Starch-Based Electrolytes: An Eco-Friendly and Economical Option for Flexible Supercapacitor

$28.50

Starch-Based Electrolytes: An Eco-Friendly and Economical Option for Flexible Supercapacitor

Neelam Srivastava

Environment challenges have attracted the attention of scientists to utilize renewable materials in order to adopt a green-process. The electrochemists have also switched to utilizing renewable polymers for device fabrication. For commercial devices, the quality of the fabrication materials is determined by various factors such as i) cost, ii) eco-friendliness and iii) ease of design, etc. Glutaraldehyde crosslinked starch-based electrolytes show impressive results with all these criteria along with having excellent electrochemical properties such as wide electrochemical stability window (up to 4.5V) low equivalent series resistance (ESR<2Ω for 0.8mm thickness and 1x1cm2 area) and fast ion transport (ion relaxation time of the order of µsec). These electrolytes are easy to prepare and they cost around 15 INR for 0.8mm thickness and 1x1cm2 area. Hence, starch-based electrolytes are very promising for flexible supercapacitor fabrication. Keywords
Starch, Economical, Eco-Friendly, Electrolytes, ESR, ESW

Published online 11/5/2019, 20 pages

Citation: Neelam Srivastava, Starch-Based Electrolytes: An Eco-Friendly and Economical Option for Flexible Supercapacitor, Materials Research Foundations, Vol. 61, pp 121-140, 2019

