 12358-12361. https://doi.org/10.1021/ja304187r
[9] Y. Zhao, F. Chen, Q. Li, L. Wang, C. Fan, Isothermal Amplification of Nucleic Acids, Chem. Rev. 115 (2015) 12491-12545. https://doi.org/10.1021/acs.chemrev.5b00428
[10] L. Gao, J. Zhuang, L. Nie, J. Zhang, Y. Zhang, N. Gu, T. Wang, J. Feng, D. Yang, S. Perrett, X. Yan, Intrinsic peroxidase-like activity of ferromagnetic nanoparticles, Nat. Nanotechnol. 2 (2007) 577-583. https://doi.org/10.1038/nnano.2007.260
[11] P.C. Lin, P.H. Chou, S.H. Chen, H.K. Liao, K.Y. Wang, Y.J. Chen, C.C. Lin, Ethylene glycol-protected magnetic nanoparticles for a multiplexed immunoassay in human plasma, Small 2 (2006) 485-489. https://doi.org/10.1002/smll.200500387
[12] A.H. Latham, R.S. Freitas, P. Schiffer, M.E. Williams, Capillary magnetic field flow fractionation and analysis of magnetic nanoparticles, Anal. Chem. 77 (2005) 5055-62. https://doi.org/10.1021/ac050611f
[13] J.C. Liu, P.J. Tsai, Y.C. Lee, Y.C. Chen, Affinity capture of uropathogenic Escherichia coli using pigeon ovalbumin-bound Fe3O4@Al2O3 magnetic nanoparticles, Anal. Chem. 80 (2008) 5425-5432. https://doi.org/10.1021/ac800487v
[14] P.H. Chou, S.H. Chen, H.K. Liao, P.C. Lin, G.R. Her, A.C. Lai, J.H. Chen, C.C. Lin, Y.J. Chen, Nanoprobe-based affinity mass spectrometry for selected protein profiling in human plasma, Anal. Chem. 77 (2005) 5990-5997. https://doi.org/10.1021/ac050655o
[15] S. Moraes Silva, R. Tavallaie, L. Sandiford, R.D. Tilley, J.J. Gooding, Gold coated magnetic nanoparticles: from preparation to surface modification for analytical and biomedical applications, Chem. Commun. 52 (2016) 7528-7540. https://doi.org/10.1039/C6CC03225G
[16] C. Wang, P. Li, J. Wang, Z. Rong, Y. Pang, J. Xu, P. Dong, R. Xiao, S. Wang, Polyethylenimine- interlayered core-shell-satellite 3D magnetic microspheres as versatile SERS substrates, Nanoscale 7(44) (2015) 18694-18707. https://doi.org/10.1039/C5NR04977F
[17] T. Yang, X. Guo, H. Wang, S. Fu, J. Yu, Y. Wen, H. Yang, Au Dotted Magnetic Network Nanostructure and Its Application for On- Site Monitoring Femtomolar Level Pesticide, Small 10 (2014) 1325-1331. https://doi.org/10.1002/smll.201302604
[18] D. Liu, X. Wang, D. He, T.D. Dao, T. Nagao, Q. Weng, D. Tang, X. Wang, W. Tian, D. Golberg, Y. Bando, Magnetically assembled Ni@Ag urchin-like ensembles with ultra-sharp tips and numerous gaps for SERS applications, Small 10 (2014) 2564-2569. https://doi.org/10.1002/smll.201303857
[19] J.F. Li, Y.F. Huang, Y. Ding, Z.L. Yang, S.B. Li, X.S. Zhou, F.R. Fan, W. Zhang, Z.Y. Zhou, D.Y. Wu, B. Ren, Z.L. Wang, Z.Q. Tian, Shell-isolated nanoparticle-enhanced Raman spectroscopy, Nature 464 (2010) 392-395. https://doi.org/10.1038/nature08907
[20] J. Zheng, Y. Ding, B. Tian, Z.L. Wang, X. Zhuang, Luminescent and Raman active silver nanoparticles with polycrystalline structure, J. Am. Chem. Soc. 130 (2008) 10472-10473. https://doi.org/10.1021/ja803302p
