Fe-Based Electrocatalysts for Oxygen-Evolution Reaction

$28.50

Fe-Based Electrocatalysts for Oxygen-Evolution Reaction

Yanyan Yang, Shasha Li, Xuli Ma, Xiaogang Hao, Abuliti Abudula, Guoqing Guan

Iron is the most common element by mass on the earth, and iron-based catalysts have attracted remarkable attention on account of their low cost as well as high activity. In the water electrolysis process, besides conventional precious metal-based catalysts, iron (Fe)-based materials are also becoming most promising catalysts for oxygen evolution reaction (OER). In this chapter, the states of the art of main Fe-based electrocatalysts, including their preparation methods, performances, and the strategies for the activity improvement are reviewed. In addition, the catalytic mechanisms of Fe-based electrocatalysts are also analyzed for giving insight into the intrinsic active catalytic sites. Finally, future research on how to enhance the performance of Fe-based OER electrocatalysts is discussed.

Keywords
Oxygen Evolution Reaction, Fe-Based Catalysts, Electrocatalysis, Water Splitting, Mechanism

Published online 10/5/2019, 22 pages

Citation: Yanyan Yang, Shasha Li, Xuli Ma, Xiaogang Hao, Abuliti Abudula, Guoqing Guan, Fe-Based Electrocatalysts for Oxygen-Evolution Reaction, Materials Research Foundations, Vol. 59, pp 37-58, 2019

DOI: https://doi.org/10.21741/9781644900451-2

Part of the book on Electrochemical Water Splitting

References
[1] L. Trotochaud, S.L. Young, J.K. Ranney, S.W. Boettcher, Nickel-iron oxyhydroxide oxygen-evolution electrocatalysts: the role of intentional and incidental iron incorporation, J. Am. Chem. Soc. 136 (2014) 6744-6753. https://doi.org/10.1021/ja502379c
[2] J. Nai, Y. Lu, L. Yu, X. Wang, X.W.D. Lou, Formation of Ni-Fe mixed diselenide nanocages as a superior oxygen evolution electrocatalyst, Adv. Mater. 29 (2017). https://doi.org/10.1002/adma.201703870
[3] L. Zhang, J. Xiao, H. Wang, M. Shao, Carbon-based electrocatalysts for hydrogen and oxygen evolution reactions, ACS Catal. 7 (2017) 7855-7865. https://doi.org/10.1021/acscatal.7b02718
[4] J. Qi, W. Zhang, R. Xiang, K. Liu, H.Y. Wang, M. Chen, Y. Han, R. Cao, Porous nickel-iron oxide as a highly efficient electrocatalyst for oxygen evolution reaction, Adv.Sci. 2 (2015) 1500199. https://doi.org/10.1002/advs.201500199
[5] F. Lu, M. Zhou, Y. Zhou, X. Zeng, First-row transition metal based catalysts for the oxygen evolution reaction under alkaline conditions: basic principles and recent advances, Small 13 (2017)1701931. https://doi.org/10.1002/smll.201701931
[6] X. Li, S. Li, A. Yoshida, S. Sirisomboonchai, K. Tang, Z. Zuo, X. Hao, A. Abudula, G. Guan, Mn doped CoP nanoparticle clusters: an efficient electrocatalyst for hydrogen evolution reaction, Catal. Sci. Technol. 8 (2018) 4407-4412. https://doi.org/10.1039/C8CY01105B
[7] Y. Chen, K. Rui, J. Zhu, S.X. Dou, W. Sun, Recent progress on nickel-based oxide/(oxy)hydroxide electrocatalysts for the oxygen evolution reaction, Chemistry 25 (2019) 703-713. https://doi.org/10.1002/chem.201802068
