Novel Bimetal Oxides/Sulfides Composites Electrodes for Electrochemical Supercapacitors

$28.50

Novel Bimetal Oxides/Sulfides Composites Electrodes for Electrochemical Supercapacitors

Shuhua Liu, Zongyu Huang and Xiang Qi

Supercapacitors (SCs) possess a bright future because of their high power supply and superior stability. Pseudocapacitive oxides of transition metals (NiCo2O4, FeCo2O4, Zn2SnO4 etc.) have been widely investigated for SCs ascribed to their high theoretical capacitances (>1000 F/g), environmental benignity, and low cost. In Bimetal sulfides (BMSs) such as MCo2S4 (M = Ni, Fe, and Cu) the efficient synergistic effect between two different metal ions makes them have more abundant oxidation reducing states, and their conductivity is qualitatively improved (four-order magnitude). This paper is hoped to provide a scientific basis to investigate the SCs technology.

Keywords
Supercapacitors, Pseudocapacitors, Bimetal Sulfides, Transition Metals, Energy-Storage

Published online 11/5/2019, 30 pages

Citation: Shuhua Liu, Zongyu Huang and Xiang Qi, Novel Bimetal Oxides/Sulfides Composites Electrodes for Electrochemical Supercapacitors, Materials Research Foundations, Vol. 61, pp 233-262, 2019

DOI: https://doi.org/10.21741/9781644900499-10

Part of the book on Supercapacitor Technology

References
[1] Q. Wang, J. Yan, Z. Fan, Carbon materials for high volumetric performance supercapacitors: design, progress, challenges and opportunities, Energy Environ. Sci. 9 (2016) 729-762. https://doi.org/10.1039/C5EE03109E
[2] Q. Meng, K. Cai, Y. Chen, L. Chen, Research progress on conducting polymer based supercapacitor electrode materials, Nano Energy 36 (2017) 268-285. https://doi.org/10.1016/j.nanoen.2017.04.040
[3] A. González, E. Goikolea, J.A. Barrena, R. Mysyk, Review on supercapacitors: Technologies and materials, Renew. Sustain. Energy Rev. 58 (2016) 1189-1206. https://doi.org/10.1016/j.rser.2015.12.249
[4] J. Zhu, S. Tang, J. Wu, X. Shi, B. Zhu, X. Meng, Wearable high-performance supercapacitors based on silver-sputtered textiles with FeCo2S4-NiCo2S4 composite nanotube-built multitripod architectures as advanced flexible electrodes, Adv. Energy Mater. 7 (2017) 1601234-1601245. https://doi.org/10.1002/aenm.201601234
[5] J. Jiang, B. Liu, G. Liu, D. Qian, C. Yang, J. Li, A systematically comparative study on LiNO3 and Li2SO4 aqueous electrolytes for electrochemical double-layer capacitors, Electrochim. Acta 274 (2018) 121-130. https://doi.org/10.1016/j.electacta.2018.04.097
[6] M. Winter, R.J. Brodd, What are batteries, fuel cells, and supercapacitors?, Chem. Rev. 35 (2004) 4245-4270. https://doi.org/10.1021/cr020730k
[7] E. Lim, C. Jo, J. Lee, A mini review of designed mesoporous materials for energy-storage applications: from electric double-layer capacitors to hybrid supercapacitors, Nanoscale 8 (2016) 7827-7833. https://doi.org/10.1039/C6NR00796A
[8] S. Tang, B. Zhu, X. Shi, J. Wu, X. Meng, General controlled sulfidation toward achieving novel nanosheet‐built porous square‐FeCo2S4‐tube arrays for high‐performance asymmetric all‐solid‐state pseudocapacitors, Adv. Energy Mater. 7 (2017) 1601985-1601996. https://doi.org/10.1002/aenm.201601985