[21] O. Lioubashevski, V.I. Chegel, F. Patolsky, E. Katz, I. Willner, Enzyme-catalyzed bio-pumping of electrons into au-nanoparticles: a surface plasmon resonance and electrochemical study, J. Am. Chem. Soc. 126 (2004) 7133-7143. https://doi.org/10.1021/ja049275v
[22] J. Xie, Q. Zhang, J.Y. Lee, D.I. Wang, The synthesis of SERS-active gold nanoflower tags for in vivo applications, ACS Nano 2 (2008) 2473-2480. https://doi.org/10.1021/nn800442q
[23] Y. Xia, Y. Xiong, B. Lim, S.E. Skrabalak, Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics?, Angew. Chem. Int. Ed. Engl. 48 (2009) 60-103. https://doi.org/10.1002/anie.200802248
[24] S. Song, Y. Qin, Y. He, Q. Huang, C. Fan, H.Y. Chen, Functional nanoprobes for ultrasensitive detection of biomolecules, Chem. Soc. Rev. 39 (2010) 4234-4243. https://doi.org/10.1039/c000682n
[25] J. Wissler, S. Backer, A. Feis, S.K. Knauer, S. Schlucker, Site-Specific SERS Assay for Survivin Protein Dimer: From Ensemble Experiments to Correlative Single-Particle Imaging, Small 13 (2017), 1700802-1700812. https://doi.org/10.1002/smll.201700802
[26] Y. Pang, C. Wang, J. Wang, Z. Sun, R. Xiao, S. Wang, Fe(3)O(4)@Ag magnetic nanoparticles for microRNA capture and duplex-specific nuclease signal amplification based SERS detection in cancer cells, Biosens. Bioelectron. 79 (2016) 574-580. https://doi.org/10.1016/j.bios.2015.12.052
[27] D. Cialla-May, X.S. Zheng, K. Weber, J. Popp, Recent progress in surface-enhanced Raman spectroscopy for biological and biomedical applications: from cells to clinics, Chem. Soc. Rev. 46 (2017) 3945-3961. https://doi.org/10.1039/C7CS00172J
[28] H. Lai, F. Xu, Y. Zhang, L. Wang, Recent progress on graphene-based substrates for surface-enhanced Raman scattering applications, J. Mater. Chem. B 6 (2018) 4008-4028. https://doi.org/10.1039/C8TB00902C
[29] X. Zhu, J. Li, H. He, M. Huang, X. Zhang, S. Wang, Application of nanomaterials in the bioanalytical detection of disease-related genes, Biosens. Bioelectron. 74 (2015) 113-133. https://doi.org/10.1016/j.bios.2015.04.069
[30] X. Chi, D. Huang, Z. Zhao, Z. Zhou, Z. Yin, J. Gao, Nanoprobes for in vitro diagnostics of cancer and infectious diseases, Biomater. 33 (2012) 189-206. https://doi.org/10.1016/j.biomaterials.2011.09.032
[31] A.R. Ferhan, J.A. Jackman, J.H. Park, N.-J. Cho, D.-H. Kim, Nanoplasmonic sensors for detecting circulating cancer biomarkers, Adv. Drug Deliver. Rev. 125 (2018) 48-77. https://doi.org/10.1016/j.addr.2017.12.004
[32] J.E. Kim, J.H. Choi, M. Colas, D.H. Kim, H. Lee, Gold-based hybrid nanomaterials for biosensing and molecular diagnostic applications, Biosens. Bioelectron. 80 (2016) 543-559. https://doi.org/10.1016/j.bios.2016.02.015
[33] J. Reguera, D. Jimenez de Aberasturi, M. Henriksen-Lacey, J. Langer, A. Espinosa, B. Szczupak, C. Wilhelm, L.M. Liz-Marzan, Janus plasmonic-magnetic gold-iron oxide nanoparticles as contrast agents for multimodal imaging, Nanoscale 9 (2017) 9467-9480. https://doi.org/10.1039/C7NR01406F