[8] J. Wang, W. Cui, Q. Liu, Z. Xing, A.M. Asiri, X. Sun, Recent progress in cobalt-based heterogeneous catalysts for electrochemical water splitting, Adv. Mater. 28 (2016) 215-230. https://doi.org/10.1002/adma.201502696
[9] W. Luo, C. Jiang, Y. Li, S.A. Shevlin, X. Han, K. Qiu, Y. Cheng, Z. Guo, W. Huang, J. Tang, Highly crystallized α-FeOOH for a stable and efficient oxygen evolution reaction, J. Mater. Chem. A 5 (2017) 2021-2028. https://doi.org/10.1039/C6TA08719A
[10] J.X. Feng, H. Xu, Y.T. Dong, S.H. Ye, Y.X. Tong, G.R. Li, FeOOH/Co/FeOOH hybrid nanotube arrays as high-performance electrocatalysts for the oxygen evolution reaction, Angew. Chem. Int. Ed. Engl. 55 (2016) 3694-3698. https://doi.org/10.1002/anie.201511447
[11] Y. Zhang, G. Jia, H. Wang, B. Ouyang, R.S. Rawat, H.J. Fan, Ultrathin CNTs@FeOOH nanoflake core/shell networks as efficient electrocatalysts for the oxygen evolution reaction, Mater. Chem. Front. 1 (2017) 709-715. https://doi.org/10.1039/C6QM00168H
[12] Y. Wu, M. Chen, Y. Han, H. Luo, X. Su, M.T. Zhang, X. Lin, J. Sun, L. Wang, L. Deng, W. Zhang, R. Cao, Fast and simple preparation of iron-based thin films as highly efficient water-oxidation catalysts in neutral aqueous solution, Angew. Chem. Int. Ed. Engl. 54 (2015) 4870-4875. https://doi.org/10.1002/anie.201412389
[13] M. Gorlin, P. Chernev, J. Ferreira de Araujo, T. Reier, S. Dresp, B. Paul, R. Krahnert, H. Dau, P. Strasser, Oxygen evolution reaction dynamics, faradaic charge efficiency, and the active metal redox states of Ni-Fe oxide water splitting electrocatalysts, J. Am. Chem. Soc. 138 (2016) 5603-5614. https://doi.org/10.1021/jacs.6b00332
[14] L.J. Enman, M.B. Stevens, M.H. Dahan, M.R. Nellist, M.C. Toroker, S.W. Boettcher, Operando X-ray absorption spectroscopy shows iron oxidation is concurrent with oxygen evolution in cobalt-iron (oxy)hydroxide electrocatalysts, Angew. Chem. Int. Ed. Engl. 57 (2018) 12840-12844. https://doi.org/10.1002/anie.201808818
[15] C. He, X. Kong, M. Jiang, X. Lei, Metal Ni-decorated Fe3O4 nanoparticles: A new and efficient electrocatalyst for oxygen evolution reaction, Mater. Lett. 222 (2018) 138-141. https://doi.org/10.1016/j.matlet.2018.03.142
[16] Q. He, H. Xie, Z.u. Rehman, C. Wang, P. Wan, H. Jiang, W. Chu, L. Song, Highly defective Fe-based oxyhydroxides from electrochemical reconstruction for efficient oxygen evolution catalysis, ACS Energy Lett. 3 (2018) 861-868. https://doi.org/10.1021/acsenergylett.8b00342
[17] J. Yang, G. Zhu, Y. Liu, J. Xia, Z. Ji, X. Shen, S. Wu, Fe3O4-decorated Co9S8 nanoparticles in situ grown on reduced graphene oxide: A new and efficient electrocatalyst for oxygen evolution reaction, Adv. Funct. Mater. 26 (2016) 4712-4721. https://doi.org/10.1002/adfm.201600674