DOI: https://doi.org/10.21741/9781644900499-6

Part of the book on Supercapacitor Technology

References
[1] A. Nathan, A. Ahnood, M. T. Cole, S. Lee, Y. Suzuki, P. Hiralal, F. Bonaccorso, T. Hasan, L. Garcia-Gancedo, A. Dyadyusha, S. Haque, P. Andrew, S. Hofmann, J. Moultrie, D. Chu, A. J. Flewitt, A. C. Ferrari, M. J. Kelly, J. Robertson, G. A. J. Amaratunga, W. I. Milne, Flexible electronics: The next ubiquitous platform, Proceedings of the IEEE 100 (2012) 1486-1517. https://doi.org/10.1109/JPROC.2012.2190168.
[2] X. Wang, K. Jiang, G. Shen, Flexible fiber energy storage and integrated devices: recent progress and perspectives, Mater. Today 18 (2015) 265-272. https://dx.doi.org/10.1016/j.mattod.2015.01.002.
[3] C. Wang, G. G. Wallace, Flexible electrodes and electrolytes for energy storage, Electrochim. Acta 175 (2015) 87-9. https://dx.doi.org/10.1016/j.electacta.2015.04.067.
[4] L. Dong, C. Xu, Y. Li, Z. Huang, F. Kang, Q. Yang, X. Zhao, Flexible electrodes and supercapacitors for wearable energy storage: A review by category, J. Mater. Chem. A 4 (2016) 4659-4685. https://dx.doi.org/10.1039/C5TA10582J.
[5] Q. Xue, J. Sun, Y. Huang, M. Zhu, Z. Pei, H. Li, Y.Wang, N. Li, H. Zhang, C. Zhi, Recent progress on flexible and wearable supercapacitors, Small 1701827 ( 2017) 1-11. https://doi.org/10.1002/smll.201701827.
[6] S. Kiruthika, C. Sow, G. U. Kulkarni, Transparent and flexible supercapacitors with networked electrodes, Small 1701906 (2017) 1-9. https://doi.org/10.1002/smll.201701906.
[7] C. Zhong, Y. Deng, W. Hu, J. Qiao, L. Zhangd, J. Zhang, A review of electrolyte materials and compositions for electrochemical supercapacitors, Chem. Soc. Rev. 44 (2015) 7484-7539. https://dx.doi.org/10.1039/C5CS00303B.
[8] X. Li, J.Shao, S. Kim, C. Yao, J. Wang, Y.Miao, Q. Zheng, P. Sun, R. Zhang, P. V. Braun, High energy flexible supercapacitors formed via bottom-up infilling of gel electrolytes into thick porous electrodes, Nat. Commun. 2578 (2018) 1-8. https://dx.doi.org/10.1038/s41467-018-04937-8.
[9] L. V. Thekkekara, X. Chen, M. Gu, Two-photon-induced stretchable graphene supercapacitors, Sci. Rep. 11722 (2018) 1-9. https://dx.doi.org/10.1038/s41598-018-30194-2.
[10] L. Basirico, G. Lanzara, Moving towards high-power, high-frequency and low-resistance CNT supercapacitors by tuning the CNT length, axial deformation and contact resistance, Nanotechnology, 23 (2012) 1-13. https://dx.doi.org/10.1088/0957-4484/23/30/305401.
[11] G. Wang, L. Zhang, J. Zhang, A review of electrode materials for electrochemical supercapacitors, Chem. Soc. Rev. 41 (2012) 797–828. https://dx.doi.org/10.1039/ C1CS15060J.
[12] T. Purkait, G. Singh, D. Kumar, M. Singh, R. S. Dey, High-performance flexible supercapacitors based on electrochemically tailored three-dimensional reduced graphene oxide networks, Sci. Rep. 640 (2018) 1-13. https://dx.doi.org/ 10.1038/s41598-017-18593-3.
[13] S. Y. Liew, W. Thielemans, S. Freunberger, S. Spirk, Polysaccharides in Supercapacitors, in: Polysaccharide Based Supercapacitors, Springer Briefs in Molecular Science, Springer, Cham, 2017, 15-53. https://doi.org/10.1007/978-3-319-50754-5_2.
[14] P. K. Jha, S. K. Singh, V. Kumar, S. Rana, S. Kurungot, N. Ballav, High-level supercapacitive performance of chemically reduced graphene oxide, Chem 3 (2017) 846- 860. https://dx.doi.org/10.1016/j.chempr.2017.0.
[15] B. K. Kim, S. Sy, A. Yu, J. Zhang, Electrochemical Supercapacitors for Energy Storage and Conversion, in: Handbook of Clean Energy Systems, John Wiley & Sons, Ltd.2015, pp.1-25. https://doi.org/10.1002/9781118991978.hces112.
[16] R. Zhang, J. Ding, C. Liu, E.Yan, Highly stretchable supercapacitors enabled by interwoven CNTs partially embedded in pdms, ACS Appl. Energy Mater. 5 (2018) 2048–2055. https://dx.doi.org/10.1021/acsaem.8b00156.
[17] G.P. Pandey, A.C. Rastogi, C. R. Westgate, All-solid-state supercapacitors with poly(3,4-ethylenedioxythiophene)- coated carbon fiber paper electrodes and ionic liquid gel polymer electrolyte J. Power Sources 245 (2014) 857-865. https://doi.org/10.1016/ j.jpowsour.2013.07.017.
