Metal-Organic Frameworks and their Therapeutic Applications

$28.50

Metal-Organic Frameworks and their Therapeutic Applications

Fulya Gülbağça, Anish Khan, Fatih Şen

Metal-organic frameworks (MOFs), which can be used in numerous applications such as gas storage, gas/steam separation, sensor, catalysis, imaging, luminescence, medication and biomedical applications in the nanotechnology field, have attracted a lot of attention. MOFs with unique physical and chemical properties are linked to both organic and inorganic components by the coordination of polydentate organic binders and metal ions. Through these features specific to MOFs; Gives new perspectives on materials science, nanomedicine, biology, and drug distribution. In addition, biodegradability, porosity, high loading capacity, and surface modification properties are the main advantages of the new generation technologies. This chapter highlights various MOF types, their properties, and applications in various biomedical disciplines, with a particular focus on drug delivery and theranostics.

Keywords
Metal-Organic Frameworks, Biosensors, Therapeutic Applications, Nanomedicine, Antibacterial, Drug Delivery

Published online 10/5/2019, 51 pages

Citation: Fulya Gülbağça, Anish Khan, Fatih Şen, Metal-Organic Frameworks and their Therapeutic Applications, Materials Research Foundations, Vol. 58, pp 239-289, 2019

DOI: https://doi.org/10.21741/9781644900437-9

Part of the book on Metal-Organic Framework Composites

References
1. B. Şen, A. Aygün, T. O. Okyay, A. Şavk, R. Kartop, & F. Şen, Monodisperse Palladium Nanoparticles Assembled on Graphene Oxide with The High Catalytic Activity and Reusability in The Dehydrogenation of Dimethylamine-borane. International Journal of Hydrogen Energy, 43 (2018) 20176–20182. https://doi.org/10.1016/j.ijhydene.2018.03.175.
2. J. Tian, J. Xu, F. Zhu, T. Lu, C. Su, & G. Ouyang, Application of nanomaterials in sample preparation. Journal of Chromatography A, 1300 (2013) 2–16. https://doi.org/10.1016/J.CHROMA.2013.04.010.
3. S. Ertan, F. Şen, S. Şen, & G. Gökağaç, Platinum nanocatalysts prepared with different surfactants for C1–C3 alcohol oxidations and their surface morphologies by AFM. Journal of Nanoparticle Research, 14 (2012) 922–934. https://doi.org/10.1007/s11051-012-0922-5.
4. B. Sen, A. Şavk, & F. Sen, Highly Efficient Monodisperse Pt Nanoparticles Confined in The Carbon Black Hybrid Material for Hydrogen Liberation. Journal of Colloid and Interface Science, 520 (2018) 112–118. https://doi.org/10.1016/j.jcis.2018.03.004.
5. R. Ayranci, G. Başkaya, M. Güzel, S. Bozkurt, F. Şen, & M. Ak, Carbon Based Nanomaterials for High Performance Optoelectrochemical Systems. ChemistrySelect, 2 (2017) 1548–1555. https://doi.org/10.1002/slct.201601632.
6. S. Akocak, B. Şen, N. Lolak, A. Şavk, M. Koca, S. Kuzu, & F. Şen, One-Pot Three-Component Synthesis of 2-Amino-4H-Chromene Derivatives by Using Monodisperse Pd Nanomaterials Anchored Graphene Oxide as Highly Efficient and Recyclable Catalyst. Nano-Structures & Nano-Objects, 11 (2017) 25–31. https://doi.org/10.1016/j.nanoso.2017.06.002.
7. Y. Yıldız, S. Kuzu, B. Sen, A. Savk, S. Akocak, & F. Şen, Different Ligand Based Monodispersed Pt Nanoparticles Decorated with rGO As Highly Active and Reusable Catalysts for The Methanol Oxidation. International Journal of Hydrogen Energy, 42 (2017) 13061–13069. https://doi.org/10.1016/j.ijhydene.2017.03.230.
8. Y. Liu, Z. U. Wang, & H.-C. Zhou, Recent advances in carbon dioxide capture with metal-organic frameworks. Greenhouse Gases: Science and Technology, 2 (2012) 239–259. https://doi.org/10.1002/ghg.1296.
