Pseudocapacitors

$28.50

Pseudocapacitors

P.M. Anjana and R.B. Rakhi

Supercapacitors are expected to be the integral parts of power devices in a broad range of future applications. Supercapacitors must deliver high energy and power densities, safe mode of operation, and long cycle life, for their widespread practical applications. A meaningful way to achieve these parameters is to develop advanced electrode materials, which can provide high specific capacitance values. Pseudocapacitive materials are emerging as favorable candidates as electrode materials for supercapacitors, as they are capable of promoting the capacitance of the device by the surface Faradic redox reactions. The present chapter starts with a brief overview of electrochemical capacitors followed by the description of different energy storage mechanisms contributing to pseudocapacitive charge storage. This chapter also covers the details of different types of pseudocapacitive electrode materials. Making hybrid composites of carbon and pseudocapacitive material is a promising approach to overcome the poor cycle life of pseudocapacitors.

Keywords
Pseudocapacitors, Energy Density, Cycle Life, Electrode Materials, Hybrid Composites

Published online 11/5/2019, 30 pages

Citation: P.M. Anjana and R.B. Rakhi, Pseudocapacitors, Materials Research Foundations, Vol. 61, pp 141-170, 2019

DOI: https://doi.org/10.21741/9781644900499-7

Part of the book on Supercapacitor Technology

References
[1] M.S. Halper, J.C. Ellenbogen, Supercapacitors : A Brief Overview, The MITRE Corporation, McLean, Virginia, USA, 1-34, 2006.
[2] A. Burke, Ultracapacitors: why, how, and where is the technology, J. Power Sources 91 (2000) 37-50. https://doi.org/10.1016/S0378-7753(00)00485-7
[3] M. Winter, R.J. Brodd, What are batteries, fuel cells, and supercapacitors?, Chem. Rev. 104 (2004) 4245-4270. https://doi.org/10.1021/cr020730k
[4] P.J. Hall, E.J. Bain, Energy-storage technologies and electricity generation, Energy Policy 36 (2008) 4352-4355. https://doi.org/10.1016/j.enpol.2008.09.037
[5] B.E.Convey, Electrochemical super capacitors: Scientific fundamentals and Technological Applications, 2 ed., Kluwer academic/Plenum Publishers, New York, 1999.
[6] I. Danaee, M. Jafarian, F. Forouzandeh, F. Gobal, M.G. Mahjani, Electrochemical impedance studies of methanol oxidation on GC/Ni and GC/NiCu electrode, Int. J. Hydrogen Energy 34 (2009) 859-869. https://doi.org/10.1016/j.ijhydene.2008.10.067
[7] M.-S. Wu, P.-C. Julia Chiang, Fabrication of nanostructured manganese oxide electrodes for electrochemical capacitors, Electrochem. solid-state Lett. 7 (2004) A123-A126. https://doi.org/10.1149/1.1695533
[8] W. Sugimoto, H. Iwata, Y. Murakami, Y. Takasu, Electrochemical capacitor behavior of layered ruthenic acid hydrate, J. Electrochem. Soc. 151 (2004) A1181-A1187. https://doi.org/10.1149/1.1765681
[9] X. Dong, W. Shen, J. Gu, L. Xiong, Y. Zhu, H. Li, J. Shi, MnO2-embedded-in-mesoporous-carbon-wall structure for use as electrochemical capacitors, J. Phys. Chem. B 110 (2006) 6015-6019. https://doi.org/10.1021/jp056754n
[10] B.E. Conway, V. Birss, J. Wojtowicz, The role and utilization of pseudocapacitance for energy storage by supercapacitors, J Power Sources 66 (1997) 1-14. https://doi.org/10.1016/S0378-7753(96)02474-3
[11] I.-H. Kim, K.-B. Kim, Ruthenium oxide thin film electrodes for supercapacitors, electrochem, Solid-State Lett. 4 (2001) A62-A64. https://doi.org/10.1149/1.1359956
[12] M. Mastragostino, C. Arbizzani, F. Soavi, Polymer-based supercapacitors, J. Power Sources 97-98 (2001) 812-815. https://doi.org/10.1016/S0378-7753(01)00613-9