[18] N. Yang, C. Tang, K. Wang, G. Du, A.M. Asiri, X. Sun, Iron-doped nickel disulfide nanoarray: A highly efficient and stable electrocatalyst for water splitting, Nano Res. 9 (2016) 3346-3354. https://doi.org/10.1007/s12274-016-1211-x
[19] X. Li, X. Hao, A. Abudula, G. Guan, Nanostructured catalysts for electrochemical water splitting: current state and prospects, J. Mater. Chem. A 4 (2016) 11973-12000. https://doi.org/10.1039/C6TA02334G
[20] K.S. Exner, J. Anton, T. Jacob, H. Over, Ligand effects and their impact on electrocatalytic processes exemplified with the oxygen evolution reaction (OER) on RuO2(110), Chem. Electro. Chem. 2 (2015) 707-713. https://doi.org/10.1002/celc.201402430
[21] Z. Zhang, D. Zhou, X. Bao, G. Huang, B. Huang, One-pot synthesis of Fe2O3/C by urea combustion method as an efficient electrocatalyst for oxygen evolution reaction, Int. J. Hydrogen Energy 44 (2019) 2877-2882. https://doi.org/10.1016/j.ijhydene.2018.12.034
[22] M.S. Burke, L.J. Enman, A.S. Batchellor, S. Zou, S.W. Boettcher, Oxygen evolution reaction electrocatalysis on transition metal oxides and (oxy)hydroxides: activity trends and design principles, Chem. Mater. 27 (2015) 7549-7558. https://doi.org/10.1021/acs.chemmater.5b03148
[23] D. Friebel, M.W. Louie, M. Bajdich, K.E. Sanwald, Y. Cai, A.M. Wise, M.J. Cheng, D. Sokaras, T.C. Weng, R. Alonso-Mori, R.C. Davis, J.R. Bargar, J.K. Norskov, A. Nilsson, A.T. Bell, Identification of highly active Fe sites in (Ni,Fe)OOH for electrocatalytic water splitting, J. Am. Chem. Soc. 137 (2015) 1305-1313. https://doi.org/10.1021/ja511559d
[24] S. Chen, Z. Kang, X. Zhang, J. Xie, H. Wang, W. Shao, X. Zheng, W. Yan, B. Pan, Y. Xie, Highly active Fe sites in ultrathin pyrrhotite Fe7S8nanosheets realizing efficient electrocatalytic oxygen evolution, ACS Central Sci. 3 (2017) 1221-1227. https://doi.org/10.1021/acscentsci.7b00424
[25] S. Zou, M.S. Burke, M.G. Kast, J. Fan, N. Danilovic, S.W. Boettcher, Fe (oxy)hydroxide oxygen evolution reaction electrocatalysis: intrinsic activity and the roles of electrical conductivity, substrate, and dissolution, Chem. Mater. 27 (2015) 8011-8020. https://doi.org/10.1021/acs.chemmater.5b03404
[26] M.S. Burke, M.G. Kast, L. Trotochaud, A.M. Smith, S.W. Boettcher, Cobalt-iron (oxy)hydroxide oxygen evolution electrocatalysts: the role of structure and composition on activity, stability, and mechanism, J. Am. Chem. Soc. 137 (2015) 3638-3648. https://doi.org/10.1021/jacs.5b00281
[27] M.S. Burke, S. Zou, L.J. Enman, J.E. Kellon, C.A. Gabor, E. Pledger, S.W. Boettcher, Revised oxygen evolution reaction activity trends for first-row transition-metal (oxy)hydroxides in alkaline media, J. Phys.Chem.Lett. 6 (2015) 3737-3742. https://doi.org/10.1021/acs.jpclett.5b01650
[28] J.Y. Chen, L. Dang, H. Liang, W. Bi, J.B. Gerken, S. Jin, E.E. Alp, S.S. Stahl, Operando analysis of NiFe and Fe oxyhydroxide electrocatalysts for water oxidation: detection of Fe(4)(+) by mossbauer spectroscopy, J. Am. Chem. Soc. 137 (2015) 15090-15093. https://doi.org/10.1021/jacs.5b10699