9. S. H. Jhung, J. Lee, & J.-S. Chang, Microwave synthesis of a nanoporous hybrid material, MIL-100(Cr). Bulletin of the Korean Chemical Society, 26 (2005) 880–881. https://doi.org/10.5012/bkcs.2005.26.6.880.
10. Z. N. and & R. I. Masel*, Rapid Production of Metal−Organic Frameworks via Microwave-Assisted Solvothermal Synthesis. (2006). https://doi.org/10.1021/JA0635231.
11. J.-S. Choi, W.-J. Son, J. Kim, & W.-S. Ahn, Metal–organic framework MOF-5 prepared by microwave heating: Factors to be considered. Microporous and Mesoporous Materials, 116 (2008) 727–731. https://doi.org/10.1016/J.MICROMESO.2008.04.033.
12. A. Carné-Sánchez, I. Imaz, M. Cano-Sarabia, & D. Maspoch, A spray-drying strategy for synthesis of nanoscale metal–organic frameworks and their assembly into hollow superstructures. Nature Chemistry, 5 (2013) 203–211. https://doi.org/10.1038/nchem.1569.
13. M. Faustini, J. Kim, G.-Y. Jeong, J. Y. Kim, H. R. Moon, W.-S. Ahn, & D.-P. Kim, Microfluidic Approach toward Continuous and Ultrafast Synthesis of Metal–Organic Framework Crystals and Hetero Structures in Confined Microdroplets. Journal of the American Chemical Society, 135 (2013) 14619–14626. https://doi.org/10.1021/ja4039642.
14. C. M. Doherty, D. Buso, A. J. Hill, S. Furukawa, S. Kitagawa, & P. Falcaro, Using Functional Nano- and Microparticles for the Preparation of Metal–Organic Framework Composites with Novel Properties. Accounts of Chemical Research, 47 (2014) 396–405. https://doi.org/10.1021/ar400130a.
15. W. Shang, X. Kang, H. Ning, J. Zhang, X. Zhang, Z. Wu, G. Mo, X. Xing, & B. Han, Shape and Size Controlled Synthesis of MOF Nanocrystals with the Assistance of Ionic Liquid Mircoemulsions. Langmuir, 29 (2013) 13168–13174. https://doi.org/10.1021/la402882a.
16. F. LLABRESIXAMENA, O. CASANOVA, R. GALIASSOTAILLEUR, H. GARCIA, & A. CORMA, Metal organic frameworks (MOFs) as catalysts: A combination of Cu2+ and Co2+ MOFs as an efficient catalyst for tetralin oxidation. Journal of Catalysis, 255 (2008) 220–227. https://doi.org/10.1016/j.jcat.2008.02.011.
17. K. A. Mocniak, I. Kubajewska, D. E. M. Spillane, G. R. Williams, & R. E. Morris, Incorporation of cisplatin into the metal–organic frameworks UiO66-NH 2 and UiO66 – encapsulation vs. conjugation. RSC Advances, 5 (2015) 83648–83656. https://doi.org/10.1039/C5RA14011K.
18. N. Stock & S. Biswas, Synthesis of Metal-Organic Frameworks (MOFs): Routes to Various MOF Topologies, Morphologies, and Composites. Chemical Reviews, 112 (2012) 933–969. https://doi.org/10.1021/cr200304e.
19. B. Gomez-Lor, E. Gutiérrez-Puebla, M. Iglesias, * M. A. Monge, and C. Ruiz-Valero, & N. Snejko, In2(OH)3(BDC)1.5 (BDC = 1,4-Benzendicarboxylate):  An In(III) Supramolecular 3D Framework with Catalytic Activity. (2002). https://doi.org/10.1021/IC0111482.
20. A. K. Cheetham, C. N. R. Rao, & R. K. Feller, Structural diversity and chemical trends in hybrid inorganic–organic framework materials. Chem. Commun., 0 (2006) 4780–4795. https://doi.org/10.1039/B610264F.
21. P. Pachfule, R. Das, P. Poddar, & R. Banerjee, Solvothermal Synthesis, Structure, and Properties of Metal Organic Framework Isomers Derived from a Partially Fluorinated Link. Crystal Growth & Design, 11 (2011) 1215–1222. https://doi.org/10.1021/cg101414x.