[13] K.S. Ryu, K.M. Kim, N.-G. Park, Y.J. Park, S.H. Chang, Symmetric redox supercapacitor with conducting polyaniline electrodes, J. Power Sources 103 (2002) 305-309. https://doi.org/10.1016/S0378-7753(01)00862-X
[14] V. Augustyn, P. Simon, B. Dunn, Pseudocapacitive oxide materials for high-rate electrochemical energy storage, Energy & Environ. Sci. 7 (2014) 1597-1614. https://doi.org/10.1039/c3ee44164d
[15] S. Trasatti, G. Buzzanca, Ruthenium dioxide: A new interesting electrode material. Solid state structure and electrochemical behaviour, J. Electroanal. Chem. Interfacial Electrochem. 29 (1971) A1-A5. https://doi.org/10.1016/S0022-0728(71)80111-0
[16] M.-S. Wu, Y.-A. Huang, C.-H. Yang, J.-J. Jow, Electrodeposition of nanoporous nickel oxide film for electrochemical capacitors, Int. J. Hydrogen Energy 32 (2007) 4153-4159. https://doi.org/10.1016/j.ijhydene.2007.06.001
[17] B. Wahdame, D. Candusso, X. François, F. Harel, J.-M. Kauffmann, G. Coquery, Design of experiment techniques for fuel cell characterisation and development, Int. J. Hydrogen Energy 34 (2009) 967-980. https://doi.org/10.1016/j.ijhydene.2008.10.066
[18] I.-H. Kim, K.-B. Kim, Electrochemical characterization of hydrous ruthenium oxide thin-film electrodes for electrochemical capacitor applications, J. Electrochem. Soc. 153 (2006) A383-A389. https://doi.org/10.1149/1.2147406
[19] L.M. Doubova, S. Daolio, A. De Battisti, Examination of RuO2 single-crystal surfaces: charge storage mechanism in H2SO4 aqueous solution, J. Electroanal. Chem. 532 (2002) 25-33. https://doi.org/10.1016/S0022-0728(02)00981-6
[20] J.P. Zheng, T.R. Jow, A new charge storage mechanism for electrochemical capacitors, J. Electrochem. Soc. 142 (1995) L6-L8. https://doi.org/10.1149/1.2043984
[21] J.P. Zheng, P.J. Cygan, T.R. Jow, Hydrous ruthenium oxide as an electrode material for electrochemical capacitors, J. Electrochem. Soc. 142 (1995) 2699-2703. https://doi.org/10.1149/1.2050077
[22] C.-C. Hu, W.-C. Chen, K.-H. Chang, How to achieve maximum utilization of hydrous ruthenium oxide for supercapacitors, J. Electrochem. Soc.151(2004) A281-A290. https://doi.org/10.1149/1.1639020
[23] D.J. Ham, R. Ganesan, J.S. Lee, Tungsten carbide microsphere as an electrode for cathodic hydrogen evolution from water, Int. J. Hydrogen Energy 33 (2008) 6865-6872. https://doi.org/10.1016/j.ijhydene.2008.05.045
[24] D. Choi, G.E. Blomgren, P.N. Kumta, Fast and reversible surface redox reaction in nanocrystalline vanadium nitride supercapacitors, Adv. Mater.18 (2006) 1178-1182. https://doi.org/10.1002/adma.200502471
[25] E.B. Castro, S.G. Real, L.F. Pinheiro Dick, Electrochemical characterization of porous nickel–cobalt oxide electrodes, Int. J. Hydrogen Energy 29 (2004) 255-261. https://doi.org/10.1016/S0360-3199(03)00133-2
[26] H.Y. Lee, J.B. Goodenough, Supercapacitor behavior with KCl electrolyte, J. Solid State Chem.144 (1999) 220-223. https://doi.org/10.1006/jssc.1998.8128
[27] X. Wang, X. Wang, W. Huang, P.J. Sebastian, S. Gamboa, Sol–gel template synthesis of highly ordered MnO2 nanowire arrays, J. Power Sources 140 (2005) 211-215. https://doi.org/10.1016/j.jpowsour.2004.07.033
[28] M. Toupin, T. Brousse, D. Bélanger, Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor, Chem. Mater. 6 (2004) 3184-3190. https://doi.org/10.1021/cm049649j
[29] P. Simon, Y. Gogotsi, Materials for electrochemical capacitors, Nat. Mater. 7 (2008) 845-854. https://doi.org/10.1038/nmat2297
[30] W.F. Wei, X.W. Cui, W.X. Chen, D.G. Ivey, Manganese oxide-based materials as electrochemical supercapacitor electrodes, Chem. Soc. Rev. 40 (2011) 1697-1721. https://doi.org/10.1039/C0CS00127A
[31] O. Ghodbane, J.-L. Pascal, F. Favier, Microstructural effects on charge-storage properties in MnO2-based electrochemical supercapacitors, ACS Appl. Mater. Interfaces 1 (2009) 1130-1139. https://doi.org/10.1021/am900094e