[9] Z. Bo, C. Li, H. Yang, K. Ostrikov, J. Yan, K. Cen, Design of supercapacitor electrodes using molecular dynamics simulations, Nano-Micro Lett. 10 (2018) 33-56. https://doi.org/10.1007/s40820-018-0188-2
[10] G. Yury, Materials science: Energy storage wrapped up, Nature 509 (2014) 568-570. https://doi.org/10.1038/509568a
[11] P. Simon, Y. Gogotsi, B. Dunn, Where do batteries end and supercapacitors begin?, Sci. 343 (2014) 1210-1211. https://doi.org/10.1126/science.1249625
[12] Y. Zhang, H. Feng, X. Wu, L. Wang, A. Zhang, T. Xia, H. Dong, X. Li, L. Zhang, Progress of electrochemical capacitor electrode materials: A review, Int. J. Hydrogen Energy 34 (2009) 4889-48992. https://doi.org/10.1016/j.ijhydene.2009.04.005
[13] A. Borenstein, O. Hanna, A. Ran, S. Luski, T. Brousse, D. Aurbach, Carbon-based composite materials for supercapacitor electrodes: A review, J. Mater. Chem. A 5 (2017) 12653-12672. https://doi.org/10.1039/C7TA00863E
[14] M. Salanne, B. Rotenberg, K. Naoi, K. Kaneko, P.L. Taberna, C.P. Grey, B. Dunn, P. Simon, Efficient storage mechanisms for building better supercapacitors, Nat. Energy 1 (2016) 16070-16080. https://doi.org/10.1038/nenergy.2016.70
[15] K. Jost, G. Dion, Y. Gogotsi, Textile energy storage in perspective, J. Mater. Chem. A 2 (2014) 10776-10787. https://doi.org/10.1039/c4ta00203b
[16] R. Yan, M. Antonietti, M. Oschatz, Toward the experimental understanding of the energy storage mechanism and ion dynamics in ionic liquid based supercapacitors, Adv. Energy Mater. 8 (2018) 1800026-1800038. https://doi.org/10.1002/aenm.201800026
[17] N. Hao, Z. Dan, Y. Xue, L. Xin, W. Qian, F. Qu, Towards three-dimensional hierarchical ZnO nanofiber@Ni(OH)2 nanoflake core-shell heterostructures for high-performance asymmetric supercapacitors, J. Mater. Chem. A 3 (2015) 18413-18421. https://doi.org/10.1039/C5TA04311E
[18] M.Q. Zhao, Q. Zhang, W.Z. Qian, F. Wei, J.Q. Huang, G.L. Tian, T.C. Chen, Towards high purity graphene/single-walled carbon nanotube hybrids with improved electrochemical capacitive performance, Carbon 54 (2013) 403-411. https://doi.org/10.1016/j.carbon.2012.11.055
[19] Z. Liu, H. Huang, B. Liang, X. Wang, Z. Wang, D. Chen, G. Shen, Zn2GeO4 and In2Ge2O7 nanowire mats based ultraviolet photodetectors on rigid and flexible substrates, Opt. Express 20 (2012) 2982-2991. https://doi.org/10.1364/OE.20.002982
[20] F. Zhu, L. Yu, Y. Ming, W. Shi, Construction of hierarchical FeCo2O4@MnO2 core-shell nanostructures on carbon fibers for high-performance asymmetric supercapacitor, J. Colloid Inter. Sci. 512 (2017) 419-427. https://doi.org/10.1016/j.jcis.2017.09.093
[21] S. Liu, G. Xu, J. Li, B. Wang, Z. Huang, Q. Chen, X. Qi, Iron-cobalt bi-metallic sulfide nanowires on ni foam for applications in high-performance supercapacitors, ChemElectroChem 5 (2018) 2250-2255. https://doi.org/10.1002/celc.201800486
[22] S. Karmakar, S. Varma, D. Behera, Investigation of structural and electrical transport properties of nano-flower shaped NiCo2O4 supercapacitor electrode materials, J. Alloys Com. 757 (2018) 49-59. https://doi.org/10.1016/j.jallcom.2018.05.056