22. J. Kim, B. Chen, T. M. Reineke, H. Li, M. Eddaoudi, D. B. Moler, M. O’Keeffe, & O. M. Yaghi, Assembly of metal-organic frameworks from large organic and inorganic secondary building units: New examples and simplifying principles for complex structures. Journal of the American Chemical Society, 123 (2001) 8239–8247. https://doi.org/10.1021/ja010825o.
23. R. J. Kuppler, D. J. Timmons, Q.-R. Fang, J.-R. Li, T. A. Makal, M. D. Young, D. Yuan, D. Zhao, W. Zhuang, & H.-C. Zhou, Potential applications of metal-organic frameworks. Coordination Chemistry Reviews, 253 (2009) 3042–3066. https://doi.org/10.1016/J.CCR.2009.05.019.
24. M. Zhang, W. Lu, J.-R. Li, M. Bosch, Y.-P. Chen, T.-F. Liu, Y. Liu, & H.-C. Zhou, Design and synthesis of nucleobase-incorporated metal–organic materials. Inorganic Chemistry Frontiers, 1 (2014) 159. https://doi.org/10.1039/c3qi00042g.
25. H.-R. Fu & J. Zhang, Flexible Porous Zinc–Pyrazole–Adenine Framework for Hysteretic Sorption of Light Hydrocarbons. Crystal Growth & Design, 15 (2015) 1210–1213. https://doi.org/10.1021/cg5016093.
26. Y.-P. He, N. Zhou, Y.-X. Tan, F. Wang, & J. Zhang, Synthesis of metal-adeninate frameworks with high separation capacity on C2/C1 hydrocarbons. Journal of Solid State Chemistry, 238 (2016) 241–245. https://doi.org/10.1016/J.JSSC.2016.03.043.
27. M.-Y. Li, F. Wang, Z.-G. Gu, & J. Zhang, Synthesis of homochiral zeolitic metal–organic frameworks with amino acid and tetrazolates for chiral recognition. RSC Advances, 7 (2017) 4872–4875. https://doi.org/10.1039/C6RA27069G.
28. J. Navarro-Sánchez, A. I. Argente-García, Y. Moliner-Martínez, D. Roca-Sanjuán, D. Antypov, P. Campíns-Falcó, M. J. Rosseinsky, & C. Martí-Gastaldo, Peptide Metal–Organic Frameworks for Enantioselective Separation of Chiral Drugs. Journal of the American Chemical Society, 139 (2017) 4294–4297. https://doi.org/10.1021/jacs.7b00280.
29. XianLi An & XiGeng Zheng, Post-training corticosterone opposingly modulates fear conditioning of high and low anxiety rats. Proc. 2012 IEEE-EMBS Int. Conf. Biomed. Heal. Informatics (IEEE, 2012), pp. 604–607. https://doi.org/10.1109/BHI.2012.6211655.
30. H. Cai, M. Li, X.-R. Lin, W. Chen, G.-H. Chen, X.-C. Huang, & D. Li, Spatial, Hysteretic, and Adaptive Host-Guest Chemistry in a Metal-Organic Framework with Open Watson-Crick Sites. Angewandte Chemie International Edition, 54 (2015) 10454–10459. https://doi.org/10.1002/anie.201502045.
31. R. W. Sun, M. Zhang, D. Li, Z. Zhang, H. Cai, M. Li, Y. Xian, S. W. Ng, & A. S. Wong, Dinuclear Gold(I) Pyrrolidinedithiocarbamato Complex: Cytotoxic and Antimigratory Activities on Cancer Cells and the Use of Metal–Organic Framework. Chemistry – A European Journal, 21 (2015) 18534–18538. https://doi.org/10.1002/CHEM.201503656.
32. H. Cai, L.-L. Xu, H.-Y. Lai, J.-Y. Liu, S. W. Ng, & D. Li, A highly emissive and stable zinc( ii ) metal–organic framework as a host–guest chemopalette for approaching white-light-emission. Chemical Communications, 53 (2017) 7917–7920. https://doi.org/10.1039/C7CC03350H.
33. J. Du, C.-H. Yuen, X. Li, K. Ding, G. Du, Z. Lin, C. T. Chan, & J. Ng, Tailoring Optical Gradient Force and Optical Scattering and Absorption Force. Scientific reports, 7 (2017) 18042. https://doi.org/10.1038/s41598-017-17874-1.