[29] H.A. Bandal, A.R. Jadhav, A.A. Chaugule, W.J. Chung, H. Kim, Fe2O3 hollow nanorods/CNT composites as an efficient electrocatalyst for oxygen evolution reaction, Electrochim. Acta 222 (2016) 1316-1325. https://doi.org/10.1016/j.electacta.2016.11.107
[30] X. Cheng, Z. Pan, C. Lei, Y. Jin, B. Yang, Z. Li, X. Zhang, L. Lei, C. Yuan, Y. Hou, A strongly coupled 3D ternary Fe2O3@Ni2P/Ni(PO3)2 hybrid for enhanced electrocatalytic oxygen evolution at ultra-high current densities, J. Mater. Chem. A 7 (2019) 965-971. https://doi.org/10.1039/C8TA11223A
[31] M.W. Louie, A.T. Bell, An investigation of thin-film Ni-Fe oxide catalysts for the electrochemical evolution of oxygen, J. Am. Chem. Soc. 135 (2013) 12329-12337. https://doi.org/10.1021/ja405351s
[32] C. Dong, T. Kou, H. Gao, Z. Peng, Z. Zhang, Eutectic-derived mesoporous Ni-Fe-O nanowire network catalyzing oxygen evolution and overall water splitting, Adv. Energy Mater. 8 (2018) 1701347. https://doi.org/10.1002/aenm.201701347
[33] H.A. Bandal, A.R. Jadhav, A.H. Tamboli, H. Kim, Bimetallic iron cobalt oxide self-supported on Ni-Foam: An efficient bifunctional electrocatalyst for oxygen and hydrogen evolution reaction, Electrochim. Acta 249 (2017) 253-262. https://doi.org/10.1016/j.electacta.2017.07.178
[34] J.X. Feng, S.H. Ye, H. Xu, Y.X. Tong, G.R. Li, Design and synthesis of FeOOH/CeO2heterolayered nanotube electrocatalysts for the oxygen evolution reaction, Adv. Mater. 28 (2016) 4698-4703. https://doi.org/10.1002/adma.201600054
[35] J. Chi, H. Yu, B. Qin, L. Fu, J. Jia, B. Yi, Z. Shao, Vertically aligned FeOOH/NiFe layered double hydroxides electrode for highly efficient oxygen evolution reaction, ACS Appl. Mater. Inter. 9 (2017) 464-471. https://doi.org/10.1021/acsami.6b13360
[36] A.M. Smith, L. Trotochaud, M.S. Burke, S.W. Boettcher, Contributions to activity enhancement via Fe incorporation in Ni-(oxy)hydroxide/borate catalysts for near-neutral pH oxygen evolution, Chem. Commun. 51 (2015) 5261-5263. https://doi.org/10.1039/C4CC08670H
[37] X. Li, X. Hao, Z. Wang, A. Abudula, G. Guan, In-situ intercalation of NiFe LDH materials: An efficient approach to improve electrocatalytic activity and stability for water splitting, J. Power Sources 347 (2017) 193-200. https://doi.org/10.1016/j.jpowsour.2017.02.062
[38] Z. Li, M. Shao, H. An, Z. Wang, S. Xu, M. Wei, D.G. Evans, X. Duan, Fast electrosynthesis of Fe-containing layered double hydroxide arrays toward highly efficient electrocatalytic oxidation reactions, Chem.Sci. 6 (2015) 6624-6631. https://doi.org/10.1039/C5SC02417J
[39] Y. Vlamidis, E. Scavetta, M. Gazzano, D. Tonelli, Iron vs aluminum based layered double hydroxides as water splitting catalysts, Electrochim. Acta 188 (2016) 653-660. https://doi.org/10.1016/j.electacta.2015.12.059
[40] X. Ma, X. Li, A.D. Jagadale, X. Hao, A. Abudula, G. Guan, Fabrication of Cu(OH)2@NiFe-layered double hydroxid catalyst array for electrochemical water splitting, Int. J. Hydrogen Energy 41 (2016) 14553-14561. https://doi.org/10.1016/j.ijhydene.2016.05.174