[23] Z. Gao, N. Song, Y. Zhang, X. Li, Cotton Textile Enabled, All-solid-state flexible supercapacitors, Rsc Adv. 5 (2015) 15438-15447. https://doi.org/10.1039/C5RA00028A
[24] J. Xiao, L. Wan, S. Yang, F. Xiao, S. Wang, Design hierarchical electrodes with highly conductive NiCo2S4 nanotube arrays grown on carbon fiber paper for high-performance pseudocapacitors, Nano Lett. 14 (2014) 831-838. https://doi.org/10.1021/nl404199v
[25] L. Bao, J. Zang, X. Li, Flexible Zn2SnO4/MnO2 Core/shell nanocable−carbon microfiber hybrid composites for high-performance supercapacitor electrodes, Nano Lett. 11 (2011) 1215-1220. https://doi.org/10.1021/nl104205s
[26] R. Kotz, M. Carlen, Principles and applications of electrochemical capacitors, Electrochim. Acta 45 (2000) 2483-2498. https://doi.org/10.1016/S0013-4686(00)00354-6
[27] F. Bonaccorso, L. Colombo, G. Yu, M. Stoller, V. Tozzini, A.C. Ferrari, R.S. Ruoff, V. Pellegrini, Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage, Science 347 (2015) 1246501-1246512. https://doi.org/10.1126/science.1246501
[28] C. Yuan, X. Zhang, L. Su, G. Bo, L. Shen, Facile synthesis and self-assembly of hierarchical porous NiO nano/micro spherical superstructures for high performance supercapacitors, J. Mater. Chem. 19 (2009) 5772-5777. https://doi.org/10.1039/b902221j
[29] N.B. Mendoza-Sã, Y. Gogotsi, Synthesis of two-dimensional materials for capacitive energy storage, Adv. Mater. 28 (2016) 6104-6135. https://doi.org/10.1002/adma.201506133
[30] W. Qiong, X. Yuxi, Y. Zhiyi, L. Anran, S. Gaoquan, Supercapacitors based on flexible graphene/polyaniline nanofiber composite films, ACS Nano 4 (2010) 1963-1970. https://doi.org/10.1021/nn1000035
[31] Y. Huang, T. Shi, S. Jiang, S. Cheng, X. Tao, Y. Zhong, G. Liao, Z. Tang, Enhanced cycling stability of NiCo2S4@NiO core-shell nanowire arrays for all-solid-state asymmetric supercapacitors, Sci. Rep. 6 (2016) 38620-38630. https://doi.org/10.1038/srep38620
[32] Z. Yanwu, M. Shanthi, M.D. Stoller, K.J. Ganesh, C. Weiwei, P.J. Ferreira, P. Adam, R.M. Wallace, K.A. Cychosz, T. Matthias, Carbon-based supercapacitors produced by activation of graphene, Science 332 (2011) 1537-1541. https://doi.org/10.1126/science.1200770
[33] K.A. Jost, D. Stenger, C.R. Perez, J.K. Mcdonough, K. Lian, Y. Gogotsi, G. Dion, Knitted and screen printed carbon-fiber supercapacitors for applications in wearable electronics, Energy Environ. Sci. 6 (2013) 2698-2705. https://doi.org/10.1039/c3ee40515j
[34] P.L. Taberna, P. Simon, J.F. Fauvarque, Electrochemical characteristics and impedance spectroscopy studies of carbon-carbon supercapacitors, J. Electrochem. Soc. 150 (2003) A292-A300. https://doi.org/10.1149/1.1543948
[35] M. Kaempgen, C.K. Chan, J. Ma, Y. Cui, G. Gruner, Printable thin film supercapacitors using single-walled carbon nanotubes, Nano Lett. 9 (2009) 1872-1876. https://doi.org/10.1021/nl8038579
[36] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films, Sci. 306 (2004) 666-669. https://doi.org/10.1126/science.1102896
[37] H. Pan, C.K. Poh, Y.P. Feng, J. Lin, Supercapacitor electrodes from tubes-in-tube carbon nanostructures, Chem. Mater. 19 (2007) 6120-6125. https://doi.org/10.1021/cm071527e
