Construction of a Quasi-Monoenergetic Neutron Source for Fast-Neutron Imaging
M. Johnson, S.G. Anderson, D.L. Bleuel, J.A. Caggiano, P.J. Fitsos, D. Gibson, J. Gronberg, J.M. Hall, R. Marsh, B. Rusnak
download PDFAbstract. This paper presents and discusses an approach to fast-neutron imaging that will provide high-resolution detection (i.e. 1 mm) of small features such as inclusions, voids, and variations in density. The application for fast-neutron imaging centers around assessing low-Z materials in high-Z shielded configurations. For this paper we present a simple theoretical argument on the feasibility of fast-neutron imaging and present results from some of our feasibility measurements. Finally, we discuss the requirements and objectives for the fast-neutron imaging system currently under construction at Lawrence Livermore National Laboratory (LLNL).
Keywords
Quasi-Monoenergetic Neutron Source, Fast-Neutron Imaging
Published online 1/5/2020, 9 pages
Copyright © 2020 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA
Citation: M. Johnson, S.G. Anderson, D.L. Bleuel, J.A. Caggiano, P.J. Fitsos, D. Gibson, J. Gronberg, J.M. Hall, R. Marsh, B. Rusnak, Construction of a Quasi-Monoenergetic Neutron Source for Fast-Neutron Imaging, Materials Research Proceedings, Vol. 15, pp 58-66, 2020
DOI: https://doi.org/10.21741/9781644900574-10
The article was published as article 10 of the book Neutron Radiography
Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
References
[1] J. S. Brenzier, “A review of significant advances in neutron imaging from conception to the present”, Phys. Proc. 43 pp. 10-20 (2013). https://doi.org/10.1016/j.phpro.2013.03.002
[2] J. Chadwick, F. R. S., “The Existence of a Neutron”, Proc. R. Soc. Lond. A 136 pp. 692-708 (1932). https://doi.org/10.1098/rspa.1932.0112
[3] R.W. Bauer, J.D. Anderson, S.M. Grimes, and V.A. Madsen, “Application of simple Ramsauer model to neutron total cross sections”, UCRL-JC-127199 (1997)
[4] Hartnig, C. and Manke, I., “Neutron and synchrotron imaging, in-situ for water Visualization”, In Encyclopedia of Electrochemical Power Sources, Garche, J., et al. (Eds), Elsevier (2009), pp 738. https://doi.org/10.1016/B978-044452745-5.00078-2
[5] E. Fermi, W. J. Sturm, and R. G. Sachs, “The Transmission of Slow Neutrons through Microcrystalline Materials”, Phys. Rev. 71 n 9, pp. 589-594 (1947). https://doi.org/10.1103/PhysRev.71.589
[6] W. Kockelmann, G. Frei, E.H. Lehmann, P. Vontobel, and J.R. Santisteban, “Energy-selective neutron transmission imaging at a pulsed source”, Nucl. Instrum. And Meth. A 578 pp. 421-434 (2007). https://doi.org/10.1016/j.nima.2007.05.207
[7] Gian Song, et al., “Characterization of Crystallographic Structures Using Bragg-Edge Neutron Imaging at the Spallation Neutron Source”, J. Imaging 3, 65 (2017). https://doi.org/10.3390/jimaging3040065
[8] Winfried Kockelmann, et al., “Status of the neutron imaging and diffraction instrument IMAT”, Phys. Proc. 69 pp. 71-78 (2015). https://doi.org/10.1016/j.phpro.2015.07.010
[9] Nikolay Kardjilov, Ingo Manke, André Hilger, Markus Strobl, and John Banhart, “Neutron imaging in materials science”, Materials Today Vol. 14 No. 6 (2011). https://doi.org/10.1016/S1369-7021(11)70139-0
[10] Gian Song, et al., “Ferritic Alloys with Extreme Creep Resistance via Coherent Hierarchical Precipitates”, Sci. Rep. 5, 16327 (2015). https://doi.org/10.1038/srep16327
[11] F. Dietrich and J. Hall, “Report on measurements at Ohio University to estimate backgrounds for neutron radiography in the 10-14 MeV region”, UCRL-ID-127520 (LLNL, 1997). https://doi.org/10.2172/16133
[12] J. Hall, F. Dietrich, C. Logan, and B. Rusnak, “Recent results in the development of fast neutron imaging”, UCRL-JC-140345 (LLNL, 2000), Proc. 16th Int. Conf. on the Applications of Accelerators in Research and Industry (Denton, TX, 2000), AIP CP576, 1113 (2001).
[13] J. Hall, “Uncovering hidden defects with neutrons”, Science & Technology Review, UCRL-52000-01-5 (LLNL, 2001)
[14] J. Hall, F. Dietrich, C. Logan, and B. Rusnak, “High-energy neutron imaging development at LLNL”, (LLNL, 2001), Proc. American Nuclear Society (2001).