[18] F. Rafik, H. Gualous, R. Gallay, A. Crausaz, A. Berthon, Frequency, thermal and voltage supercapacitor characterization and modeling, J. Power Sources 165 (2007) 928–934. https://doi.org/10.1016/j.jpowsour.2006.12.021.
[19] J. Xue, Y. Zhao, H.Cheng, C. Hu, Y. Hu, Y. Meng, H. Shao, Z.Zhang, L.Qu, An all-cotton-derived, arbitrarily foldable, high-rate, electrochemical supercapacitor, Phys. Chem. Chem. Phys., 2013, 15, 8042; https://doi.org/10.1039/C3CP51571K.
[20] M. Armand, Polymer electrolytes, Ann. Rev. Mater. Sci. 16 (1986) 245-261. https://doi.org/10.1146/annurev.ms.16.080186.001333.
[21] C.W. Liew, K.H.Arifin, J.Kawamura, Y.Iwai, S.Ramesh, A.K.Arof, Effect of halide anions in ionic liquid added poly(vinyl alcohol) based ion conductors for electrical double layer capacitor, J. Non-Cryst. Solids 458 (2017) 97-106. https://doi.org/10.1016/j.jnoncrysol.2016.12.022.
[22] C.C. Yang, S. Chiu, S.J. Kuo, S.Ch., Preparation of poly(vinyl alcohol)/montmrillonile /poly(styrene sulfonic acid) composite membrane for hydrogen–oxygen polymer electrolyte fuel cell. Current Applied Physics 11(2011) S229-S237.
[23] F. Deng, X. Wang, D. He, J. Hu, C. Gong, Y. S.Ye, X. Xie, Z. Xue, Microporous polymer electrolyte based on PVdF/PEO star polymer blends for lithium ion batteries. J. Membrane Sci. 491 (2015) 82-89. https://doi.org/10.1016/ j.memsci.2015.05.021.
[24] S. Rajendran, O. Mahendran, R. Kannan, Characterisation of [(1− x) PMMA–xPVdF] polymer blend electrolyte with Li+ ion, Fuel 81 (2002) 1077-1081. https://doi.org/10.1016/S0016-2361(01)00178-8.
[25] S. B. Aziz, T.J. Woo, M.F.Z. Kadir, H.M. Ahmed, A conceptual review on polymer electrolytes and ion transport models, J. Sci. Adv. Mater. Devices 3 (2018) 1-17. https://doi.org/10.1016/j.jsamd.2018.01.002.
[26] R. C. Agrawal, G.P. Pandey, Solid polymer electrolytes: Materials designing and all-solid-state battery applications: An overview, J. Phys. D: Appl. Phys. 41 (2008 ) 1-18. https://doi.org/10.1088/0022-3727/41/22/223001.
[27] A.B. Samui, P. Sivaraman Solid polymer electrolytes for supercapacitors, in: C. Sequeira, D. Santos (Eds.), Polymer Electrolytes: Fundamentals and Applications, Woodhead Publishing Series in Electronic and Optical Materials, 2010, pp. 431-470.
[28] J. Qiao, J. Zhang, Electrolytes for electrochemical supercapacitors, editors: C. Zhang, Y. Deng, W. Hu, D. Sun, X. Han, CRC press, 2016, ISBN 13:978-1-4987-4757-8 e-book
[29] D. F.Vieira, C. O.Avellaneda, A. Pawlicka, Conductivity study of a gelatin-based polymer electrolyte, Electrochim. Acta 53 (2007) 1404-1408. https://doi.org/10.1016/j.electacta.2007.04.034.
[30] Y. Wu, F. Geng, P. R.Chang, J.Yu, X. Ma, Effect of agar on the microstructure and performance of potato starch film. Carbohyd. Polym. 76 (2009) 299-304. https://doi.org/10.1016/j.carbpol.2008.10.031
[31] T. Basu, M. M. Goswami, T. R. Middya, S. Tarafdar, Morphology and ion-conductivity of gelatin–LiClO4 films: Fractional diffusion analysis, J. Phys. Chem. B 116 (2012) 11362–11369. https://doi.org/10.1021/jp306205h.
[32] X. Kang, J. Wang, Z. Tang, H. Wu,Y. Lin, Direct electrochemistry and electrocatalysis of horseradish peroxidase immobilized in hybrid organic–inorganic film of chitosan/sol–gel/carbon nanotubes, Talanta 78 (2009) 120-125. https://doi.org/10.1016/j.talanta.2008.10.063.
[33] R. I. Mattos, C. E. Tambelli, J. P. Donoso, R. G. F. Costa & A. Pawlicka, NMR and Conductivity Study of Starch Based Polymer Gel Electrolytes, Mol. Cryst. Liq. Cryst. 447 (2006) 55-64. https://doi.org/10.1080/15421400500385308.
[34] V.L. Finkenstadt, Natural polysaccharides as electroactive polymers, Appl. Microbiol. Biotechnol. 67 (2005) 735-745. https://doi.org/10.1007/s00253-005-1931-4.
[35] A.S.A. Khiar, A.K. Arof, Conductivity studies of starch-based polymer electrolytes, Ionics 16 (2010)123-129. https://doi.org/10.1007/s11581-009-0356-y.
[36] R.I.Mattos, C.E.Tambelli, J.P.Donoso, A.Pawlicka, NMR study of starch based polymer gel electrolytes: Humidity effects, Electrochim. Acta 53 (2007)1461-1465. https://doi.org/10.1016/j.electacta.2007.05.061
