Various Aspects of the Contrast Modalities of Modulated Beam Imaging

Various Aspects of the Contrast Modalities of Modulated Beam Imaging

Markus Strobl

download PDF

Abstract. Since the introduction of grating interferometers to imaging, in addition to attenuation contrast, differential phase and later also dark-field contrast imaging have been explored intensely. However, in particular with dark-field contrast imaging, imaging entered into a new domain, i.e. the scattering from sub-image-resolution structures. This has led to the need to expand the horizon of considered interactions into the reciprocal space domain of small angle scattering, not necessarily familiar in real space imaging. Correspondingly, description and interpretation and finally quantitative analyses lacked somewhat behind of on the other hand qualitatively invaluable results. Against this background all modalities measured in modulated beam imaging experiments, namely attenuation, differential phase and dark-field contrast, shall be given some additional attention. It will be undertaken to draw a clear picture of analogies, of contrast formation and consequences to interpretation and information content.

Keywords
Imaging, Grating Interferometry, Attenuation, Differential Phase Contrast, Dark-Field Contrast

Published online 1/5/2020, 12 pages
Copyright © 2020 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: Markus Strobl, Various Aspects of the Contrast Modalities of Modulated Beam Imaging, Materials Research Proceedings, Vol. 15, pp 117-128, 2020