[41] X. Yu, M. Zhang, W. Yuan, G. Shi, A high-performance three-dimensional Ni–Fe layered double hydroxide/graphene electrode for water oxidation, J. Mater. Chem. A, 3 (2015) 6921-6928. https://doi.org/10.1039/C5TA01034A
[42] S. Sirisomboonchai, S. Li, A. Yoshida, X. Li, C. Samart, A. Abudula, G. Guan, Fabrication of NiO microflake@NiFe-LDH nanosheet heterostructure electrocatalysts for oxygen evolution reaction, ACS Sustain. Chem. Eng. 7 (2018) 2327-2334. https://doi.org/10.1021/acssuschemeng.8b05088
[43] F. Yang, K. Sliozberg, I. Sinev, H. Antoni, A. Bahr, K. Ollegott, W. Xia, J. Masa, W. Grunert, B.R. Cuenya, W. Schuhmann, M. Muhler, Synergistic effect of cobalt and iron in layered double hydroxide catalysts for the oxygen evolution reaction, Chem. Sus. Chem. 10 (2017) 156-165. https://doi.org/10.1002/cssc.201601272
[44] P.F. Liu, S. Yang, B. Zhang, H.G. Yang, Defect-rich ultrathin cobalt-iron layered double hydroxide for electrochemical overall water splitting, ACS Appl. Mater. Inter. 8 (2016) 34474-34481. https://doi.org/10.1021/acsami.6b12803
[45] H. Liu, Y. Wang, X. Lu, Y. Hu, G. Zhu, R. Chen, L. Ma, H. Zhu, Z. Tie, J. Liu, Z. Jin, The effects of Al substitution and partial dissolution on ultrathin NiFeAl trinary layered double hydroxide nanosheets for oxygen evolution reaction in alkaline solution, Nano Energy 35 (2017) 350-357. https://doi.org/10.1016/j.nanoen.2017.04.011
[46] Z. Lu, L. Qian, Y. Tian, Y. Li, X. Sun, X. Duan, Ternary NiFeMn layered double hydroxides as highly-efficient oxygen evolution catalysts., Chem. Commun. 52 (2016) 908-911. https://doi.org/10.1039/C5CC08845C
[47] Z. Lu, L. Qian, W. Xu, Y. Tian, M. Jiang, Y. Li, X. Sun, X. Duan, Dehydrated layered double hydroxides: Alcohothermal synthesis and oxygen evolution activity, Nano Res. 9 (2016) 3152-3161. https://doi.org/10.1007/s12274-016-1197-4
[48] B. Han, A. Grimaud, L. Giordano, W.T. Hong, O. Diaz-Morales, L. Yueh-Lin, J. Hwang, N. Charles, K.A. Stoerzinger, W. Yang, M.T.M. Koper, Y. Shao-Horn, Iron-based perovskites for catalyzing oxygen evolution reaction, J. Phys. Chem. C 122 (2018) 8445-8454. https://doi.org/10.1021/acs.jpcc.8b01397
[49] S. Yagi, I. Yamada, H. Tsukasaki, A. Seno, M. Murakami, H. Fujii, H. Chen, N. Umezawa, H. Abe, N. Nishiyama, S. Mori, Covalency-reinforced oxygen evolution reaction catalyst, Nat.Commun. 6 (2015) 8249. https://doi.org/10.1038/ncomms9249
[50] Y. Zhu, W. Zhou, J. Yu, Y. Chen, M. Liu, Z. Shao, Enhancing electrocatalytic activity of perovskite oxides by tuning cation deficiency for oxygen reduction and evolution reactions, Chem. Mater. 28 (2016) 1691-1697. https://doi.org/10.1021/acs.chemmater.5b04457
[51] L. Gui, Z. Huang, G. Li, Q. Wang, B. He, L. Zhao, Insights into Ni-Fe couple in perovskite electrocatalysts for highly efficient electrochemical oxygen evolution, Electrochim. Acta 293 (2019) 240-246. https://doi.org/10.1016/j.electacta.2018.10.033