[34] S.-C. Luo, K. Sivashanmugan, J.-D. Liao, C.-K. Yao, H.-C. Peng, Nanofabricated SERS-active substrates for single-molecule to virus detection in vitro: A review, Biosens. Bioelectron. 61 (2014) 232-240. https://doi.org/10.1016/j.bios.2014.05.013
[35] Y. Hu, H. Cheng, X. Zhao, J. Wu, F. Muhammad, S. Lin, J. He, L. Zhou, C. Zhang, Y. Deng, P. Wang, Z. Zhou, S. Nie, H. Wei, Surface-Enhanced Raman Scattering Active Gold Nanoparticles with Enzyme-Mimicking Activities for Measuring Glucose and Lactate in Living Tissues, Acs Nano 11 (2017) 5558-5566. https://doi.org/10.1021/acsnano.7b00905
[36] Y. Hu, J. Liao, D. Wang, G. Li, Fabrication of Gold Nanoparticle-Embedded Metal-Organic Framework for Highly Sensitive Surface-Enhanced Raman Scattering Detection, Anal. Chem. 86 (2014) 3955-3963. https://doi.org/10.1021/ac5002355
[37] J. Baniukevic, I.H. Boyaci, A.G. Bozkurt, U. Tamer, A. Ramanavicius, A. Ramanaviciene, Magnetic gold nanoparticles in SERS-based sandwich immunoassay for antigen detection by well oriented antibodies, Biosens. Bioelectron. 43 (2013) 281-288. https://doi.org/10.1016/j.bios.2012.12.014
[38] J. Wackerlig, P.A. Lieberzeit, Molecularly imprinted polymer nanoparticles in chemical sensing – Synthesis, characterisation and application, Sensors and Actuators B-Chemical 207 (2015) 144-157. https://doi.org/10.1016/j.snb.2014.09.094
[39] X. Huang, J. Song, B.C. Yung, X. Huang, Y. Xiong, X. Chen, Ratiometric optical nanoprobes enable accurate molecular detection and imaging, Chem. Soc. Rev. 47 (2018) 2873-2920. https://doi.org/10.1039/C7CS00612H
[40] N. Lee, P.J. Schuck, P.S. Nico, B. Gilbert, Surface Enhanced Raman Spectroscopy of Organic Molecules on Magnetite (Fe3O4) Nanoparticles, J. Phys. Chem. Lett. 6 (2015) 970-974. https://doi.org/10.1021/acs.jpclett.5b00036
[41] A. Balzerova, A. Fargasova, Z. Markova, V. Ranc, R. Zboril, Magnetically-Assisted Surface Enhanced Raman Spectroscopy (MA-SERS) for Label-Free Determination of Human Immunoglobulin G (IgG) in Blood Using Fe3O4@Ag Nanocomposite, Anal. Chem. 86 (2014) 11107-11114. https://doi.org/10.1021/ac503347h
[42] T. Yang, X. Guo, Y. Wu, H. Wang, S. Fu, Y. Wen, H. Yang, Facile and Label-Free Detection of Lung Cancer Biomarker in Urine by Magnetically Assisted Surface-Enhanced Raman Scattering, Acs Appl. Mater. Interf. 6 (2014) 20985-20993. https://doi.org/10.1021/am5057536
[43] Y. Wu, Y. He, X. Yang, R. Yuan, Y. Chai, A novel recyclable surface-enhanced Raman spectroscopy platform with duplex-specific nuclease signal amplification for ultrasensitive analysis of microRNA 155, Sensors and Actuators B-Chemical 275 (2018) 260-266. https://doi.org/10.1016/j.snb.2018.08.057