DOI: https://doi.org/10.21741/9781644900574-19

The article was published as article 19 of the book Neutron Radiography

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References
[1] Henry Fox Talbot: LXXVI. Facts relating to optical science. No IV. In: The London Edinburgh Philosophical Magazine and Journal of Science. Band 9, Nr 56, 1836, Par.2 Experiments on Diffraction, pp 401. https://doi.org/10.1080/14786443608649032
[2] Pierre Bouguer: Essai d’optique, Sur la gradation de la lumiere. Claude Jombert, Paris 1792, pp 164
[3] P. M. Joseph, ‘‘The effects of scatter in x-ray computed tomography,’’ Med. Phys. 9 (1982) 464–472. https://doi.org/10.1118/1.595111
[4] G. H. Glover, ‘‘Compton scatter effects in CT reconstructions,’’ Med. Phys. 9 (1982) 860–867. https://doi.org/10.1118/1.595197
[5] L. A. Love and R. A. Kruger, ‘‘Scatter estimation for a digital radio- graphic system using convolution filtering,’’ Med. Phys. 14 (1987) 178 – 185. https://doi.org/10.1118/1.596126
[6] J. A. Seibert and J. M. Boone, ‘‘X-ray scatter removal by deconvolution,’’ Med. Phys. 15 (1988) 567–575. https://doi.org/10.1118/1.596208
[7] D. G. Kruger, F. Zink, W. W. Peppler, D. L. Ergun, and C. A. Mistretta, ‘‘A regional convolution kernel algorithm for scatter correction in dual- energy images: Comparison to single-kernel algorithms,’’ Med. Phys. 21 (1994) 175–184. https://doi.org/10.1118/1.597297
[8] Kardjilov, N., de Beer, F., Hassanein, R., Lehmann, E. & Vontobel, P. Nucl. Instrum. Methods Phys. Res. A, 542 (2005) 336–341. https://doi.org/10.1016/j.nima.2005.01.159
[9] Pekula, N., Heller, K., Chuang, P. A., Turhan, A., Mench, M. M., Brenizer, J. S. &Uenlue , K., Nucl. Instrum. Methods Phys. Res. A, 542 (2005) 134–141. https://doi.org/10.1016/j.nima.2005.01.090
[10] Hassanein, R., Lehmann, E. & Vontobel, P., Nucl. Instrum. Methods Phys. Res. A, 542 (2005) 353–360. https://doi.org/10.1016/j.nima.2005.01.161
[11] Tremsin, A. S., Kardjilov, N., Dawson, M., Strobl, M., Manke, I., McPhate, J. B., Vallerga, J. V., Siegmund, O. H. W. & Feller, W. B., Nucl. Instrum. Methods Phys. Res. A, 651 (2011) 145–148. https://doi.org/10.1016/j.nima.2011.01.066
[12] M. Raventos, E. H. Lehmann, M. Boin, M. Morgano, J. Hovind, R. Harti, J. Valsecchi, A. Kaestner, C. Carminati, P. Boillat, P. Trtik, F. Schmid, M. Siegwart, D. Mannes, M. Strobl and C. Gruenzweig, A Monte Carlo approach for scattering correction towards quantitative neutron imaging of polycrystals, J. Appl. Cryst. 51 (2018). https://doi.org/10.1107/S1600576718001607
[13] A. Cereser, M. Strobl, S. A. Hall, A. Steuwer, R. Kiyanagi, A. S. Tremsin, E. B. Knudsen, T. Shinohara, P. K. Willendrup, A. Bastos da Silva Fanta, S. Iyengar, P. M. Larsen, T. Hanashima, T. Moyoshi, P. M. Kadletz, P. Krooß, T. Niendorf, M. Sales, W. W. Schmahl, and S. Schmidt Time-of-Flight Three Dimensional Neutron Diffraction in Transmission Mode for Mapping Crystal Grain Structures, Scientific Reports 7 (2017) 9561. https://doi.org/10.1038/s41598-017-09717-w
[14] Robin Woracek, Javier Santisteban, Anna Fedrigo, Markus Strobl, Diffraction in neutron imaging—A review, Nucl. Inst. Meth. A 878 (2018) 141–158. https://doi.org/10.1016/j.nima.2017.07.040
[15] Ludwig Zehnder: Ein neuer Interferenzrefraktor. In: Zeitschrift fuer Instrumentenkunde. Nr. 11, 1891, pp 275; Ludwig Mach: Ueber einen Interferenzrefraktor. In: Zeitschrift fuer Instrumentenkunde. Nr. 12, 1892, pp 89
[16] M. Ando and S. Hosoya, in Proc. 6th Intern. Conf. on X-ray Optics and Microanalyses, eds. G. Shinoda, K. Kohra and T. Ichinokawa (Univ. of Tokyo Press, Tokyo, 1072) 63
[17] M. Schlenker, W. Bauspiess, W. Graeff, U. Bonse, H. Rauch, J. Magn. Magn. Mat.15-18 (1980) 1507. https://doi.org/10.1016/0304-8853(80)90387-X
[18] K. Goetz, M.P. Kalashnikov, Yu. A. Mikhailov, G. V., Sklizkov, S. I. Fedotov, E. Foerster,P., Zaumseil: Preprint Nr. 159, FIAN UdSSR (1978)
[19] K.M. Podurets et al. Zh. Tekh. Fiz.59 (1989) 115-121