[32] L. Li, Z.A. Hu, N. An, Y.Y. Yang, Z.M. Li, H.Y. Wu, Facile Synthesis of MnO2/CNTs composite for supercapacitor electrodes with long cycle stability, J. Phys. Chem. C 118 (2014) 22865-22872. https://doi.org/10.1021/jp505744p
[33] F. Zhang, C. Yuan, X. Lu, L. Zhang, Q. Che, X. Zhang, Facile growth of mesoporous Co3O4 nanowire arrays on Ni foam for high performance electrochemical capacitors, J. Power Sources 203 (2012) 250-256. https://doi.org/10.1016/j.jpowsour.2011.12.001
[34] C. Yuan, X. Zhang, L. Su, B. Gao, L. Shen, Facile synthesis and self-assembly of hierarchical porous NiO nano/micro spherical superstructures for high performance supercapacitors, J. Mater. Chem.19 (2009) 5772-5777. https://doi.org/10.1039/b902221j
[35] L. Shen, Q. Che, H. Li, X. Zhang, Mesoporous NiCo2O4 nanowire arrays grown on carbon textiles as binder-free flexible electrodes for energy storage, Adv. Funct. Mater. 24 (2014) 2630-2637. https://doi.org/10.1002/adfm.201303138
[36] S.-L. Kuo, N.-L. Wu, Electrochemical characterization on MnFe2O4/carbon black composite aqueous supercapacitors, J. Power Sources 162 (2006) 1437-1443. https://doi.org/10.1016/j.jpowsour.2006.07.056
[37] J. Liu, J. Jiang, C. Cheng, H. Li, J. Zhang, H. Gong, H.J. Fan, Co3O4 nanowire@MnO2 ultrathin nanosheet core/shell arrays: A new class of high-performance pseudocapacitive materials, Adv. Mater. 23 (2011) 2076-2081. https://doi.org/10.1002/adma.201100058
[38] R.B. Rakhi, W. Chen, D. Cha, H.N. Alshareef, Substrate dependent self-organization of mesoporous cobalt oxide nanowires with remarkable pseudocapacitance, Nano Lett. 12 (2012) 2559-2567. https://doi.org/10.1021/nl300779a
[39] L. Huang, D. Chen, Y. Ding, S. Feng, Z.L. Wang, M. Liu, Nickel–cobalt hydroxide nanosheets coated on NiCo2O4 nanowires grown on carbon fiber paper for high-performance pseudocapacitors, Nano Lett.13 (2013) 3135-3139. https://doi.org/10.1021/nl401086t
[40] H. Xu, X. Hu, H. Yang, Y. Sun, C. Hu, Y. Huang, Flexible asymmetric micro-supercapacitors based on Bi2O3 and MnO2 nanoflowers: Larger areal mass promises higher energy density, Advanced Energy Materials 5 (2015) 1401882. https://doi.org/10.1002/aenm.201401882
[41] L. Hou, C. Yuan, L. Yang, L. Shen, F. Zhang, X. Zhang, Urchin-like Co3O4 microspherical hierarchical superstructures constructed by one-dimension nanowires toward electrochemical capacitors, RSC Adv. 1 (2011) 1521-1526. https://doi.org/10.1039/c1ra00312g
[42] X. Lu, G. Wang, T. Zhai, M. Yu, J. Gan, Y. Tong, Y. Li, Hydrogenated TiO2 nanotube arrays for supercapacitors, Nano Lett.12 (2012) 1690-1696. https://doi.org/10.1021/nl300173j
[43] R.B. Rakhi, D.H. Nagaraju, P. Beaujuge, H.N. Alshareef, Supercapacitors based on two dimensional VO2 nanosheet electrodes in organic gel electrolyte, Electrochim. Acta 220 (2016) 601-608. https://doi.org/10.1016/j.electacta.2016.10.109
[44] P.M. Anjana, M.R. Bindhu, M. Umadevi, R.B. Rakhi, Antimicrobial, electrochemical and photo catalytic activities of Zn doped Fe3O4 nanoparticles, J. Mater. Sci. Mater. Electron. 29 (2018) 6040-6050. https://doi.org/10.1007/s10854-018-8578-2
[45] H. Wan, X. Ji, J. Jiang, J. Yu, L. Miao, L. Zhang, S. Bie, H. Chen, Y. Ruan, Hydrothermal synthesis of cobalt sulfide nanotubes: The size control and its application in supercapacitors, J. Power Sources 243 (2013) 396-402. https://doi.org/10.1016/j.jpowsour.2013.06.027
[46] X. Meng, H. Sun, J. Zhu, H. Bi, Q. Han, X. Liu, X. Wang, Graphene-based cobalt sulfide composite hydrogel with enhanced electrochemical properties for supercapacitors, New J. Chem. 40 (2016) 2843-2849. https://doi.org/10.1039/C5NJ03423J