[52] N.T. Suen, S.F. Hung, Q. Quan, N. Zhang, Y.J. Xu, H.M. Chen, Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives, Chem. Soc. Rev. 46 (2017) 337-365. https://doi.org/10.1039/C6CS00328A
[53] S.M. Alshehri, A.N. Alhabarah, J. Ahmed, M. Naushad, T. Ahamad, An efficient and cost-effective tri-functional electrocatalyst based on cobalt ferrite embedded nitrogen doped carbon, J. Colloid Interface Sci. 514 (2018) 1-9. https://doi.org/10.1016/j.jcis.2017.12.020
[54] M. Li, Y. Xiong, X. Liu, X. Bo, Y. Zhang, C. Han, L. Guo, Facile synthesis of electrospun MFe2O4 (M = Co, Ni, Cu, Mn) spinel nanofibers with excellent electrocatalytic properties for oxygen evolution and hydrogen peroxide reduction, Nanoscale 7 (2015) 8920-8930. https://doi.org/10.1039/C4NR07243J
[55] V.D. Silva, L.S. Ferreira, T.A. Simoes, E.S. Medeiros, D.A. Macedo, 1D hollow MFe2O4 (M=Cu, Co, Ni) fibers by solution blow spinning for oxygen evolution reaction, J. Colloid Interface Sci. 540 (2019) 59-65. https://doi.org/10.1016/j.jcis.2019.01.003
[56] Y. Zhang, J. Zai, K. He, X. Qian, Fe3C nanoparticles encapsulated in highly crystalline porous graphite: salt-template synthesis and enhanced electrocatalytic oxygen evolution activity and stability, Chem. Commun. 54 (2018) 3158-3161. https://doi.org/10.1039/C8CC01057A
[57] M. Li, T. Liu, X. Bo, M. Zhou, L. Guo, S. Guo, Hybrid carbon nanowire networks with Fe–P bond active site for efficient oxygen/hydrogen-based electrocatalysis, Nano Energy 33 (2017) 221-228. https://doi.org/10.1016/j.nanoen.2017.01.026
[58] P. Chen, T. Zhou, L. Xing, K. Xu, Y. Tong, H. Xie, L. Zhang, W. Yan, W. Chu, C. Wu, Y. Xie, Atomically dispersed iron-nitrogen species as electrocatalysts for bifunctional oxygen evolution and reduction reactions, Angew. Chem. Int. Ed. Engl. 56 (2017) 610-614. https://doi.org/10.1002/anie.201610119
[59] J. Nai, Y. Lu, X.Y. Yu, Formation of Ti–Fe mixed sulfide nanoboxes for enhanced electrocatalytic oxygen evolution, J. Mater. Chem. A 6 (2018) 21891-21895. https://doi.org/10.1039/C8TA02334D
[60] J. Yu, G. Cheng, W. Luo, Hierarchical NiFeP microflowers directly grown on Ni foam for efficient electrocatalytic oxygen evolution, J. Mater. Chem. A 5 (2017) 11229-11235. https://doi.org/10.1039/C7TA02968C
[61] C.G. Read, J.F. Callejas, C.F. Holder, R.E. Schaak, General strategy for the synthesis of transition metal phosphide films for electrocatalytic hydrogen and oxygen evolution, ACS Appl. Mater. Inter. 8 (2016) 12798-12803. https://doi.org/10.1021/acsami.6b02352
[62] C. Xuan, J. Wang, W. Xia, J. Zhu, Z. Peng, K. Xia, W. Xiao, H.L. Xin, D. Wang, Heteroatom (P, B, or S) incorporated NiFe-based nanocubes as efficient electrocatalysts for the oxygen evolution reaction, J. Mater. Chem. A 6 (2018) 7062-7069. https://doi.org/10.1039/C8TA00410B
[63] L. Zhao, Q. Cao, A. Wang, J. Duan, W. Zhou, Y. Sang, H. Liu, Iron oxide embedded titania nanowires-An active and stable electrocatalyst for oxygen evolution in acidic media, Nano Energy 45 (2018) 118-126. https://doi.org/10.1016/j.nanoen.2017.12.029