[38] X. Liu, X. Qi, Z. Zhang, L. Ren, G. Hao, Y. Liu, Y. Wang, K. Huang, X. Wei, J. Li, Electrochemically reduced graphene oxide with porous structure as a binder-free electrode for high-rate supercapacitors, Rsc Adv. 4 (2014) 13673-13679. https://doi.org/10.1039/c3ra46992a
[39] J.F. Shen, J. Ji, P. Dong, R. Baines, Z. Zhang, P.M. Ajayan, M. Ye, Novel FeNi2S4/TMDs-based ternary composites for supercapacitor applications, J. Mater. Chem. A 4 (2016) 8844-8850. https://doi.org/10.1039/C6TA03111K
[40] P. Xiao, F. Bu, G. Yang, Y. Zhang, Y. Xu, Integration of Graphene, Nano sulfur, and conducting polymer into compact, flexible lithium-sulfur battery cathodes with ultrahigh volumetric capacity and superior cycling stability for foldable devices, Adv. Mater. 29 (2017) 1703324-1703332. https://doi.org/10.1002/adma.201703324
[41] H.B. Li, M.H. Yu, F.X. Wang, P. Liu, Y. Liang, J. Xiao, C.X. Wang, Y.X. Tong, G.W. Yang, Amorphous nickel hydroxide nanospheres with ultrahigh capacitance and energy density as electrochemical pseudocapacitor materials, Nat. Comm. 4 (2013) 1894-1901. https://doi.org/10.1038/ncomms2932
[42] C.C. Hu, K.H. Chang, M.C. Lin, Y.T. Wu, Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors, Nano Lett. 6 (2006) 2690-2695. https://doi.org/10.1021/nl061576a
[43] T. Liu, G.W. Pell, B.E. Conway, Self-discharge and potential recovery phenomena at thermally and electrochemically prepared RuO2 supercapacitor electrodes, Electrochim. Acta 42 (1997) 3541-3552. https://doi.org/10.1016/S0013-4686(97)81190-5
[44] O. Barbieri, M. Hahn, A. Foelske, R. Kötz, Effect of Electronic Resistance and Water Content on the Performance of RuO2 for Supercapacitors, J. Electrochem. Soc. 153 (2006) A2049-A2054. https://doi.org/10.1149/1.2338633
[45] J. Yan, W. Tong, C. Jie, Z. Fan, M. Zhang, Preparation and electrochemical properties of lamellar MnO2 for supercapacitors, Mater. Res. Bull. 45 (2010) 210-215. https://doi.org/10.1016/j.materresbull.2009.09.016
[46] M. Toupin, T. Brousse, D. Bélanger, Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor, Chem. Mater. 16 (2004) 3184-3190. https://doi.org/10.1021/cm049649j
[47] C. Sheng, Z. Junwu, W. Xiaodong, H. Qiaofeng, W. Xin, Graphene oxide–MnO2 nanocomposites for supercapacitors, ACS Nano 4 (2010) 2822. https://doi.org/10.1021/nn901311t
[48] L. Jinping, J. Jian, C. Chuanwei, L. Hongxing, Z. Jixuan, G. Hao, F. Hong Jin, Co3O4 Nanowire@MnO2 ultrathin nanosheet core/shell arrays: a new class of high-performance pseudocapacitive materials, Adv. Mater. 23 (2011) 2076-2081. https://doi.org/10.1002/adma.201100058
[49] D. Shin, J. Shin, T. Yeo, H. Hwang, S. Park, W. Choi, Scalable synthesis of triple-core-shell nanostructures of TiO2@MnO2@C for high performance supercapacitors using structure-guided combustion waves, Small 14 (2018) 1703755-1703768. https://doi.org/10.1002/smll.201703755
[50] C. Meng, C. Liu, L. Chen, C. Hu, S. Fan, Highly flexible and all-solid-state paperlike polymer supercapacitors, Nano Lett. 10 (2010) 4025-4031. https://doi.org/10.1021/nl1019672