[47] S. Peng, L. Li, H. Tan, R. Cai, W. Shi, C. Li, S.G. Mhaisalkar, M. Srinivasan, S. Ramakrishna, Q. Yan, MS2 (M = Co and Ni) Hollow Spheres with Tunable Interiors for High-Performance Supercapacitors and Photovoltaics, Adv. Funct. Mater. 24 (2014) 2155-2162. https://doi.org/10.1002/adfm.201303273
[48] F. Tao, Y.-Q. Zhao, G.-Q. Zhang, H.-L. Li, Electrochemical characterization on cobalt sulfide for electrochemical supercapacitors, Electrochem. Commun. 9 (2007) 1282-1287. https://doi.org/10.1016/j.elecom.2006.11.022
[49] S.W. Chou, J.Y. Lin, Cathodic deposition of flaky nickel sulfide nanostructure as an electroactive material for high-performance supercapacitors, J. Electrochem. Soc. 160 (2013) D178-D182. https://doi.org/10.1149/2.078304jes
[50] W. Chen, C. Xia, H.N. Alshareef, One-step electrodeposited nickel cobalt sulfide nanosheet arrays for high-performance asymmetric supercapacitors, ACS Nano 8 (2014) 9531-9541. https://doi.org/10.1021/nn503814y
[51] J. Feng, X. Sun, C. Wu, L. Peng, C. Lin, S. Hu, J. Yang, Y. Xie, Metallic few-layered VS2 ultrathin nanosheets: high two-dimensional conductivity for in-plane supercapacitors, J. Am. Chem. Soc. 133 (2011) 17832-17838. https://doi.org/10.1021/ja207176c
[52] G. Ma, H. Peng, J. Mu, H. Huang, X. Zhou, Z. Lei, In situ intercalative polymerization of pyrrole in graphene analogue of MoS2 as advanced electrode material in supercapacitor, J. Power Sources 229 (2013) 72-78. https://doi.org/10.1016/j.jpowsour.2012.11.088
[53] J.M. Soon, K.P. Loh, Electrochemical double-layer capacitance of MoS2 nanowall films, Electrochem. Solid-State Lett.10 (2007) A250-A254. https://doi.org/10.1149/1.2778851
[54] J. Feng, X. Sun, C.Z. Wu, L.L. Peng, C.W. Lin, S.L. Hu, J.L. Yang, Y. Xie, Metallic Few-layered VS2 ultrathin nanosheets: high two-dimensional conductivity for in-plane supercapacitors, J. Am. Chem. Soc. 133 (2011) 17832-17838. https://doi.org/10.1021/ja207176c
[55] M. Chhowalla, H.S. Shin, G. Eda, L.J. Li, K.P. Loh, H. Zhang, The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets, Nat. Chem. 5 (2013) 263-275. https://doi.org/10.1038/nchem.1589
[56] X. Zhou, B. Xu, Z. Lin, D. Shu, L. Ma, Hydrothermal synthesis of flower-like MoS2 nanospheres for electrochemical supercapacitors, J. Nanosci. Nanotech. 14 (2014) 7250. https://doi.org/10.1166/jnn.2014.8929
[57] C. Xia, Y. Xie, W. Wang, H. Du, Fabrication and electrochemical capacitance of polyaniline/titanium nitride core–shell nanowire arrays, Synth. Met. 192 (2014) 93-100. https://doi.org/10.1016/j.synthmet.2014.03.018
[58] S. Ghosh, S.M. Jeong, S.R. Polaki, A review on metal nitrides/oxynitrides as an emerging supercapacitor electrode beyond oxide, Korean J. Chem. Eng. 5 (2018) 1389-1408. https://doi.org/10.1007/s11814-018-0089-6
[59] Y. Xu, J. Wang, B. Ding, L. Shen, H. Dou, X. Zhang, General strategy to fabricate ternary metal nitride/carbon nanofibers for supercapacitors, ChemElectroChem 2 (2015) 2020-2026. https://doi.org/10.1002/celc.201500310
[60] G. Durai, P. Kuppusami, J. Theerthagiri, Microstructural and supercapacitive properties of reactive magnetron co-sputtered Mo3N2 electrodes: Effects of Cu doping, Mater. Lett. 220 (2018) 201-204. https://doi.org/10.1016/j.matlet.2018.02.120
[61] G. Abellan, J.A. Carrasco, E. Coronado, J. Romero, M. Varela, Alkoxide-intercalated CoFe-layered double hydroxides as precursors of colloidal nanosheet suspensions: structural, magnetic and electrochemical properties, J. Mater. Chem. C 2 (2014) 3723-3731. https://doi.org/10.1039/C3TC32578D
[62] Y. Wang, W.S. Yang, J.J. Yang, A Co-Al layered double hydroxides nanosheets thin-film electrode – Fabrication and electrochemical study, Electrochem. Solid-State Lett. 10 (2007) A233-A236. https://doi.org/10.1149/1.2768166