[64] F. Yan, C. Zhu, S. Wang, Y. Zhao, X. Zhang, C. Li, Y. Chen, Electrochemically activated-iron oxide nanosheet arrays on carbon fiber cloth as a three-dimensional self-supported electrode for efficient water oxidation, J. Mater. Chem. A 4 (2016) 6048-6055. https://doi.org/10.1039/C6TA00456C
[65] N. Bhandary, P.P. Ingole, S. Basu, Electrosynthesis of Mn-Fe oxide nanopetals on carbon paper as bi-functional electrocatalyst for oxygen reduction and oxygen evolution reaction, Int. J. Hydrogen Energy 43 (2018) 3165-3171. https://doi.org/10.1016/j.ijhydene.2017.12.102
[66] Y. Chen, C. Dong, J. Zhang, C. Zhang, Z. Zhang, Hierarchically porous Mo-doped Ni–Fe oxide nanowires efficiently catalyzing oxygen/hydrogen evolution reactions, J. Mater. Chem. A 6 (2018) 8430-8440. https://doi.org/10.1039/C8TA00447A
[67] X. Wang, L. Yu, B.Y. Guan, S. Song, X.W.D. Lou, Metal-organic framework hybrid-assisted formation of Co3O4/Co-Fe oxide double-shelled nanoboxes for enhanced oxygen evolution, Adv. Mater. 30 (2018)1801211. https://doi.org/10.1002/adma.201801211
[68] X. Li, C. Li, A. Yoshida, X. Hao, Z. Zuo, Z. Wang, A. Abudula, G. Guan, Facile fabrication of CuO microcube@Fe-Co3O4 nanosheet array as a high-performance electrocatalyst for the oxygen evolution reaction, J. Mater. Chem. A 5 (2017) 21740-21749. https://doi.org/10.1039/C7TA05454H
[69] S. Li, S. Sirisomboonchai, A. Yoshida, X. An, X. Hao, A. Abudula, G. Guan, Bifunctional CoNi/CoFe2O4/Ni foam electrodes for efficient overall water splitting at a high current density, J. Mater. Chem. A 6 (2018) 19221-19230. https://doi.org/10.1039/C8TA08223E
[70] B. Weng, F. Xu, C. Wang, W. Meng, C.R. Grice, Y. Yan, A layered Na1−xNiyFe1−yO2 double oxide oxygen evolution reaction electrocatalyst for highly efficient water-splitting, Energy Environ. Sci. 10 (2017) 121-128. https://doi.org/10.1039/C6EE03088B
[71] H. Xu, J. Wei, C. Liu, Y. Zhang, L. Tian, C. Wang, Y. Du, Phosphorus-doped cobalt-iron oxyhydroxide with untrafine nanosheet structure enable efficient oxygen evolution electrocatalysis, J. Colloid Interface Sci. 530 (2018) 146-153. https://doi.org/10.1016/j.jcis.2018.06.073
[72] M. Xiong, D.G. Ivey, Composition effects of electrodeposited Co-Fe as electrocatalysts for the oxygen evolution reaction, Electrochim. Acta 260 (2018) 872-881. https://doi.org/10.1016/j.electacta.2017.12.059
[73] G. Dong, M. Fang, J. Zhang, R. Wei, L. Shu, Xiaoguang Liang, S. Yip, F. Wang, L. Guan, Z. Zheng, J.C. Ho, In situ formation of highly active Ni–Fe based oxygen-evolving electrocatalysts via simple reactive dip-coating, J. Mater. Chem. A 5 (2017) 11009-11015. https://doi.org/10.1039/C7TA01134B
[74] A.S. Batchellor, S.W. Boettcher, Pulse-electrodeposited Ni–Fe (oxy)hydroxide oxygen evolution electrocatalysts with high geometric and intrinsic activities at large mass loadings, ACS Catal. 5 (2015) 6680-6689. https://doi.org/10.1021/acscatal.5b01551