[51] M. Qorbani, T.C. Chou, Y.H. Lee, S. Samireddi, N. Naseri, A. Ganguly, A. Esfandiar, C.H. Wang, L.C. Chen, K.H. Chen, Correction: Multi-porous Co3O4 nanoflakes@sponge-like few-layer partially reduced graphene oxide hybrids: towards highly stable asymmetric supercapacitors, J. Mater. Chem. A 5 (2017) 12569-12577. https://doi.org/10.1039/C7TA00694B
[52] S. Liu, S.C. Lee, U.M. Patil, C. Ray, K.V. Sankar, K. Zhang, A. Kundu, S. Kang, J.H. Park, S. Chan Jun, Controllable sulfuration engineered NiO nanosheets with enhanced capacitance for high rate supercapacitors, J. Mater. Chem. 5 (2017) 4543-4549. https://doi.org/10.1039/C6TA11049E
[53] C.K. Brozek, D. Zhou, H. Liu, X. Li, K.R. Kittilstved, D.R. Gamelin, Soluble supercapacitors: Large and reversible charge storage in colloidal iron-doped ZnO nanocrystals, Nano Lett. 18 (2018) 3297-3302. https://doi.org/10.1021/acs.nanolett.8b01264
[54] W. He, C. Wang, H. Li, X. Deng, T. Zhai, Ultrathin and porous Ni3S2/CoNi2S4 3D-network structure for superhigh energy density asymmetric supercapacitors, Adv. Energy Mater. 7 (2017) 1700983-1700994. https://doi.org/10.1002/aenm.201700983
[55] J. Chen, W. Xu, J. Wang, P.S. Lee, Sulfidation of NiMn-layered double hydroxides/graphene oxide composites toward supercapacitor electrodes with enhanced performance, Adv. Energy Mater. 6 (2016) 1501745-1501453. https://doi.org/10.1002/aenm.201501745
[56] M. Guo, J. Balamurugan, X. Li, N.H. Kim, J.H. Lee, Hierarchical 3D cobalt-doped Fe3O4 nanospheres@NG hybrid as an advanced anode material for high-performance asymmetric supercapacitors, Small 13 (2017) 1701275-1701287. https://doi.org/10.1002/smll.201701275
[57] X.H. Xia, J.P. Tu, Y.J. Mai, X.L. Wang, C.D. Gu, X.B. Zhao, Self-supported hydrothermal synthesized hollow Co3O4 nanowire arrays with high supercapacitor capacitance, J. Mater. Chem. 21 (2011) 9319-9325. https://doi.org/10.1039/c1jm10946d
[58] S.K. Meher, G.R. Rao, Ultralayered Co3O4 for high-performance supercapacitor applications, J. Phy. Chem. C 115 (2011) 15646-15654. https://doi.org/10.1021/jp201200e
[59] K.C. Liu, M.A. Anderson, Porous Nickel Oxide Films for Electrochemical Capacitors, Mrs Proceedings 393 (1995) 124-130. https://doi.org/10.1557/PROC-393-427
[60] E.E. Kalu, T.T. Nwoga, V. Srinivasan, J.W. Weidner, Cyclic voltammetric studies of the effects of time and temperature on the capacitance of electrochemically deposited nickel hydroxide, J. Power Sources 92 (2001) 163-167. https://doi.org/10.1016/S0378-7753(00)00520-6
[61] K.O. Ukoba, A.C. Elokaeboka, F.L. Inambao, Review of nanostructured NiO thin film deposition using the spray pyrolysis technique, Renew. Sustain. Energy Rev. 82 (2017) 2900-2915. https://doi.org/10.1016/j.rser.2017.10.041
[62] L. Fang, M. Qiu, Q. Xiang, L. Yang, J. Yin, G. Hao, F. Xiang, J. Li, J. Zhong, Electrochemical properties of high-power supercapacitors using ordered NiO coated Si nanowire array electrodes, Appl. Phys. A 104 (2011) 545-550. https://doi.org/10.1007/s00339-011-6412-2
[63] W.U. Mengqiang, J. Gao, S. Zhang, A.I. Chen, Comparative studies of nickel oxide films on different substrates for electrochemical supercapacitors, J. Power Sources 159 (2006) 365-369. https://doi.org/10.1016/j.jpowsour.2006.04.013