[15] J. Hall, B. Rusnak, and P. Fitsos, “High-energy neutron imaging development at LLNL”, UCRL-CONF-230835 (LLNL, 2007), presented at Proc. 8th World Conference on Neutron Radiography (Gaithersburg, MD, 2007). https://doi.org/10.2172/900879
[16] M. Johnson, S. Anderson, D. Bleuel, P. Fitsos, D. Gibson, J. Hall, R. Marsh, B. Rusnak, and J. Sain, “Development of a high-brightness, quasi-monoenergetic neutron source for neutron imaging”, Proc. Conference on the Application of Accelerators in Research and Industry (CAARI 2016). https://doi.org/10.1016/j.phpro.2017.09.018
[17] F. Dietrich and J. Hall, “Detector concept for neutron tomography in the 10 – 15 MeV energy range”, UCRL-ID-123490 (LLNL, 1996). https://doi.org/10.2172/226435
[18] F. Dietrich, J. Hall, and C. Logan, “Conceptual design for a neutron imaging system for thick target analysis operating in the 10 – 15 MeV energy range”, UCRL-JC-124401 (LLNL, 1996), in Proc. 14th Int. Conf. on the Applications of Accelerators in Research and Industry (Denton, TX, 1996), AIP CP392, 837 (1997). https://doi.org/10.1063/1.52470
[19] J. Hall, F. Dietrich, C. Logan, and G Schmid, “Development of high-energy neutron imaging for use in NDE applications,” UCRL-JC-134562 (LLNL, 1999), SPIE 3769, 31 (1999) and AIP 497, 693 (1999) (abridged version).
[20] B. Rusnak and J. Hall, “An accelerator system for neutron radiography”, UCRL-JC-139558 (LLNL, 2000), Proc. 16th Int. Conf. on the Applications of Accelerators in Research and Industry (Denton, TX, 2000), AIP CP576, 1105 (2001).
[21] B. Rusnak, J. Hall, and W. Hibbard, “A deuterium accelerator for neutron radiography”, UCRL-JC-145234 (LLNL, 2001), Proc. American Nuclear Society (Reno, NV, 2001). https://doi.org/10.1063/1.1395498
[22] B. Rusnak, J. Hall, and S. Shen, “A rotating aperture deuterium gas cell for high brightness neutron production”, UCRL-PROC-212293 (LLNL, 2005), Proc. 2005 Particle Accelerator Conference (Knoxville, TN, 2005)
[23] B. Rusnak, J. Hall, P. Fitsos, R. Souza, and M. Jong, “A large-format imaging optics system for fast neutron radiography”, UCRL-CONF-232018 (LLNL, 2007), in Proc. 2007 Particle Accelerator Conference (Albuquerque, NM, 2007). https://doi.org/10.1109/PAC.2007.4440657
[24] P. Fitsos, S. Edson, J. Hall, and B. Rusnak, “Design and fabrication of a precision pulsed valve system for neutron imaging”, LLNL-CONF-491678 (LLNL, 2011), Proc. 26th Annual Meeting of the American Society for Precision Engineering (ASPE) (Denver, CO, 11/11).
[25] V. Tang, B. Rusnak, S. Falabella, J. McCarrick, H. Wang, J. Hall, and J. Ellsworth, “Fusion-driven gamma and fast neutron radiography test-bed at Lawrence Livermore National Laboratory”, Proc. 22nd Int. Conference on Application of Accelerators in Research and Industry (CAARI) (Fort Worth, TX, 08/12).
[26] B. Rusnak, J. Hall, P. Fitsos, M. Johnson, D. Bleuel, A. Weidrick, M. Crank, S. Anderson, R. Marsh, D. Gibson, J. Sain, and R. Souza, “Development of a high-brightness source for fast neutron imaging”, Proc. 2013 North American Particle Accelerator Conference (Chicago, IL, 10/16)
[27] B. Rusnak, J. Hall, P. Fitsos, M. Johnson, D. Bleuel, M. Crank, S. Anderson, R. Marsh, D. Gibson, J. Sain, L. Kruse, G. Anderson, S. Fisher, D. Nielsen, K. Lange, D. Jamero, and O. Alford, “Advancement of an accelerator-driven high-brightness source for fast neutron imaging”, Proc. of 2017 International Conference on Particle Accelerators (Copenhagen, Denmark, 05/17).
[28] R. Marsh, G. Anderson, S. Anderson, D. Bleuel, M. Crank, P. Fitsos, D. Gibson, J. Hall, M. Johnson, B. Rusnak, J. Sain, R. Souza, and A. Wiedrick, “High average power deuteron beam dynamics”, Proc. of 2017 International Conference on Particle Accelerators (Copenhagen, Denmark, 05/17).