34. K. J. Hartlieb, J. M. Holcroft, P. Z. Moghadam, N. A. Vermeulen, M. M. Algaradah, M. S. Nassar, Y. Y. Botros, R. Q. Snurr, & J. F. Stoddart, CD-MOF: A Versatile Separation Medium. Journal of the American Chemical Society, 138 (2016) 2292–2301. https://doi.org/10.1021/jacs.5b12860.
35. M. Zhao & C.-D. Wu, Biomimetic Activation of Molecular Oxygen with a Combined Metalloporphyrinic Framework and Co-catalyst Platform. ChemCatChem, 9 (2017) 1192–1196. https://doi.org/10.1002/cctc.201601606.
36. J. Yang, C. A. Trickett, S. B. Alahmadi, A. S. Alshammari, & O. M. Yaghi, Calcium l -Lactate Frameworks as Naturally Degradable Carriers for Pesticides. Journal of the American Chemical Society, 139 (2017) 8118–8121. https://doi.org/10.1021/jacs.7b04542.
37. P. A. Sontz, J. B. Bailey, S. Ahn, & F. A. Tezcan, A Metal Organic Framework with Spherical Protein Nodes: Rational Chemical Design of 3D Protein Crystals. Journal of the American Chemical Society, 137 (2015) 11598–11601. https://doi.org/10.1021/jacs.5b07463.
38. J. B. Bailey, L. Zhang, J. A. Chiong, S. Ahn, & F. A. Tezcan, Synthetic Modularity of Protein–Metal–Organic Frameworks. Journal of the American Chemical Society, 139 (2017) 8160–8166. https://doi.org/10.1021/jacs.7b01202.
39. X.-L. Yang & C.-D. Wu, Metalloporphyrinic Framework Containing Multiple Pores for Highly Efficient and Selective Epoxidation. Inorganic Chemistry, 53 (2014) 4797–4799. https://doi.org/10.1021/ic500531k.
40. M. Hamidi, K. Rostamizadeh, & M. A. Shahbazi, Hydrogel Nanoparticles in Drug Delivery. Intelligent Nanomaterials: Processes, Properties, and Applications, 60 (2012) 583–624. https://doi.org/10.1002/9781118311974.ch15.
41. J. R. Heath & M. E. Davis, Nanotechnology and Cancer. Annual Review of Medicine, 59 (2008) 251–265. https://doi.org/10.1146/annurev.med.59.061506.185523.
42. Z. Zhang, L. Wang, J. Wang, X. Jiang, X. Li, Z. Hu, Y. Ji, X. Wu, & C. Chen, Mesoporous Silica-Coated Gold Nanorods as a Light-Mediated Multifunctional Theranostic Platform for Cancer Treatment. Advanced Materials, 24 (2012) 1418–1423. https://doi.org/10.1002/adma.201104714.
43. F. Ke, Y.-P. Yuan, L.-G. Qiu, Y.-H. Shen, A.-J. Xie, J.-F. Zhu, X.-Y. Tian, & L.-D. Zhang, Facile fabrication of magnetic metal–organic framework nanocomposites for potential targeted drug delivery. Journal of Materials Chemistry, 21 (2011) 3843. https://doi.org/10.1039/c0jm01770a.
44. P. Horcajada, C. Serre, M. Vallet-Regí, M. Sebban, F. Taulelle, & G. Férey, Metal–Organic Frameworks as Efficient Materials for Drug Delivery. Angewandte Chemie International Edition, 45 (2006) 5974–5978. https://doi.org/10.1002/anie.200601878.
45. D. Cunha, M. Ben Yahia, S. Hall, S. R. Miller, H. Chevreau, E. Elkaïm, G. Maurin, P. Horcajada, & C. Serre, Rationale of Drug Encapsulation and Release from Biocompatible Porous Metal–Organic Frameworks. Chemistry of Materials, 25 (2013) 2767–2776. https://doi.org/10.1021/cm400798p.