[64] K. Krishnamoorthy, G.K. Veerasubramani, S. Radhakrishnan, J.K. Sang, One pot hydrothermal growth of hierarchical nanostructured Ni3S2 on Ni foam for supercapacitor application, Chem. Eng. J. 251 (2014) 116-122. https://doi.org/10.1016/j.cej.2014.04.006
[65] M. Wang, Y. Wang, H. Dou, G. Wei, X. Wang, Enhanced rate capability of nanostructured three-dimensional graphene/Ni3S2 composite for supercapacitor electrode, Ceram. Int. 42 (2016) 9858-9865. https://doi.org/10.1016/j.ceramint.2016.03.085
[66] G. Li, Y. Cong, C. Zhang, H. Tao, Y. Sun, Y. Wang, Hierarchical nanosheet-based Ni3S2 microspheres grown on Ni foam for high-performance all-solid-state asymmetric supercapacitors, Nanotechnology 28 (2017) 425401-425415. https://doi.org/10.1088/1361-6528/aa829d
[67] Z. Zhen, Z. Huang, R. Long, Y. Shen, Q. Xiang, J. Zhong, One-pot synthesis of hierarchically nanostructured Ni3S2 dendrites as active materials for supercapacitors, Electrochim. Acta 149 (2014) 316-323. https://doi.org/10.1016/j.electacta.2014.10.097
[68] Z. Zhang, X. Liu, X. Qi, Z. Huang, J. Zhong, Hydrothermal synthesis of Ni3S2/graphene electrode and its application in a supercapacitor, RSC Adv. 4 (2014) 37278-37283. https://doi.org/10.1039/C4RA05078A
[69] Y. Peihua, X. Xu, L. Yuzhi, D. Yong, Q. Pengfei, T. Xinghua, M. Wenjie, L. Ziyin, W. Wenzhuo, L. Tianqi, Hydrogenated ZnO core-shell nanocables for flexible supercapacitors and self-powered systems, ACS Nano 7 (2013) 2617-2626. https://doi.org/10.1021/nn306044d
[70] J. Hao, L. Ji, K. Wu, N. Yang, Electrochemistry of ZnO@reduced graphene oxides, Carbon 130 (2018) 480-486. https://doi.org/10.1016/j.carbon.2018.01.018
[71] Z. Zhen, R. Long, W. Han, L. Meng, X. Wei, Q. Xiang, J. Zhong, One-pot electrodeposition synthesis of ZnO/graphene composite and its use as binder-free electrode for supercapacitor, Ceram. Int. 41 (2015) 4374-4380. https://doi.org/10.1016/j.ceramint.2014.11.127
[72] S. Peng, L. Li, B.W. Hao, S. Madhavi, W.D.L. Xiong, Controlled growth of NiMoO4 nanosheet and nanorod arrays on various conductive substrates as advanced electrodes for asymmetric supercapacitors, Adv. Energy Mater. 5 (2015) 1401172-1401179. https://doi.org/10.1002/aenm.201401172
[73] B. Senthilkumarab, K.V. Sankara, R.K. Selvan A, M. Danielleb, M. Manickamb, Nano α-NiMoO4 as a new electrode for electrochemical supercapacitors, RSC Adv. 3 (2012) 352-357. https://doi.org/10.1039/C2RA22743F
[74] Z. Huang, Z. Zhang, X. Qi, X. Ren, G. Xu, P. Wan, X. Sun, H. Zhang, Wall-like hierarchical metal oxide nanosheet arrays grown on carbon cloth for excellent supercapacitor electrodes, Nanoscale 8 (2016) 13273-13279. https://doi.org/10.1039/C6NR04020A
[75] L.Q. Mai, F. Yang, Y.L. Zhao, X. Xu, L. Xu, Y.Z. Luo, Hierarchical MnMoO(4)/CoMoO(4) heterostructured nanowires with enhanced supercapacitor performance, Nat. Commun. 2 (2011) 381-386. https://doi.org/10.1038/ncomms1387
[76] Y. Xinzhi, L. Bingan, X. Zhi, Super long-life supercapacitors based on the construction of nanohoneycomb-like strongly coupled CoMoO(4)-3D graphene hybrid electrodes, Adv. Mater. 26 (2014) 1044-1051. https://doi.org/10.1002/adma.201304148
[77] W. Jing, Z. Xiang, Q. Wei, H. Lv, Y. Tian, Z. Tong, X. Liu, H. Jian, H. Qu, J. Zhao, 3D self-supported nanopine forest-like Co3O4@CoMoO4 core–shell architectures for high-energy solid state supercapacitors, Nano Energy 19 (2016) 222-233. https://doi.org/10.1016/j.nanoen.2015.10.036