[44] X. Zhang, C. Niu, Y. Wang, S. Zhou, J. Liu, Gel-limited synthesis of dumbbell-like Fe3O4-Ag composite microspheres and their SERS applications, Nanoscale 6 (2014) 12618-12625. https://doi.org/10.1039/C4NR03301A
[45] B. Shao, X. Ma, S. Zhao, Y. Lv, X. Hun, H. Wang, Z. Wang, Nanogapped Au-(core) @ Au-Ag-(shell) structures coupled with Fe3O4 magnetic nanoparticles for the detection of Ochratoxin A, Anal. Chim. Acta 1033 (2018) 165-172. https://doi.org/10.1016/j.aca.2018.05.058
[46] W. Cai, X. Tang, B. Sun, L. Yang, Highly sensitive in situ monitoring of catalytic reactions by surface enhancement Raman spectroscopy on multifunctional Fe3O4/C/Au NPs, Nanoscale 6 (2014) 7954-7958. https://doi.org/10.1039/C4NR01147C
[47] X. Zhang, Y. Zhu, X. Yang, Y. Zhou, Y. Yao, C. Li, Multifunctional Fe3O4@TiO2@Au magnetic microspheres as recyclable substrates for surface-enhanced Raman scattering, Nanoscale 6 (2014) 5971-5979. https://doi.org/10.1039/C4NR00975D
[48] M. Ye, Z. Wei, F. Hu, J. Wang, G. Ge, Z. Hu, M. Shao, S.-T. Lee, J. Liu, Fast assembling microarrays of superparamagnetic Fe3O4@Au nanoparticle clusters as reproducible substrates for surface-enhanced Raman scattering, Nanoscale 7 (2015) 13427-13437. https://doi.org/10.1039/C5NR02491A
[49] H. Ilkhani, T. Hughes, J. Li, C.J. Zhong, M. Hepel, Nanostructured SERS-electrochemical biosensors for testing of anticancer drug interactions with DNA, Biosens. Bioelectron. 80 (2016) 257-264. https://doi.org/10.1016/j.bios.2016.01.068
[50] Y. Pang, C. Wang, J. Wang, Z. Sun, R. Xiao, S. Wang, Fe3O4@Ag magnetic nanoparticles for microRNA capture and duplex-specific nuclease signal amplification based SERS detection in cancer cells, Biosens. Bioelectron. 79 (2016) 574-580. https://doi.org/10.1016/j.bios.2015.12.052
[51] J. Docherty, S. Mabbott, E. Smith, K. Faulds, C. Davidson, J. Reglinski, D. Graham, Detection of potentially toxic metals by SERS using salen complexes, Anal. 141 (2016) 5857-5863. https://doi.org/10.1039/C6AN01584K
[52] Z. Pirzadeh, T. Pakizeh, V. Miljkovic, C. Langhammer, A. Dmitriev, Plasmon-Interband Coupling in Nickel Nanoantennas, Acs Photonics 1 (2014) 158-162. https://doi.org/10.1021/ph4000339
[53] Q. Fu, K.M. Wong, Y. Zhou, M. Wu, Y. Lei, Ni/Au hybrid nanoparticle arrays as a highly efficient, cost-effective and stable SERS substrate, RSC Adv. 5 (2015) 6172-6180. https://doi.org/10.1039/C4RA09312G
[54] Z. Cai, Y. Yan, L. Liu, S. Lin, X. Hu, Controllable fabrication of metallic photonic crystals for ultra-sensitive SERS and photodetectors, RSC Adv. 7 (2017) 55851-55858. https://doi.org/10.1039/C7RA11721C
[55] D. Liu, X. Wang, D. He, D. Thang Duy, T. Nagao, Q. Weng, D. Tang, X. Wang, W. Tian, D. Golberg, Y. Bando, Magnetically Assembled Ni@Ag Urchin-Like Ensembles with Ultra-Sharp Tips and Numerous Gaps for SERS Applications, Small 10 (2014) 2564-2569. https://doi.org/10.1002/smll.201303857