46. M. C. Das, Q. Guo, Y. He, J. Kim, C.-G. Zhao, K. Hong, S. Xiang, Z. Zhang, K. M. Thomas, R. Krishna, & B. Chen, Interplay of Metalloligand and Organic Ligand to Tune Micropores within Isostructural Mixed-Metal Organic Frameworks (M′MOFs) for Their Highly Selective Separation of Chiral and Achiral Small Molecules. Journal of the American Chemical Society, 134 (2012) 8703–8710. https://doi.org/10.1021/ja302380x.
47. C. Adhikari & A. Chakraborty, Smart Approach for In Situ One-Step Encapsulation and Controlled Delivery of a Chemotherapeutic Drug using Metal-Organic Framework-Drug Composites in Aqueous Media. ChemPhysChem, 17 (2016) 1070–1077. https://doi.org/10.1002/cphc.201501012.
48. V. Rodriguez-Ruiz, A. Maksimenko, R. Anand, S. Monti, V. Agostoni, P. Couvreur, M. Lampropoulou, K. Yannakopoulou, & R. Gref, Efficient “green” encapsulation of a highly hydrophilic anticancer drug in metal–organic framework nanoparticles. Journal of Drug Targeting, 23 (2015) 759–767. https://doi.org/10.3109/1061186X.2015.1073294.
49. P. Horcajada, T. Chalati, C. Serre, B. Gillet, C. Sebrie, T. Baati, J. F. Eubank, D. Heurtaux, P. Clayette, C. Kreuz, J.-S. Chang, Y. K. Hwang, V. Marsaud, P.-N. Bories, L. Cynober, S. Gil, G. Férey, P. Couvreur, & R. Gref, Porous metal–organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nature Materials, 9 (2010) 172–178. https://doi.org/10.1038/nmat2608.
50. W. Wang, L. Wang, Z. Li, & Z. Xie, BODIPY-containing nanoscale metal–organic frameworks for photodynamic therapy. Chemical Communications, 52 (2016) 5402–5405. https://doi.org/10.1039/C6CC01048B.
51. S. Keskin & S. Kızılel, Biomedical Applications of Metal Organic Frameworks. Industrial & Engineering Chemistry Research, 50 (2011) 1799–1812. https://doi.org/10.1021/ie101312k.
52. R. M. P. Colodrero, K. E. Papathanasiou, N. Stavgianoudaki, P. Olivera-Pastor, E. R. Losilla, M. A. G. Aranda, L. León-Reina, J. Sanz, I. Sobrados, D. Choquesillo-Lazarte, J. M. García-Ruiz, P. Atienzar, F. Rey, K. D. Demadis, & A. Cabeza, Multifunctional Luminescent and Proton-Conducting Lanthanide Carboxyphosphonate Open-Framework Hybrids Exhibiting Crystalline-to-Amorphous-to-Crystalline Transformations. Chemistry of Materials, 24 (2012) 3780–3792. https://doi.org/10.1021/cm302381k.
53. K. M. L. Taylor-Pashow, J. Della Rocca, Z. Xie, S. Tran, & W. Lin, Postsynthetic Modifications of Iron-Carboxylate Nanoscale Metal−Organic Frameworks for Imaging and Drug Delivery. Journal of the American Chemical Society, 131 (2009) 14261–14263. https://doi.org/10.1021/ja906198y.
54. J. Kirsch, C. Siltanen, Q. Zhou, A. Revzin, & A. Simonian, Biosensor technology: recent advances in threat agent detection and medicine. Chemical Society Reviews, 42 (2013) 8733. https://doi.org/10.1039/c3cs60141b.
55. I. Imaz, M. Rubio-Martínez, L. García-Fernández, F. García, D. Ruiz-Molina, J. Hernando, V. Puntes, & D. Maspoch, Coordination polymer particles as potential drug delivery systems. Chemical Communications, 46 (2010) 4737. https://doi.org/10.1039/c003084h.
56. H.-N. Wang, X. Meng, G.-S. Yang, X.-L. Wang, K.-Z. Shao, Z.-M. Su, & C.-G. Wang, Stepwise assembly of metal–organic framework based on a metal–organic polyhedron precursor for drug delivery. Chemical Communications, 47 (2011) 7128. https://doi.org/10.1039/c1cc11932j.