[37] V.L. Finkenstadt, J.L. Willett, Electroactive materials composed of starch, J. Polym. Environ. 12 (2004) 43-46. https://doi.org/10.1023/B:JOOE.0000010049.33284.08.
[38] E. Raphael, C. O. Avellaneda, B. Manzoli, A. K. Pawlika, Agar-based films for application as polymer electrolyte, Electrochim. Acta 55 (2010) 1455-1459. https://doi.org/10.1016/j.electacta.2009.06.010.
[39] Y.M. Yusof, M.F. Shukur, H.A. Illias, M.F.Z. Kadir, Conductivity and chemical properties of corn starch-chitosan blend biopolymer electrolyte incorporated with ammonium iodide, Phys. Scr. 89 (2014) 035701. https://dx.doi.org/10.1088/0031-8949/89/03/035701.
[40] Y.N. Sudhakar, M. Selvakumar, Lithium perchlorate doped plasticized chitosan and starch blend as biodegradable polymer electrolyte for supercapacitors, Electrochim. Acta 78 (2012) 398–405. https://doi.org/10.1016/j.electacta.2012.06.032.
[41] C.W. Liew, S. Ramesh, Comparing triflate and hexafluorophosphate anions of ionic liquids in polymer electrolytes for supercapacitor applications, Materials 7 (2014) 4019-4033. https://doi.org/10.3390/ma7054019.
[42] M.F. Shukur, R. Ithnin, M.F.Z. Kadir, Electrical characterization of corn starch-LiOAc electrolytes and application in electrochemical double layer capacitor, Electrochim. Acta 136 (2014) 204-216. https://doi.org/10.1016/j.electacta.2014.05.075.
[43] M.F. Shukur, M.F.Z. Kadir, Hydrogen ion conducting starch-chitosan blend based electrolyte for application in electrochemical devices, Electrochim.Acta 158 (2015) 152-165. https://doi.org/10.1016/j.electacta.2015.01.167.
[44] K. H. Teoh, Chin-Shen Lim, Chiam-Wen Liew, S. Ramesh, S. Ramesh, Electric double-layer capacitors with corn starch-based biopolymer electrolytes incorporating silica as filler, Ionics 21 (2015) 2061–2068. https://doi.org/10.1007/s11581-014-1359-x.
[45] M.F. Shukur, R. Ithnin, M.F.Z. Kadir, Protonic transport analysis of starch-chitosan blend based electrolytes and application in electrochemical device, Mol. Cryst. Liq. Cryst. 603 (2014), 12th International Conference on Polymers and Advanced Materials (ICFPAM 2013). https://doi.org/10.1080/15421406.2014.966259.
[46] M.H. Hamsan, M.F. Shukur, M.F.Z. Kadir, NH4NO3 as charge carrier contributor in glycerolized potato starch-methyl cellulose blend-based polymer electrolyte and the application in electrochemical double-layer capacitor, Ionics 23 (2017) 3429-3453. https://doi.org/10.1007/s11581-017-2155-1.
[47] K.H. Teoh, C.S. Lim, C.W. Liew, S. Ramesh, Preparation and performance analysis of barium titanate incorporated in corn starch‐based polymer electrolytes for electric double layer capacitor application, J. Appl. Polym. Sci. 133 (2016) 1-18. https://doi.org/10.1002/app.43275.
[48] K.H. Teoh, C.S. Lim, S. Ramesh, Lithium ion conduction in corn starch based solid polymer electrolytes. Measurement 48 (2014) 87-95. https://doi.org/10.1016/j.measurement.2013.10.040.
[49] M.F. Shukur, F.M. Ibrahim, N.A. Majid, R. Ithnin, M.F.Z. Kadir, Electrical analysis of amorphous corn starch-based polymer electrolyte membrane doped with LiI, Phys. Scr. 88 (2013) 1-9. https://stacks.iop.org/PhysScr/88/025601.
[50] K.H. Teoh, C.S. Lim, C.W. Liew, S. Ramesh, S. Ramesh, Elecrical double-layer capacitors with corn starch-based biopolymer electrolytes incorporating silica as filler, Ionics 21 (2015) 2061-2068. https://doi.org/10.1007/s11581-014-1359-x.
[51] S. Ramesh, R. Shanti, E. Morris, Exerted influence of deep eutectic solvent concentration in the room temperature ionic conductivity and thermal behaviour of corn starch based polymer electrolytes, J. Mol. Liq. 166 (2012) 40-43. https://doi.org/10.1016/j.molliq.2011.11.010.
[52] N.N.A. Amran, N.S.A. Manan, M.F.Z. Kadir, The effect of LiCF3SO3 on the complexation with potato starch-chitosan blend polymer electrolytes, Ionics 22 (2016)1647-1658. https://doi.org/10.1007/s11581-016-1684-3.
[53] Y.M. Yusof, M.F.Z. Kadir, Electrochemical characterizations and the effect of glycerol in biopolymer electrolytes based on methylcellulose-potato starch blend. Mol. Cryst. Liq. Cryst. 627 (2016) 220-233. https://doi.org/10.1080/15421406.2015.1137115.