[63] M.E. Spahr, P. Novak, B. Schnyder, O. Haas, R. Nesper, Characterization of layered lithium nickel manganese oxides synthesized by a novel oxidative coprecipitation method and their electrochemical performance as lithium insertion electrode materials, J. Electrochem. Soc. 145 (1998) 1113-1121. https://doi.org/10.1149/1.1838425
[64] Y. Wang, W.S. Yang, S.C. Zhang, D.G. Evans, X. Duan, Synthesis and electrochemical characterization of Co-Al layered double hydroxides, J. Electrochem. Soc. 152 (2005) A2130-A2137. https://doi.org/10.1149/1.2041107
[65] J. Zhao, J. Chen, S. Xu, M. Shao, D. Yan, M. Wei, D.G. Evans, X. Duan, CoMn-layered double hydroxide nanowalls supported on carbon fibers for high-performance flexible energy storage devices, J. Mater. Chem. A 1 (2013) 8836-8843. https://doi.org/10.1039/c3ta11452j
[66] S. Anandan, C.-Y. Chen, J.J. Wu, Sonochemical synthesis and characterization of turbostratic MnNi(OH)2 layered double hydroxide nanoparticles for supercapacitor applications, RSC Adv. 4 (2014) 55519-55523. https://doi.org/10.1039/C4RA10816G
[67] A.D. Jagadale, G. Guan, X. Li, X. Du, X. Ma, X. Hao, A. Abudula, Ultrathin nanoflakes of cobalt–manganese layered double hydroxide with high reversibility for asymmetric supercapacitor, Journal of Power Sources 306 (2016) 526-534. https://doi.org/10.1016/j.jpowsour.2015.12.097
[68] K. Ma, J.P. Cheng, J. Zhang, M. Li, F. Liu, X. Zhang, Dependence of Co/Fe ratios in Co-Fe layered double hydroxides on the structure and capacitive properties, Electrochim. Acta 198 (2016) 231-240. https://doi.org/10.1016/j.electacta.2016.03.082
[69] X. Bai, Q. Liu, Z. Lu, J. Liu, R. Chen, R. Li, D. Song, X. Jing, P. Liu, J. Wang, Rational design of sandwiched Ni–Co layered double hydroxides hollow nanocages/graphene derived from metal-organic framework for sustainable energy storage, ACS Sustain. Chem. Eng. 5 (2017) 9923-9934. https://doi.org/10.1021/acssuschemeng.7b01879
[70] J. Zhao, J. Chen, S. Xu, M. Shao, Q. Zhang, F. Wei, J. Ma, M. Wei, D.G. Evans, X. Duan, Hierarchical NiMn layered double hydroxide/carbon nanotubes architecture with superb energy density for flexible supercapacitors, Adv. Funct. Mater. 24 (2014) 2938-2946. https://doi.org/10.1002/adfm.201303638
[71] J. Yang, C. Yu, X. Fan, Z. Ling, J. Qiu, Y. Gogotsi, Facile fabrication of MWCNT-doped NiCoAl-layered double hydroxide nanosheets with enhanced electrochemical performances, J. Mater. Chem. A 1 (2013) 1963-1968. https://doi.org/10.1039/C2TA00832G
[72] X. Wu, L. Jiang, C. Long, T. Wei, Z. Fan, Dual Support system ensuring porous co–al hydroxide nanosheets with ultrahigh rate performance and high energy density for supercapacitors, Adv. Funct. Mater. 25 (2015) 1648-1655. https://doi.org/10.1002/adfm.201404142
[73] Y. Cheng, H. Zhang, C.V. Varanasi, J. Liu, Improving the performance of cobalt-nickel hydroxide-based self-supporting electrodes for supercapacitors using accumulative approaches, Energy Environ. Sci. 6 (2013) 3314-3321. https://doi.org/10.1039/c3ee41143e
[74] C. Arbizzani, M. Mastragostino, F. Soavi, New trends in electrochemical supercapacitors, J. Power Sources 100 (2001) 164-170. https://doi.org/10.1016/S0378-7753(01)00892-8
[75] T. Nohma, H. Kurokawa, M. Uehara, M. Takahashi, K. Nishio, T. Saito, Electrochemical characteristics of LiNiO2 and LiCoO2 as a positive material for lithium secondary batteries, J. Power Sources 54 (1995) 522-524. https://doi.org/10.1016/0378-7753(94)02140-X
[76] A. Rudge, I. Raistrick, S. Gottesfeld, J. Ferraris, A study of the electrochemical properties of conducting polymers for application in electrochemical capacitors, Electrochim. Acta 39 (1994) 273-287. https://doi.org/10.1016/0013-4686(94)80063-4