57. F. R. S. Lucena, L. C. C. de Araújo, M. do D. Rodrigues, T. G. da Silva, V. R. A. Pereira, G. C. G. Militão, D. A. F. Fontes, P. J. Rolim-Neto, F. F. da Silva, & S. C. Nascimento, Induction of cancer cell death by apoptosis and slow release of 5-fluoracil from metal-organic frameworks Cu-BTC. Biomedicine & Pharmacotherapy, 67 (2013) 707–713. https://doi.org/10.1016/J.BIOPHA.2013.06.003.
58. M. Filippousi, S. Turner, K. Leus, P. I. Siafaka, E. D. Tseligka, M. Vandichel, S. G. Nanaki, I. S. Vizirianakis, D. N. Bikiaris, P. Van Der Voort, & G. Van Tendeloo, Biocompatible Zr-based nanoscale MOFs coated with modified poly(ε-caprolactone) as anticancer drug carriers. International Journal of Pharmaceutics, 509 (2016) 208–218. https://doi.org/10.1016/J.IJPHARM.2016.05.048.
59. K. E. deKrafft, W. S. Boyle, L. M. Burk, O. Z. Zhou, & W. Lin, Zr- and Hf-based nanoscale metal–organic frameworks as contrast agents for computed tomography. Journal of Materials Chemistry, 22 (2012) 18139. https://doi.org/10.1039/c2jm32299d.
60. M. Nazari, M. Rubio-Martinez, G. Tobias, J. P. Barrio, R. Babarao, F. Nazari, K. Konstas, B. W. Muir, S. F. Collins, A. J. Hill, M. C. Duke, & M. R. Hill, Metal-Organic-Framework-Coated Optical Fibers as Light-Triggered Drug Delivery Vehicles. Advanced Functional Materials, 26 (2016) 3244–3249. https://doi.org/10.1002/adfm.201505260.
61. H. Zheng, Y. Zhang, L. Liu, W. Wan, P. Guo, A. M. Nyström, & X. Zou, One-pot Synthesis of Metal–Organic Frameworks with Encapsulated Target Molecules and Their Applications for Controlled Drug Delivery. Journal of the American Chemical Society, 138 (2016) 962–968. https://doi.org/10.1021/jacs.5b11720.
62. C.-Y. Sun, C. Qin, X.-L. Wang, G.-S. Yang, K.-Z. Shao, Y.-Q. Lan, Z.-M. Su, P. Huang, C.-G. Wang, & E.-B. Wang, Zeolitic imidazolate framework-8 as efficient pH-sensitive drug delivery vehicle. Dalton Transactions, 41 (2012) 6906. https://doi.org/10.1039/c2dt30357d.
63. C. Wang, D. Liu, & W. Lin, Metal–Organic Frameworks as A Tunable Platform for Designing Functional Molecular Materials. Journal of the American Chemical Society, 135 (2013) 13222–13234. https://doi.org/10.1021/ja308229p.
64. W. J. Rieter, K. M. L. Taylor, H. An, W. Lin, & W. Lin, Nanoscale Metal−Organic Frameworks as Potential Multimodal Contrast Enhancing Agents. Journal of the American Chemical Society, 128 (2006) 9024–9025. https://doi.org/10.1021/ja0627444.
65. R. C. Huxford, J. Della Rocca, & W. Lin, Metal–organic frameworks as potential drug carriers. Current Opinion in Chemical Biology, 14 (2010) 262–268. https://doi.org/10.1016/J.CBPA.2009.12.012.
66. X. Zhu, J. Gu, Y. Wang, B. Li, Y. Li, W. Zhao, & J. Shi, Inherent anchorages in UiO-66 nanoparticles for efficient capture of alendronate and its mediated release. Chem. Commun., 50 (2014) 8779–8782. https://doi.org/10.1039/C4CC02570A.
67. T. Baati, P. Horcajada, R. Gref, P. Couvreur, & C. Serre, Quantification of fumaric acid in liver, spleen and urine by high-performance liquid chromatography coupled to photodiode-array detection. Journal of Pharmaceutical and Biomedical Analysis, 56 (2011) 758–762. https://doi.org/10.1016/J.JPBA.2011.07.011.
68. R. E. Morris & P. S. Wheatley, Gas Storage in Nanoporous Materials. Angewandte Chemie International Edition, 47 (2008) 4966–4981. https://doi.org/10.1002/anie.200703934.