[78] X. Xia, L. Wu, Q. Hao, W. Wang, W. Xin, One-step synthesis of CoMoO4 /graphene composites with enhanced electrochemical properties for supercapacitors, Electrochim. Acta 99 (2013) 253-261. https://doi.org/10.1016/j.electacta.2013.03.131
[79] S.G. Mohamed, Y.Q. Tsai, C.J. Chen, Y.T. Tsai, T.F. Hung, W.S. Chang, R.S. Liu, Ternary spinel MCo2O4 (M=Mn, Fe, Ni, and Zn) porous nanorods as bifunctional cathode materials for lithium-O2 batteries, ACS Appl. Mater. Inter. 7 (2015) 12038-12046. https://doi.org/10.1021/acsami.5b02180
[80] Z. Yan, L. Hu, S. Zhao, L. Wu, Preparation of MnCo2O4@Ni(OH)2 core-shell flowers for asymmetric supercapacitor materials with ultrahigh specific capacitance, Adv. Funct. Mater. 26 (2016) 4085-4093. https://doi.org/10.1002/adfm.201600494
[81] L. Bin, L. Boyang, W. Qiufan, W. Xianfu, X. Qingyi, C. Di, S. Guozhen, New energy storage option: toward ZnCo2O4 nanorods/nickel foam architectures for high-performance supercapacitors, ACS Appl. Mater. Inter. 5 (2013) 10011-10017. https://doi.org/10.1021/am402339d
[82] C. Yuan, J. Li, L. Hou, X. Zhang, L. Shen, W.D.L. Xiong, Ultrathin mesoporous NiCo2O4 nanosheets supported on Ni foam as advanced electrodes for supercapacitors, Adv. Funct. Mater. 22 (2012) 4592–4597. https://doi.org/10.1002/adfm.201200994
[83] G. Xu, Z. Zhang, X. Qi, X. Ren, S. Liu, Q. Chen, Z. Huang, J. Zhong, Hydrothermally synthesized FeCo2O4 nanostructures: Structural manipulation for high-performance all solid-state supercapacitors, Ceram. Int. 44 (2018) 120-127. https://doi.org/10.1016/j.ceramint.2017.09.146
[84] S.G. Mohamed, C.-J. Chen, C.K. Chen, S.-F. Hu, R.-S. Liu, High-performance lithium-ion battery and symmetric supercapacitors based on FeCo2O4 nanoflakes electrodes, ACS Appl. Mater. Inter. 6 (2014) 22701-22708. https://doi.org/10.1021/am5068244
[85] Q. Liu, J. Jin, J. Zhang, NiCo2S4@graphene as a bifunctional electrocatalyst for oxygen reduction and evolution reactions, ACS Appl. Mater. Inter. 5 (2013) 5002-5008. https://doi.org/10.1021/am4007897
[86] L. Shen, J. Wang, G. Xu, H. Li, H. Dou, X. Zhang, NiCo2S4 Nanosheets grown on nitrogen-doped carbon foams as an advanced electrode for supercapacitors, Adv. Energy Mater. 5 (2015) 1400977-1400984. https://doi.org/10.1002/aenm.201400977
[87] L.L. Liu, K.P. Annamalai, Y.S. Tao, A hierarchically porous CuCo2S4 /graphene composite as an electrode material for supercapacitors, New Carbon Mater. 31 (2016) 336-342. https://doi.org/10.1016/S1872-5805(16)60017-3
[88] Y. Zhu, Z. Wu, M. Jing, X. Yang, W. Song, X. Ji, Mesoporous NiCo2S4 nanoparticles as high-performance electrode materials for supercapacitors, J. Power Sources 273 (2015) 584-590. https://doi.org/10.1016/j.jpowsour.2014.09.144
[89] J. Tang, Y. Ge, J. Shen, M. Ye, Facile synthesis of CuCo2S4 as a novel electrode material for ultrahigh supercapacitor performance, Chem. Commun. 52 (2015) 1509-1512. https://doi.org/10.1039/C5CC09402J
[90] L. Demarconnay, E. Raymundo-Piñero, F. Béguin, A symmetric carbon/carbon supercapacitor operating at 1.6 V by using a neutral aqueous solution, Electrochem. Commun. 12 (2010) 1275-1278. https://doi.org/10.1016/j.elecom.2010.06.036