[75] M. Gorlin, J. Ferreira de Araujo, H. Schmies, D. Bernsmeier, S. Dresp, M. Gliech, Z. Jusys, P. Chernev, R. Kraehnert, H. Dau, P. Strasser, Tracking catalyst redox states and reaction dynamics in Ni-Fe oxyhydroxide oxygen evolution reaction electrocatalysts: the role of catalyst support and electrolyte pH, J. Am. Chem. Soc. 139 (2017) 2070-2082. https://doi.org/10.1021/jacs.6b12250
[76] H. Jin, S. Mao, G. Zhan, F. Xu, X. Bao, Y. Wang, Fe incorporated α-Co(OH)2 nanosheets with remarkably improved activity towards the oxygen evolution reaction, J. Mater. Chem. A 5 (2017) 1078-1084. https://doi.org/10.1039/C6TA09959A
[77] N. Han, F. Zhao, Y. Li, Ultrathin nickel–iron layered double hydroxide nanosheets intercalated with molybdate anions for electrocatalytic water oxidation, J. Mater. Chem. A 3 (2015) 16348-16353. https://doi.org/10.1039/C5TA03394B
[78] W. Ma, R. Ma, C. Wang, J. Liang, X. Liu, K. Zhou, T. Sasaki, A superlattice of alternately stacked Ni–Fe hydroxide nanosheets and graphene for efficient splitting of water, ACS nano 9 (2015) 1977-1984. https://doi.org/10.1021/nn5069836
[79] Y. Jia, L. Zhang, G. Gao, H. Chen, B. Wang, J. Zhou, M.T. Soo, M. Hong, X. Yan, G. Qian, J. Zou, A. Du, X. Yao, A heterostructure coupling of exfoliated Ni-Fe hydroxide nanosheet and defective graphene as a bifunctional electrocatalyst for overall water splitting, Adv. Mater. 29 (2017)1700017. https://doi.org/10.1002/adma.201700017
[80] M. Chen, Y. Wu, Y. Han, X. Lin, J. Sun, W. Zhang, R. Cao, An iron-based film for highly efficient electrocatalytic oxygen evolution from neutral aqueous solution, ACS Appl.Mater.Inter. 7 (2015) 21852-21859. https://doi.org/10.1021/acsami.5b06195
[81] M. Yao, N. Wang, W. Hu, S. Komarneni, Novel hydrothermal electrodeposition to fabricate mesoporous film of Ni0.8Fe0.2 nanosheets for high performance oxygen evolution reaction, Appl. Catal. B-Environ. 233 (2018) 226-233. https://doi.org/10.1016/j.apcatb.2018.04.009
[82] X. Jia, Y. Zhao, G. Chen, L. Shang, R. Shi, X. Kang, G.I.N. Waterhouse, L.Z. Wu, C.H. Tung, T. Zhang, Ni3FeN nanoparticles derived from ultrathin NiFe-layered double hydroxide nanosheets: An efficient overall water splitting electrocatalyst, Adv. Energy Mater. 6 (2016) 1502585. https://doi.org/10.1002/aenm.201502585
[83] F. Hu, S. Zhu, S. Chen, Y. Li, L. Ma, T. Wu, Y. Zhang, C. Wang, C. Liu, X. Yang, L. Song, X. Yang, Y. Xiong, Amorphous metallic NiFeP: A conductive bulk material achieving high activity for oxygen evolution reaction in both alkaline and acidic media, Adv. Mater. 29 (2017)1606570. https://doi.org/10.1002/adma.201606570
[84] J. Zhang, Y. Hu, D. Liu, Y. Yu, B. Zhang, Enhancing oxygen evolution reaction at high current densities on amorphous-like Ni-Fe-S ultrathin nanosheets via oxygen incorporation and electrochemical tuning, Adv. Sci. 4 (2017) 1600343. https://doi.org/10.1002/advs.201600343