[77] C. Peng, S. Zhang, D. Jewell, G.Z. Chen, Carbon nanotube and conducting polymer composites for supercapacitors, Prog. Nat. Sci. 18 (2008) 777-788. https://doi.org/10.1016/j.pnsc.2008.03.002
[78] L.-M. Huang, T.-C. Wen, A. Gopalan, Electrochemical and spectroelectrochemical monitoring of supercapacitance and electrochromic properties of hydrous ruthenium oxide embedded poly(3,4-ethylenedioxythiophene)–poly(styrene sulfonic acid) composite, Electrochim. Acta 51 (2006) 3469-3476. https://doi.org/10.1016/j.electacta.2005.09.049
[79] M. Mallouki, F. Tran-Van, C. Sarrazin, P. Simon, B. Daffos, A. De, C. Chevrot, J.F. Fauvarque, Polypyrrole-Fe2O3 nanohybrid materials for electrochemical storage, J. Solid State Electrochem. 11 (2007) 398-406. https://doi.org/10.1007/s10008-006-0161-8
[80] P. Gómez-Romero, K. Cuentas-Gallegos, M. Lira-Cantú, N. Casañ-Pastor, Hybrid nanocomposite materials for energy storage and conversion applications, J. Mater. Sci. 40 (2005) 1423-1428. https://doi.org/10.1007/s10853-005-0578-y
[81] N.A. Kumar, H.-J. Choi, Y.R. Shin, D.W. Chang, L. Dai, J.-B. Baek, Polyaniline-grafted reduced graphene oxide for efficient electrochemical supercapacitors, ACS Nano 6 (2012) 1715-1723. https://doi.org/10.1021/nn204688c
[82] X. Lu, H. Dou, C. Yuan, S. Yang, L. Hao, F. Zhang, L. Shen, L. Zhang, X. Zhang, Polypyrrole/carbon nanotube nanocomposite enhanced the electrochemical capacitance of flexible graphene film for supercapacitors, J. Power Sources 197 (2012) 319-324. https://doi.org/10.1016/j.jpowsour.2011.08.112
[83] S. Palsaniya, H.B. Nemade, A.K. Dasmahapatra, Synthesis of polyaniline/graphene/MoS2 nanocomposite for high performance supercapacitor electrode, Polymer 150 (2018) 150-158. https://doi.org/10.1016/j.polymer.2018.07.018
[84] B.N. Reddy, S. Deshagani, M. Deepa, P. Ghosal, Effective pseudocapacitive charge storage/release by hybrids of poly(3,4-ethylenedioxypyrrole) with Fe3O4 nanostructures or Co3O4 nanorods, Chem. Eng. J. 334 (2018) 1328-1340. https://doi.org/10.1016/j.cej.2017.11.068
[85] E. Frackowiak, V. Khomenko, K. Jurewicz, K. Lota, F. Béguin, Supercapacitors based on conducting polymers/nanotubes composites, J. Power Sources 153 (2006) 413-418. https://doi.org/10.1016/j.jpowsour.2005.05.030
[86] G.A. Snook, P. Kao, A.S. Best, Conducting-polymer-based supercapacitor devices and electrodes, J. Power Sources 196 (2011) 1-12. https://doi.org/10.1016/j.jpowsour.2010.06.084
[87] H. Wu, D. Li, X. Zhu, C. Yang, D. Liu, X. Chen, Y. Song, L. Lu, High-performance and renewable supercapacitors based on TiO2 nanotube array electrodes treated by an electrochemical doping approach, Electrochim. Acta 116 (2014) 129-136. https://doi.org/10.1016/j.electacta.2013.10.092
[88] H. Wang, C. Guan, X. Wang, H.J. Fan, A high energy and power Li-Ion capacitor based on a TiO2 nanobelt array anode and a graphene hydrogel cathode, Small 11 (2015) 1470-1477. https://doi.org/10.1002/smll.201402620
[89] H. Kim, M.-Y. Cho, M.-H. Kim, K.-Y. Park, H. Gwon, Y. Lee, K.C. Roh, K. Kang, A novel high-energy hybrid supercapacitor with an anatase TiO2–reduced graphene oxide anode and an activated carbon cathode, Adv. Energy Mater. 3 (2013) 1500-1506. https://doi.org/10.1002/aenm.201300467
[90] Y. Wang, Z. Hong, M. Wei, Y. Xia, Layered H2Ti6O13-nanowires: A new promising pseudocapacitive material in non-aqueous electrolyte, Adv. Funct. Mater. 22 (2012) 5185-5193. https://doi.org/10.1002/adfm.201200766
[91] M. Lübke, P. Marchand, D.J.L. Brett, P. Shearing, R. Gruar, Z. Liu, J.A. Darr, High power layered titanate nano-sheets as pseudocapacitive lithium-ion battery anodes, J. Power Sources 305 (2016) 115-121. https://doi.org/10.1016/j.jpowsour.2015.11.060