[56] O. Petrus, A. Orinak, R. Orinakova, Z.O. Kralova, E. Mudra, M. Kupkova, K. Koval, Colloidal lithography with electrochemical nickel deposition as a unique method for improved silver decorated nanocavities in SERS applications, Appl. Surf. Sci.423 (2017) 322-330. https://doi.org/10.1016/j.apsusc.2017.06.149
[57] H. Zhao, J. Jin, W. Tian, R. Li, Z. Yu, W. Song, Q. Cong, B. Zhao, Y. Ozaki, Three-dimensional superhydrophobic surface-enhanced Raman spectroscopy substrate for sensitive detection of pollutants in real environments, J. Mater. Chem. A 3 (2015) 4330-4337. https://doi.org/10.1039/C4TA06590E
[58] Y. He, Y. Wang, X. Yang, S. Xie, R. Yuan, Y. Chai, Metal Organic Frameworks Combining CoFe2O4 Magnetic Nanoparticles as Highly Efficient SERS Sensing Platform for Ultrasensitive Detection of N-Terminal Pro-Brain Natriuretic Peptide, Acs Appl. Mater. Interf. 8 (2016) 7683-7690. https://doi.org/10.1021/acsami.6b01112
[59] L. Xie, X. Yang, Y. He, R. Yuan, Y. Chai, Polyacrylamide Gel-Contained Zinc Finger Peptide as the “Lock” and Zinc Ions as the “Key” for Construction of Ultrasensitive Prostate-Specific Antigen SERS lmmunosensor, Acs Appl. Mater. Interf. 10 (2018) 15200-15206. https://doi.org/10.1021/acsami.7b19717
[60] R. Berenguer, A. La Rosa-Toro, C. Quijada, E. Morallon, Electrocatalytic oxidation of cyanide on copper-doped cobalt oxide electrodes, Applied Catalysis B-Environmental 207 (2017) 286-296. https://doi.org/10.1016/j.apcatb.2017.01.078
[61] R. Liu, J.-f. Sun, D. Cao, L.-q. Zhang, J.-f. Liu, G.-b. Jiang, Fabrication of highly-specific SERS substrates by co-precipitation of functional nanomaterials during the self-sedimentation of silver nanowires into a nanoporous film, Chem.l Commun. 51 (2015) 1309-1312. https://doi.org/10.1039/C4CC08016E
[62] C. Krafft, J. Popp, The many facets of Raman spectroscopy for biomedical analysis, Anal BioAnal. Chem. 407 (2015) 699-717. https://doi.org/10.1007/s00216-014-8311-9
[63] H.M. Kim, D.M. Kim, C. Jeong, S.Y. Park, M.G. Cha, Y. Ha, D. Jang, S. Kyeong, X.H. Pham, E. Hahm, S.H. Lee, D.H. Jeong, Y.S. Lee, D.E. Kim, B.H. Jun, Assembly of Plasmonic and Magnetic Nanoparticles with Fluorescent Silica Shell Layer for Tri-functional SERS-Magnetic-Fluorescence Probes and Its Bioapplications, Sci. Rep. 8 (2018) 13938. https://doi.org/10.1038/s41598-018-32044-7
[64] W. Mao, J. He, Z. Tang, C. Zhang, J. Chen, J. Li, C. Yu, A sensitive sandwich-type immunosensor for the detection of MCP-1 based on a rGO-TEPA-Thi-Au nanocomposite and novel RuPdPt trimetallic nanoalloy particles, Biosens. Bioelectron. 131 (2019) 67-73. https://doi.org/10.1016/j.bios.2019.02.021
[65] K. Zou, Z. Gao, Q. Deng, Y. Luo, L. Zou, Y. Lu, W. Zhao, B. Lin, Picomolar detection of carcinoembryonic antigen in whole blood using microfluidics and surface-enhanced Raman spectroscopy, Electrophoresis 37 (2016) 786-789. https://doi.org/10.1002/elps.201500535