[20] Snigirev, A., Snigireva, I., Kohn, V., Kuznetsov, S. & Schelokov, I. On the possibilities of x-ray phase contrast microimaging by coherent high-energy synchrotron radiation. Rev. Sci. Instrum. 66 (1995) 5486–5492 . https://doi.org/10.1063/1.1146073
[21] B. E. Allman, P. J. McMahon, K. A. Nugent, D. Paganin, D. L. Jacobson, M. Arif & S. A. Werner, Imaging: Phase radiography with neutrons, Nature 408 (2000) 158–159. https://doi.org/10.1038/35041626
[22] Ingal, V. N. & Beliaevskaya, E. A. X-ray plane-wave topography observation of the phase contrast from a non-crystalline object. J. Phys. D 28 (1995) 2314–2317. https://doi.org/10.1088/0022-3727/28/11/012
[23] Davis, T. J., Gao, D., Gureyev, T. E., Stevenson, A. W. & Wilkins, S. W. Phase-contrast imaging of weakly absorbing materials using hard X-rays. Nature 373 (1995) 595–598. https://doi.org/10.1038/373595a0
[24] Chapman, L. D. et al. Diffraction enhanced x-ray imaging. Phys. Med. Biol. 42 (1997) 2015–2025. https://doi.org/10.1088/0031-9155/42/11/001
[25] W. Treimer, M. Strobl, A. Hilger, C. Seifert, U. Feye-Treimer, Refraction as imaging signal for computerized (neutron) tomography, Applied Physics Letters, 83, 2 (2003) 398-400. https://doi.org/10.1063/1.1591066
[26] M. Strobl, W. Treimer, A. Hilger, First realisation of a three-dimensional refraction contrast computerised neutron tomography, Nucl. Instr. Meth. B 222, 3-4 (2004) 653-658. https://doi.org/10.1016/j.nimb.2004.02.029
[27] J. F. Clauser, U.S. Patent No. 5,812,629 (1998);
[28] A. Momose, S. Kawamoto, I. Koyama, Y. Hamaishi, K. Takai and Y. Suzuki: Jpn. J. Appl. Phys. 42 (2003) L866. https://doi.org/10.1143/JJAP.42.L866
[29] T. Weitkamp, B. Noehammer, A. Diaz and C. David: Appl. Phys. Lett. 86 (2005) 054101. https://doi.org/10.1063/1.1857066
[30] F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David, Nature Phys. 2, 258 (2006). https://doi.org/10.1038/nphys265
[31] F. Pfeiffer, C. Gruenzweig, O. Bunk, G. Frei, E. Lehmann, and C. David, Phys. Rev. Lett. 96, 215505 (2006). https://doi.org/10.1103/PhysRevLett.96.215505
[32] K.M. Podurets et al Physica B 156 & 157 (1989) 694-697. https://doi.org/10.1016/0921-4526(89)90766-7
[33] Pagot, E. et al. A method to extract quantitative information in analyzer-based X-ray phase contrast imaging. Appl. Phys. Lett. 82, 3421–3423 (2003). https://doi.org/10.1063/1.1575508
[34] L. Rigon, H. -J. Besch, F. Arfelli, R.-H. Menk, G. Heitner, and H. P.Besch, “A new DEI algorithm capable of investigating sub-pixel structures,”J. Phys. D 36, 107–112 (2003). https://doi.org/10.1088/0022-3727/36/10A/322
[35] J.G. Brankov, M.N. Wernick, Y. Yang, J. Li , C. Muehleman, Z. Zhong and M.A. Anastasio A computed tomography implementation of multiple-image radiography Med. Phys. 33 (2006) 278. https://doi.org/10.1118/1.2150788
[36] M. Strobl, W. Treimer, A. Hilger, Small angle scattering signals for (neutron) computerized tomography Appl. Phys. Lett., 85, 3 (2004) 488-490. https://doi.org/10.1063/1.1774253
[37] M. Strobl, C. Grünzweig, A. Hilger, I. Manke, N. Kardjilov, C. David, F. Pfeiffer, Neutron dark-field tomography, Phys. Rev. Lett. 101, 123902 (2008). https://doi.org/10.1103/PhysRevLett.101.123902
[38] F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, C. Broennimann, C. Gruenzweig and C. David, Hard-X-ray dark-field imaging using a grating interferometer, Nat. Mat. 7 (2008) 134. https://doi.org/10.1038/nmat2096
[39] W. Yashiro et al., Opt. Exp. 9233, 23 (2015) 7. https://doi.org/10.1364/OE.23.009233
[40] B. Betz, R. P. Harti, M. Strobl, J. Hovind, A. Kaestner, E. Lehmann, H. Van Swygenhoven and C. Grünzweig, Quantification of the sensitivity range in neutron dark-field imaging, Rev. Sci. Instrum. 86, 123704 (2015). https://doi.org/10.1063/1.4937616
[41] 5. C. Grünzweig, C. David, O. Bunk, M. Dierolf, G. Frei, G. Kühne, J. Kohlbrecher, R. Schäfer, P. Lejcek, H. Rønnow, and F. Pfeiffer, Neutron decoherence imaging for visualizing bulk magnetic domain structures, Phys. Rev. Lett. 101, 025504 (2008). https://doi.org/10.1103/PhysRevLett.101.025504