[92] F. Wu, Z. Wang, X. Li, H. Guo, Hydrogen titanate and TiO2 nanowires as anode materials for lithium-ion batteries, J. Mater. Chem. 21 (2011) 12675-12681. https://doi.org/10.1039/c1jm11042j
[93] J. Li, Z. Tang, Z. Zhang, Layered hydrogen titanate nanowires with novel lithium intercalation properties, Chem. Mater. 17 (2005) 5848-5855. https://doi.org/10.1021/cm0516199
[94] B. Reichman, A.J. Bard, Electrochromism at niobium pentoxide electrodes in aqueous and acetonitrile solutions, J. Electrochem. Soc.127 (1980) 241-242. https://doi.org/10.1149/1.2129628
[95] G. Luo, H. Li, L. Gao, D. Zhang, T. Lin, Porous structured niobium pentoxide/carbon complex for lithium-ion intercalation pseudocapacitors, Mater. Sci. Eng. B 214 (2016) 74-80. https://doi.org/10.1016/j.mseb.2016.09.004
[96] K. Brezesinski, J. Wang, J. Haetge, C. Reitz, S.O. Steinmueller, S.H. Tolbert, B.M. Smarsly, B. Dunn, T. Brezesinski, Pseudocapacitive contributions to charge storage in highly ordered mesoporous group v transition metal oxides with iso-oriented layered nanocrystalline domains, J. Am. Chem. Soc. 132 (2010) 6982-6990. https://doi.org/10.1021/ja9106385
[97] J.W. Kim, V. Augustyn, B. Dunn, The effect of crystallinity on the rapid pseudocapacitive response of Nb2O5, Adv. Energy Mater. 2 (2012) 141-148. https://doi.org/10.1002/aenm.201100494
[98] S. Lou, X. Cheng, L. Wang, J. Gao, Q. Li, Y. Ma, Y. Gao, P. Zuo, C. Du, G. Yin, High-rate capability of three-dimensionally ordered macroporous T-Nb2O5 through Li+ intercalation pseudocapacitance, J. Power Sources 361 (2017) 80-86. https://doi.org/10.1016/j.jpowsour.2017.06.023
[99] S. Ouendi, C. Arico, F. Blanchard, J.-L. Codron, X. Wallart, P.L. Taberna, P. Roussel, L. Clavier, P. Simon, C. Lethien, Synthesis of T-Nb2O5 thin-films deposited by atomic layer deposition for miniaturized electrochemical energy storage devices, Energy Storage Mater. (2018). https://doi.org/10.1016/j.ensm.2018.08.022
[100] L. Kong, C. Zhang, J. Wang, W. Qiao, L. Ling, D. Long, Free-standing T-Nb2O5/graphene composite papers with ultrahigh gravimetric/volumetric capacitance for Li-Ion intercalation pseudocapacitor, ACS Nano 9 (2015) 11200-11208. https://doi.org/10.1021/acsnano.5b04737
[101] J. Yang, T. Lan, J. Liu, Y. Song, M. Wei, Supercapacitor electrode of hollow spherical V2O5 with a high pseudocapacitance in aqueous solution, Electrochim. Acta 105 (2013) 489-495. https://doi.org/10.1016/j.electacta.2013.05.023
[102] M. Li, G. Sun, P. Yin, C. Ruan, K. Ai, Controlling the formation of rodlike V2O5 nanocrystals on reduced graphene oxide for high-performance supercapacitors, ACS Appl. Mater. Interfaces 5 (2013) 11462-11470. https://doi.org/10.1021/am403739g
[103] G.G. Amatucci, F. Badway, A. Du Pasquier, T. Zheng, An asymmetric hybrid nonaqueous energy storage cell, J. Electrochem. Soc. 148 (2001) A930-A939. https://doi.org/10.1149/1.1383553
[104] H. Kim, K.-Y. Park, M.-Y. Cho, M.-H. Kim, J. Hong, S.-K. Jung, K. Chul Roh, K. Kang, High-performance hybrid supercapacitor based on graphene-wrapped Li4Ti5O12 and Activated Carbon, ChemElectroChem 1 (2014) 125-130. https://doi.org/10.1002/celc.201300186
[105] K. Naoi, S. Ishimoto, Y. Isobe, S. Aoyagi, High-rate nano-crystalline Li4Ti5O12 attached on carbon nano-fibers for hybrid supercapacitors, J. Power Sources 195 (2010) 6250-6254. https://doi.org/10.1016/j.jpowsour.2009.12.104
[106] M. Mladenov, K. Alexandrova, N.V. Petrov, B. Tsyntsarski, D. Kovacheva, N. Saliyski, R. Raicheff, Synthesis and electrochemical properties of activated carbons and Li4Ti5O12 as electrode materials for supercapacitors, J. Solid State Electrochem. 17 (2013) 2101-2108. https://doi.org/10.1007/s10008-011-1424-6