[66] M.H. Shin, W. Hong, Y. Sa, L. Chen, Y.-J. Jung, X. Wang, B. Zhao, Y.M. Jung, Multiple detection of proteins by SERS-based immunoassay with core shell magnetic gold nanoparticles, Vib. Spectrosc.72 (2014) 44-49. https://doi.org/10.1016/j.vibspec.2014.02.007
[67] A. Ali, E.Y. Hwang, J. Choo, D.W. Lim, PEGylated nanographene-mediated metallic nanoparticle clusters for surface enhanced Raman scattering-based biosensing, Anal. 143 (2018) 2604-2615. https://doi.org/10.1039/C8AN00329G
[68] A. Ali, E.Y. Hwang, J. Choo, D.W. Lim, Nanoscale graphene oxide-induced metallic nanoparticle clustering for surface-enhanced Raman scattering-based IgG detection, Sensor. Actuat. B-Chem.255 (2018) 183-192. https://doi.org/10.1016/j.snb.2017.07.140
[69] V. Ranc, R. Zizka, Z. Chaloupkova, J. Sevcik, R. Zboril, Imaging of growth factors on a human tooth root canal by surface-enhanced Raman spectroscopy, Anal BioAnal. Chem. 410 (2018) 7113-7120. https://doi.org/10.1007/s00216-018-1311-4
[70] F.Q. Hu, L. Wei, Z. Zhou, Y.L. Ran, Z. Li, M.Y. Gao, Preparation of Biocompatible Magnetite Nanocrystals for In Vivo Magnetic Resonance Detection of Cancer, Adv. Mater. 18 (2006) 2553-2556. https://doi.org/10.1002/adma.200600385
[71] Y. He, Y. Wang, X. Yang, S. Xie, R. Yuan, Y. Chai, Metal Organic Frameworks Combining CoFe2O4 Magnetic Nanoparticles as Highly Efficient SERS Sensing Platform for Ultrasensitive Detection of N-Terminal Pro-Brain Natriuretic Peptide, ACS Appl. Mater. Interf. 8 (2016) 7683-7690. https://doi.org/10.1021/acsami.6b01112
[72] S. Wang, J. Luo, Y. He, Y. Chai, R. Yuan, X. Yang, Combining Porous Magnetic Ni@C Nanospheres and CaCO3 Microcapsule as Surface-Enhanced Raman Spectroscopy Sensing Platform for Hypersensitive C-Reactive Protein Detection, ACS Appl. Mater. Interf. 10 (2018) 33707-33712. https://doi.org/10.1021/acsami.8b13061
[73] Z. Teng, N. Yang, H. Lv, S. Wang, M. Hu, C. Wang, D. Wang, G. Wang, Edge-Functionalized g-C3N4 Nanosheets as a Highly Efficient Metal-free Photocatalyst for Safe Drinking Water, Chem 5 (2019) 664-680. https://doi.org/10.1016/j.chempr.2018.12.009
[74] C. Wang, J. Wang, M. Li, X. Qu, K. Zhang, Z. Rong, R. Xiao, S. Wang, A rapid SERS method for label-free bacteria detection using polyethylenimine-modified Au-coated magnetic microspheres and Au@Ag nanoparticles, Anal. 141 (2016) 6226-6238. https://doi.org/10.1039/C6AN01105E
[75] C. Zhang, C. Wang, R. Xiao, L. Tang, J. Huang, D. Wu, S. Liu, Y. Wang, D. Zhang, S. Wang, X. Chen, Sensitive and specific detection of clinical bacteria via vancomycin-modified Fe3O4@Au nanoparticles and aptamer-functionalized SERS tags, J. Mater. Chem. B 6 (2018) 3751-3761. https://doi.org/10.1039/C8TB00504D
[76] Y.F. Huang, Y.F. Wang, X.P. Yan, Amine-functionalized magnetic nanoparticles for rapid capture and removal of bacterial pathogens, Environ. Sci. Technol. 44 (2010) 7908-7913. https://doi.org/10.1021/es102285n