[42] T. Lauridsen, M. Willner, M. Bech, F. Pfeiffer, R. Feidenhans’l Detection of sub-pixel fractures in X-ray dark-field tomography Applied Physics A 121 (2015). https://doi.org/10.1007/s00339-015-9496-2
[43] https://www.dictionary.com/browse/decoherence
[44] A. Hilger, N. Kardjilov, T. Kandemir, I. Manke, and J. Banhart, D. Penumadu, A. Manescu, M. Strobl, Revealing micro-structural inhomogeneities with dark-field neutron imaging, J. Appl. Phys. 107, 036101 (2010). https://doi.org/10.1063/1.3298440
[45] Feigin, L. & Svergun, D. Structure Analysis by Small-Angle X-ray and Neutron Scattering (New York Plenum Press, 1987).
[46] Born, Max Quantenmechanik der Stossvorgänge, Zeitschrift für Physik. 38: 803 (1926). https://doi.org/10.1007/BF01397184
[47] W. Treimer, M. Strobl, A. Hilger Observation of edge refraction in ultra small angle neutron scattering Phys. Lett. A 305, 1-2 (2002) 87-92. https://doi.org/10.1016/S0375-9601(02)01391-9
[48] N.F. Berk and K. A. Hardman-Rhyn, Analysis of SAS Data Dominated by Multiple Scattering, J. Appl. Cryst. 21 (1988) 645-651. https://doi.org/10.1107/S0021889888004054
[49] Victor-O. de Haan et al. J. Appl. Cryst. (2007). 40, 151–157. https://doi.org/10.1107/S0021889806047558
[50] J. Plomp et al. / Nuclear Instruments and Methods in Physics Research A 574 (2007) 324–329. https://doi.org/10.1016/j.nima.2007.02.068
[51] M. Bech, O. Bunk, T. Donath, R. Feidenhans’l, C. David and F. Pfeiffer, Quantitative x-ray dark-field computed tomography, Phys. Med. & Bio. 55, 18 (2010). https://doi.org/10.1088/0031-9155/55/18/017
[52] 3. C. Grünzweig, J. Kopecek, B. Betz, A. Kaestner, K. Jefimovs, J. Kohlbrecher, U. Gasser, O. Bunk, C. David, E. Lehmann, T. Donath, and F. Pfeiffer, Quantification of the neutron dark-field imaging signal in grating interferometry, Phys. Rev. B 88, 125104, (2013). https://doi.org/10.1103/PhysRevB.88.125104
[53] PhD thesis, M. Strobl, TU Wien 2003
[54] M. Strobl General solution for quantitative dark-field contrast imaging with grating interferometers. Scientific Reports 4 (2014) 7243. https://doi.org/10.1038/srep07243
[55] Andersson, R., van Heijkamp, L. F., de Schepper, I. M. & Bouwman, W. G. Analysis of spin-echo small-angle neutron scattering. J. Appl. Cryst. 41, 868–885 (2008). https://doi.org/10.1107/S0021889808026770
[56] J. Kohlbrecher and A. Studer, Transformation cycle between the spherically symmetric correlation function, projected correlation function and differential cross section as implemented in SASfit, J. Appl. Cryst. (2017). 50, 1395-1403. https://doi.org/10.1107/S1600576717011979
[57] M. Strobl, B. Betz, R. P. Harti, A. Hilger, N. Kardjilov, I. Manke, C. Gruenzweig Wavelength dispersive dark-field contrast: micrometer structure resolution in neutron imaging with gratings J. Appl. Cryst. 49 (2016). https://doi.org/10.1107/S1600576716002922
[58] K.M. Podurets, V.A. Somekov, R.R. Chistyakov and S.Sh.Shilstein, Visualization of internal domain structure of Silicon Iron crystals by using neutron radiography with refraction contrast, Physica B 156 & 157 (1989) 694-697. https://doi.org/10.1016/0921-4526(89)90766-7
[59] I. Manke, N. Kardjilov, R. Schäfer, A. Hilger, M. Strobl, M. Dawson, C. Grünzweig, G. Behr, M. Hentschel, C. David, A. Kupsch, A. Lange, J. Banhart, Three-dimensionl imaging of magnetic domains, Nature Commun. 1, 125 (2010) . https://doi.org/10.1038/ncomms1125
[60] B. Betz, P. Rauscher, R. P. Harti, R. Schäfer, H. Van Swygenhoven, A. Kaestner, J. Hovind, E. Lehmann, and C. Grünzweig, Frequency-Induced Bulk Magnetic Domain-Wall Freezing Visualized by Neutron Dark-Field Imaging Phys. Rev. Applied 6, 024024 (2016). https://doi.org/10.1103/PhysRevApplied.6.024024
[61] M. Strobl et al. Appl. Phys. Lett. 91, 254104 (2007). https://doi.org/10.1063/1.2825276
[62] S. W. Lee, D. S. Hussey, D. L. Jacobson, C. M. Sim, M. Arif, Development of the grating phase neutron interferometer at a monochromatic beam line, Nuclear Instruments and Methods in Physics Research A 605 (2009) 16–20. https://doi.org/10.1016/j.nima.2009.01.225