[91] G. Qiang, L. Demarconnay, E. Raymundo-Piñero, F. Béguin, Exploring the large voltage range of carbon/carbon supercapacitors in aqueous lithium sulfate electrolyte, Energy Environ. Sci. 5 (2012) 9611-9617. https://doi.org/10.1039/c2ee22284a
[92] C. Zhao, W. Zheng, A Review for aqueous electrochemical supercapacitors, Frontiers in Energy Research 3 (2015) 23-34. https://doi.org/10.3389/fenrg.2015.00023
[93] F. Jiang, W. Li, R. Zou, Q. Liu, K. Xu, L. An, J. Hu, MoO3/PANI coaxial heterostructure nanobelts by in situ polymerization for high performance supercapacitors, Nano Energy 7 (2014) 72-79. https://doi.org/10.1016/j.nanoen.2014.04.007
[94] J. Zang, X. Li, In situ synthesis of ultrafine β-MnO2/polypyrrole nanorod composites for high-performance supercapacitors, J. Mater. Chem. 21 (2011) 10965-10969. https://doi.org/10.1039/c1jm11491c
[95] H. Peng, G. Ma, K. Sun, J. Mu, Z. Lei, High-performance supercapacitor based on multi-structural CuS@polypyrrole composites prepared by in situ oxidative polymerization, J. Mater. Chem. A 2 (2014) 3303-3307. https://doi.org/10.1039/c3ta13859c
[96] S. Ghosh, O. Inganäs, Conducting polymer hydrogels as 3D electrodes: Applications for supercapacitors, Adv. Mater. 11 (1999) 1214-1218. https://doi.org/10.1002/(SICI)1521-4095(199910)11:14<1214::AID-ADMA1214>3.0.CO;2-3
[97] Z. Liu, Z.S. Wu, S. Yang, R. Dong, X. Feng, K.M. Llen, Ultraflexible in-plane micro-supercapacitors by direct printing of solution-processable electrochemically exfoliated graphene, Adv. Mater. 28 (2016) 2217-2222. https://doi.org/10.1002/adma.201505304
[98] J. Zhang, X.S. Zhao, Conducting polymers directly coated on reduced graphene oxide sheets as high-performance supercapacitor electrodes, J. Phy. Chem. C 116 (2012) 5420–5426. https://doi.org/10.1021/jp211474e
[99] C. Xiehong, S. Yumeng, S. Wenhui, L. Gang, H. Xiao, Y. Qingyu, Z. Qichun, Z. Hua, Preparation of novel 3D graphene networks for supercapacitor applications, Small 7 (2011) 3163-3168. https://doi.org/10.1002/smll.201100990
[100] C. Zhang, T. Kuila, N.H. Kim, S.H. Lee, J.H. Lee, Facile preparation of flower-like NiCo2O4/three dimensional graphene foam hybrid for high performance supercapacitor electrodes, Carbon 89 (2015) 328-339. https://doi.org/10.1016/j.carbon.2015.03.051
[101] W. Gongkai, S. Xiang, L. Fengyuan, S. Hongtao, Y. Mingpeng, J. Weilin, L. Changsheng, L. Jie, Flexible pillared graphene-paper electrodes for high-performance electrochemical supercapacitors, Small 8 (2012) 452-459. https://doi.org/10.1002/smll.201101719
[102] Z. Niu, L. Liu, Z. Li, W. Zhou, X. Chen, S. Xie, Programmable nanocarbon-based architectures for flexible supercapacitors, Adv. Energy Mater. 5 (2016) 1500677-1500697. https://doi.org/10.1002/aenm.201500677
[103] Y. Gogotsi, P. Simon, . Materials science. True performance metrics in electrochemical energy storage, Science 334 (2011) 917-918. https://doi.org/10.1126/science.1213003
[104] K. Naoi, P. Simon, New materials and new configurations for advanced electrochemical capacitors, J. Electrochem. Soci. (JES) 17 (2008) 34-37.