[77] S.H. Kim, I. In, S.Y. Park, pH-Responsive NIR-Absorbing Fluorescent Polydopamine with Hyaluronic Acid for Dual Targeting and Synergistic Effects of Photothermal and Chemotherapy, Biomacromolecules 18 (2017) 1825-1835. https://doi.org/10.1021/acs.biomac.7b00267
[78] R. Zheng, S. Wang, Y. Tian, X. Jiang, D. Fu, S. Shen, W. Yang, Polydopamine-Coated Magnetic Composite Particles with an Enhanced Photothermal Effect, ACS Appl. Mater. Interf. 7 (2015) 15876-15884. https://doi.org/10.1021/acsami.5b03201
[79] W.-E. Hong, I.L. Hsu, S.-Y. Huang, C.-W. Lee, H. Ko, P.-J. Tsai, D.-B. Shieh, C.-C. Huang, Assembled growth of 3D Fe3O4@Au nanoparticles for efficient photothermal ablation and SERS detection of microorganisms, J. Mater. Chem. B 6 (2018) 5689-5697. https://doi.org/10.1039/C8TB00599K
[80] R. Najafi, S. Mukherjee, J. Hudson, Jr., A. Sharma, P. Banerjee, Development of a rapid capture-cum-detection method for Escherichia coli O157 from apple juice comprising nano-immunomagnetic separation in tandem with surface enhanced Raman scattering, Int. J. Food Microbiol. 189 (2014) 89-97. https://doi.org/10.1016/j.ijfoodmicro.2014.07.036
[81] H. Zhang, X. Ma, Y. Liu, N. Duan, S. Wu, Z. Wang, B. Xu, Gold nanoparticles enhanced SERS aptasensor for the simultaneous detection of Salmonella typhimurium and Staphylococcus aureus, Biosens. Bioelectron. 74 (2015) 872-877. https://doi.org/10.1016/j.bios.2015.07.033
[82] T. Yang, X. Guo, Y. Wu, H. Wang, S. Fu, Y. Wen, H. Yang, Facile and label-free detection of lung cancer biomarker in urine by magnetically assisted surface-enhanced Raman scattering, ACS Appl. Mater. Interf. 6 (2014) 20985-20993. https://doi.org/10.1021/am5057536
[83] B.C. Yin, Y.Q. Liu, B.C. Ye, One-step, multiplexed fluorescence detection of microRNAs based on duplex-specific nuclease signal amplification, J. Am. Chem. Soc. 134 (2012) 5064-5067. https://doi.org/10.1021/ja300721s
[84] V. Ranc, Z. Markova, M. Hajduch, R. Prucek, L. Kvitek, J. Kaslik, K. Safarova, R. Zboril, Magnetically assisted surface-enhanced raman scattering selective determination of dopamine in an artificial cerebrospinal fluid and a mouse striatum using Fe(3)O(4)/Ag nanocomposite, Anal. Chem. 86 (2014) 2939-2946. https://doi.org/10.1021/ac500394g
[85] Z. Chaloupková, A. Balzerová, Z. Medříková, J. Srovnal, M. Hajdúch, K. Čépe, V. Ranc, R. Zbořil, Label-free determination and multiplex analysis of DNA and RNA in tumor tissues, Appl. Mater. Today 12 (2018) 85-91. https://doi.org/10.1016/j.apmt.2017.12.012
[86] H. Ilkhani, T. Hughes, J. Li, C.J. Zhong, M. Hepel, Nanostructured SERS-electrochemical biosensors for testing of anticancer drug interactions with DNA, Biosens. Bioelectron. 80 (2016) 257-264. https://doi.org/10.1016/j.bios.2016.01.068
[87] Y. Wu, Y. He, X. Yang, R. Yuan, Y. Chai, A novel recyclable surface-enhanced Raman spectroscopy platform with duplex-specific nuclease signal amplification for ultrasensitive analysis of microRNA 155, Sensor. Actuat. B-Chem.275 (2018) 260-266. https://doi.org/10.1016/j.snb.2018.08.057
