Fission Neutron Tomography of a 280-L Waste Package

Fission Neutron Tomography of a 280-L Waste Package

T. Bücherl, Ch. Lierse von Gostomski, T. Baldauf

download PDF

Abstract. Based on a recent feasibility study, where it is demonstrated that fission neutron radiography of 200-l (radioactive) waste drums is possible at NECTAR, these investigations are extended to fission neutron tomography in transmission and emission mode. As sample, a 280-l drum is used containing inactive waste being typical for radioactive waste drums. For emission tomography, an AmBe-neutron source is measured separately and at different positions in the drum.

Keywords
Fission Neutron, Transmission Tomography, Emission Tomography, NECTAR, Radioactive Waste, Non-Destructive Characterization

Published online 1/5/2020, 6 pages
Copyright © 2020 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: T. Bücherl, Ch. Lierse von Gostomski, T. Baldauf, Fission Neutron Tomography of a 280-L Waste Package, Materials Research Proceedings, Vol. 15, pp 299-304, 2020

DOI: https://doi.org/10.21741/9781644900574-47

The article was published as article 47 of the book Neutron Radiography

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References
[1] T. Bücherl, O. Kalthoff, Ch. Lierse von Gostomski, A feasibility study on reactor based fission neutron radiography of 200-l waste packages, Physics Procedia 88 (2017) 64 – 72. https://doi.org/10.1016/j.phpro.2017.06.008
[2] NECTAR: Heinz Maier-Leibnitz Zentrum. (2015). NECTAR: Radiography and tomography station using fission neutrons. Journal of large-scale research facilities, 1, A19. https://doi.org/10.17815/jlsrf-1-45
[3] T. Bücherl, Ch. Lierse von Gostomski, H. Breitkreuz, M. Jungwirth, F.M. Wagner, NECTAR – A fission neutron radiography and tomography facility, Nucl. Instr. Meth. Phys. Res. A 651(2011) 86-89. https://doi.org/10.1016/j.nima.2011.01.058
[4] L. G. Butler, E. H. Lehmann, B. Schillinger, Neutron Radiography, Tomography, and Diffraction of Commercial Lithium-ion Polymer Batteries, Physics Procedia, 43, 2013, 331-336, https://doi.org/10.1016/j.phpro.2013.03.039.
[5] K. Osterloh, T. Bücherl, Ch. Lierse von Gostomski, U. Zscherpel, U. Ewert, S. Bock, Filtering algorithm for dotted interferences, Nucl. Instr. Meth. Phys. Res. A 651(2011) 171-174. https://doi.org/10.1016/j.nima.2011.01.107
[6] A. C. Kak, M. Slaney, Principles of Computerized Tomographic Imagimg, IEEE Press, 1988, ISBN 0-87942-198-3.
[7] M. Dierick, B. Masschaele, L, Van Hoorebeke, Octopus, a fast and user-friendly tomographic reconstruction package developed in LabView, Measurement Science and Technology, Volume 15, Number 7, 2004. https://doi.org/10.1088/0957-0233/15/7/020
[8] https://campar.in.tum.de/twiki/pub/Main/MoritzBlume/EMPET.pdf (last call 07.11.2018).
[9] J. Guo, T. Bücherl, Y. Zou, Z. Guo, Study on beam geometry and image reconstruction algorithm in fast neutron computerized tomography at NECTAR facility, Nucl. Instr. Meth. Phys. Res. A, 651 (2011) 180-186. https://doi.org/10.1016/j.nima.2011.01.097
[10] https://www.en-trap.eu/doc/neutronsynopsis.pdf (last call 07.11.2018).