[54] M.F. Shukur, R. Ithnin, M.F.Z. Kadir, Ionic conductivity and dielectric properties of potato starch-magnesium acetate biopolymer electrolytes: the effect of glycerol and 1-butyl-3-methylimidazolium chloride, Ionics 22 (2016)1113-1123. https://doi.org/ 10.1007/s11581-015-1627-4
[55] S. Ramesh, C.W. Liew, A. K. Arof, Ion conducting corn starch biopolymer electrolytes doped with ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate, J. Non-Cryst. Solids 357 (2011)3654-3660. https://doi.org/10.1016/j.jnoncrysol.2011.06.030.
[56] M.H. Khanmirzaei, S. Ramesh, Ionic transport and FTIR properties of lithium iodide doped biodegradable rice starch based polymer electrolytes, Int. J. Electrochem. Sci. 8 (2013) 9977-9991.
[57] T. Tiwari, K. Pandey, N. Srivastava, P.C. Srivastava, Effect of glutaraldehyde on electrical properties of arrowroot starch + NaI electrolyte system, J. Appl. Polym. Sci. 121(2011) 1-7. https://doi.org/10.1002/app.33559.
[58] T. Tiwari, M. Kumar, N. Srivastava, P.C. Srivastava, Electrical transport study of potato starch-based electrolyte system II, Mater. Sci. Eng. B 182 (2014) 6-13. https://doi.org/10.1016/j.mseb.2013.11.010.
[59] T. Tiwari, N. Srivastava, P.C. Srivastava, Electrical transport study of potato starch based electrolyte system, Ionics 17 (2011) 353-360. https://doi.org/ 10.1007/s11581-010-0516-0.
[60] M. Kumar, T.Tiwari, N. Srivastava , Electrical transport behaviour of bio-polymer electrolyte system: Potato starch+ammonium iodide, Carbohydr. Polym. 88 (2012) 54-60. https://doi.org/10.1016/j.carbpol.2011.11.059.
[61] T. Tiwari, M. Kumar, N. Srivastava, Study of arrowroot starch based polymer electrolytes and its application in MFC, (2019). https://doi.wiley.com/10.1002/star.201800313
[62] M. Yadav, G. Nautiyal, A. Verma, M. Kumar,T. Tiwari, N. Srivastava, Electrochemical characterization of NaClO4–mixed rice starch as a cost-effective and environment-friendly electrolyte. (Accepted in Ionics) https://doi.org/10.1007/s11581-018-2794-x.
[63] J.K. Chauhan, M. Kumar, M. Yadav, T. Tiwari, N. Srivastava, Effect of NaClO4 concentration on electrolytic behaviour of corn starch film for supercapacitor application, Ionics 23 (2017) 2943–2949. https://doi.org/10.1007/s11581-017-2136-4.
[64] T. Tiwari, J. K. Chauhan, M. Yadav, M. Kumar, N. Srivastava, Arrowroot+ NaI: A low cost, fast ion conducting eco-friendly polymer electrolyte system, Ionics 23 (2017) 2809–2815. https://doi.org/10.1007/s11581-017-2028-7.
[65] M. Yadav, M. Kumar, T.Tiwari, N. Srivastava, Wheat Starch + NaI: A high conducting environment friendly electrolyte system for energy devices, Ionics 23 (2017) 2871-2880. https://doi.org/10.1007/s11581-016-1930-8.
[66] T. Tiwari, N. Srivastava, P.C. Srivastava, Ion dynamics study of potato starch + sodium salts electrolyte system, Int. J. Electrochem. 2013 (2013) 1-8. https://dx.doi.org/10.1155/2013/670914.
[67] M. Yadav, M. Kumar, N. Srivastava, Supercapacitive performance analysis of low cost and environment friendly potato starch based electrolyte system with anodized aluminium and teflon coated carbon cloth as electrode, Electrochim. Acta 283 (2018) 1551-1559. https://doi.org/10.1016/j.electacta.2018.07.060.
[68] A. Railanmaa, S. Lehtimäki, D. Lupo, Comparison of starch and gelatin hydrogels for non-toxic supercapacitor electrolytes, Appl. Phys. A 459 (2017) 1-8. https://doi.org/10.1007/s00339-017-1068-1.
[69] A.C. Eliasson, Starch: Physicochemical and Functional Aspects, in: A.C. Eliasson (Eds.) Carbohydrates in Food, Marcel Decker Inc., New York 1996, pp. 431-503.
[70] Y. Chen, C. Wang, T. Chang, L. Shi, H. Yang, M. Cui, Effect of salts on textural, color, and rheological properties of potato starch gels, Starch/Stärke 65 (2013) 1-8. https://doi.org/10.1002/star.201300041.
[71] V.K.Villwock, J. N. BeMiller, Effects of salts on the reaction of normal corn starch with propylene oxide, Starch/Stärke 57 (2005) 281–290. https://doi.org/10.1002/star.200400384.