[88] M. Yarbakht, M. Nikkhah, A. Moshaii, K. Weber, C. Matthaus, D. Cialla-May, J. Popp, Simultaneous isolation and detection of single breast cancer cells using surface-enhanced Raman spectroscopy, Talanta 186 (2018) 44-52. https://doi.org/10.1016/j.talanta.2018.04.009
[89] J. Zhao, L. Zhang, C. Chen, J. Jiang, R. Yu, A novel sensing platform using aptamer and RNA polymerase-based amplification for detection of cancer cells, Anal. Chim. Acta 745 (2012) 106-111. https://doi.org/10.1016/j.aca.2012.07.030
[90] T. Li, Q. Fan, T. Liu, X. Zhu, J. Zhao, G. Li, Detection of breast cancer cells specially and accurately by an electrochemical method, Biosens. Bioelectron. 25 (2010) 2686-2689. https://doi.org/10.1016/j.bios.2010.05.004
[91] W. Wei, D.F. Li, X.H. Pan, S.Q. Liu, Electrochemiluminescent detection of mucin 1 protein and MCF-7 cancer cells based on the resonance energy transfer, Anal. 137 (2012) 2101-2106. https://doi.org/10.1039/c2an35059a
[92] Y. Li, X. Qi, C. Lei, Q. Yue, S. Zhang, Simultaneous SERS detection and imaging of two biomarkers on the cancer cell surface by self-assembly of branched DNA-gold nanoaggregates, Chem. Commun. 50 (2014) 9907-9909. https://doi.org/10.1039/C4CC05226A
[93] C.S. Ferreira, C.S. Matthews, S. Missailidis, DNA aptamers that bind to MUC1 tumour marker: design and characterization of MUC1-binding single-stranded DNA aptamers, Tumour Biol. 27 (2006) 289-301. https://doi.org/10.1159/000096085
[94] S.F. Chiang, C.Y. Huang, T.W. Ke, T.W. Chen, Y.C. Lan, Y.S. You, W.T. Chen, K.S.C. Chao, Upregulation of tumor PD-L1 by neoadjuvant chemoradiotherapy (neoCRT) confers improved survival in patients with lymph node metastasis of locally advanced rectal cancers, Cancer Immunol Immunother 68 (2019) 283-296. https://doi.org/10.1007/s00262-018-2275-0
[95] E. Feng, T. Zheng, X. He, J. Chen, Y. Tian, A novel ternary heterostructure with dramatic SERS activity for evaluation of PD-L1 expression at the single-cell level, Sci. Adv. 4 (2018) eaau3494-eaau3506. https://doi.org/10.1126/sciadv.aau3494
[96] B. Shao, X. Ma, S. Zhao, Y. Lv, X. Hun, H. Wang, Z. Wang, Nanogapped Au(core) @ Au-Ag(shell) structures coupled with Fe3O4 magnetic nanoparticles for the detection of Ochratoxin A, Anal. Chim. Acta 1033 (2018) 165-172. https://doi.org/10.1016/j.aca.2018.05.058
[97] D. Song, R. Yang, S. Fang, Y. Liu, F. Long, A. Zhu, SERS based aptasensor for ochratoxin A by combining Fe3O4@Au magnetic nanoparticles and Au-DTNB@Ag nanoprobes with multiple signal enhancement, Mikrochim Acta 185 (2018) 491-501. https://doi.org/10.1007/s00604-018-3020-2
[98] V. Sorrenti, C. Di Giacomo, R. Acquaviva, I. Barbagallo, M. Bognanno, F. Galvano, Toxicity of ochratoxin a and its modulation by antioxidants: a review, Toxins 5 (2013) 1742-1766. https://doi.org/10.3390/toxins5101742