[107] C.C. Fu, L.J. Zhang, J.H. Peng, H. Wang, H. Yan, Synthesis of Li4Ti5O12-reduced graphene oxide composite and its application for hybrid supercapacitors, Ionics 22 (2016) 1829-1836. https://doi.org/10.1007/s11581-016-1726-x
[108] B.-G. Lee, S.-H. Lee, Application of hybrid supercapacitor using granule Li4Ti5O12/activated carbon with variation of current density, J. Power Sources 343 (2017) 545-549. https://doi.org/10.1016/j.jpowsour.2017.01.094
[109] R.A. Aziz, I.I. Misnon, K.F. Chong, M.M. Yusoff, R. Jose, Layered sodium titanate nanostructures as a new electrode for high energy density supercapacitors, Electrochim. Acta 113 (2013) 141-148. https://doi.org/10.1016/j.electacta.2013.09.128
[110] C. Wang, Y. Xi, M. Wang, C. Zhang, X. Wang, Q. Yang, W. Li, C. Hu, D. Zhang, Carbon-modified Na2Ti3O7·2H2O nanobelts as redox active materials for high-performance supercapacitor, Nano Energy 28 (2016) 115-123. https://doi.org/10.1016/j.nanoen.2016.08.021
[111] X. Qiu, X. Zhang, L.-Z. Fan, In situ synthesis of a highly active Na2Ti3O7 nanosheet on an activated carbon fiber as an anode for high-energy density supercapacitors, J. Mater. Chem. A 6 (2018) 16186-16195. https://doi.org/10.1039/C8TA04982C
[112] Z. Jian, L. Zhao, H. Pan, Y.-S. Hu, H. Li, W. Chen, L. Chen, Carbon coated Na3V2(PO4)3 as novel electrode material for sodium ion batteries, Electrochem. Commun. 14 (2012) 86-89. https://doi.org/10.1016/j.elecom.2011.11.009
[113] X. Zhong, Z. Yang, Y. Jiang, W. Li, L. Gu, Y. Yu, Carbon-coated Na3V2(PO4)3 anchored on freestanding graphite foam for high-performance sodium-ion cathodes, ACS Appl. Mater. Interfaces 8 (2016) 32360-32365. https://doi.org/10.1021/acsami.6b11873
[114] P.F.R. Ortega, G.A. dos Santos Junior, L.A. Montoro, G.G. Silva, C. Blanco, R. Santamaría, R.L. Lavall, LiFePO4/mesoporous carbon hybrid supercapacitor based on LiTFSI/imidazolium ionic liquid electrolyte, J. Phys. Chem. C 122 (2018) 1456-1465. https://doi.org/10.1021/acs.jpcc.7b09869
[115] M. Ghidiu, M.R. Lukatskaya, M.Q. Zhao, Y. Gogotsi, M.W. Barsoum, Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance, Nature 516 (2014) 78-171. https://doi.org/10.1038/nature13970
[116] M.R. Lukatskaya, O. Mashtalir, C.E. Ren, Y. Dall’Agnese, P. Rozier, P.L. Taberna, M. Naguib, P. Simon, M.W. Barsoum, Y. Gogotsi, Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide, Science 341 (2013) 1502. https://doi.org/10.1126/science.1241488
[117] A.H. Feng, Y. Yu, Y. Wang, F. Jiang, Y. Yu, L. Mi, L.X. Song, Two-dimensional MXene Ti3C2 produced by exfoliation of Ti3AlC2, Mater. Design 114 (2017) 161-166. https://doi.org/10.1016/j.matdes.2016.10.053
[118] M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J.J. Niu, M. Heon, L. Hultman, Y. Gogotsi, M.W. Barsoum, Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2, Adv. Mater. 23 (2011) 4248-4253. https://doi.org/10.1002/adma.201102306
[119] Z. Ling, C.E. Ren, M.Q. Zhao, J. Yang, J.M. Giammarco, J.S. Qiu, M.W. Barsoum, Y. Gogotsi, Flexible and conductive MXene films and nanocomposites with high capacitance, PNAS111 (2014) 16676-16681. https://doi.org/10.1073/pnas.1414215111
[120] R.B. Rakhi, B. Ahmed, M.N. Hedhili, D.H. Anjum, H.N. Alshareef, Effect of postetch annealing gas composition on the structural and electrochemical properties of Ti2CTx MXene electrodes for supercapacitor applications, Chem. Mater. 27 (2015) 5314-5323. https://doi.org/10.1021/acs.chemmater.5b01623
[121] J. Fu, J. Yun, S. Wu, L. Li, L. Yu, K.H. Kim, Architecturally robust graphene-encapsulated MXene Ti2CTx@polyaniline composite for high-performance pouch-type asymmetric supercapacitor, ACS Appl. Mater. Interfaces 10 (2018) 34212-34221. https://doi.org/10.1021/acsami.8b10195