69. V. Agostoni, T. Chalati, P. Horcajada, H. Willaime, R. Anand, N. Semiramoth, T. Baati, S. Hall, G. Maurin, H. Chacun, K. Bouchemal, C. Martineau, F. Taulelle, P. Couvreur, C. Rogez-Kreuz, P. Clayette, S. Monti, C. Serre, & R. Gref, Towards an Improved anti-HIV Activity of NRTI via Metal-Organic Frameworks Nanoparticles. Advanced Healthcare Materials, 2 (2013) 1630–1637. https://doi.org/10.1002/adhm.201200454.
70. W. Lin, W. J. Rieter, & K. M. L. Taylor, Modular Synthesis of Functional Nanoscale Coordination Polymers. Angewandte Chemie International Edition, 48 (2009) 650–658. https://doi.org/10.1002/anie.200803387.
71. K. Deng, Z. Hou, X. Li, C. Li, Y. Zhang, X. Deng, Z. Cheng, & J. Lin, Aptamer-mediated up-conversion core/MOF shell nanocomposites for targeted drug delivery and cell imaging. Scientific reports, 5 (2015) 7851. https://doi.org/10.1038/srep07851.
72. P. F. Gao, L. L. Zheng, L. J. Liang, X. X. Yang, Y. F. Li, & C. Z. Huang, A new type of pH-responsive coordination polymer sphere as a vehicle for targeted anticancer drug delivery and sustained release. Journal of Materials Chemistry B, 1 (2013) 3202. https://doi.org/10.1039/c3tb00026e.
73. B. S. Luisi, K. D. Rowland, & B. Moulton, Coordination polymer gels: synthesis, structure and mechanical properties of amorphous coordination polymers. Chemical Communications, 0 (2007) 2802. https://doi.org/10.1039/b703768f.
74. W. Yuan, A. L. Garay, A. Pichon, R. Clowes, C. D. Wood, A. I. Cooper, & S. L. James, Study of the mechanochemical formation and resulting properties of an archetypal MOF: Cu3(BTC)2 (BTC = 1,3,5-benzenetricarboxylate). CrystEngComm, 12 (2010) 4063. https://doi.org/10.1039/c0ce00486c.
75. W. J. Rieter, K. M. Pott, K. M. L. Taylor, & W. Lin, Nanoscale Coordination Polymers for Platinum-Based Anticancer Drug Delivery. Journal of the American Chemical Society, 130 (2008) 11584–11585. https://doi.org/10.1021/ja803383k.
76. H. Ren, L. Zhang, J. An, T. Wang, L. Li, X. Si, L. He, X. Wu, C. Wang, & Z. Su, Polyacrylic acid@zeolitic imidazolate framework-8 nanoparticles with ultrahigh drug loading capability for pH-sensitive drug release. Chem. Commun., 50 (2014) 1000–1002. https://doi.org/10.1039/C3CC47666A.
77. I. Abánades Lázaro & R. S. Forgan, Application of zirconium MOFs in drug delivery and biomedicine. Coordination Chemistry Reviews, 380 (2019) 230–259. https://doi.org/10.1016/J.CCR.2018.09.009.
78. G. Choi, T.-H. Kim, J.-M. Oh, & J.-H. Choy, Emerging nanomaterials with advanced drug delivery functions; focused on methotrexate delivery. Coordination Chemistry Reviews, 359 (2018) 32–51. https://doi.org/10.1016/J.CCR.2018.01.007.
79. N. J. Hinks, A. C. McKinlay, B. Xiao, P. S. Wheatley, & R. E. Morris, Metal organic frameworks as NO delivery materials for biological applications. Microporous and Mesoporous Materials, 129 (2010) 330–334. https://doi.org/10.1016/J.MICROMESO.2009.04.031.
80. S. R. Miller, D. Heurtaux, T. Baati, P. Horcajada, J.-M. Grenèche, & C. Serre, Biodegradable therapeutic MOFs for the delivery of bioactive molecules. Chemical Communications, 46 (2010) 4526. https://doi.org/10.1039/c001181a.
81. X. Lu, J. Ye, D. Zhang, R. Xie, R. F. Bogale, Y. Sun, L. Zhao, Q. Zhao, & G. Ning, Silver carboxylate metal–organic frameworks with highly antibacterial activity and biocompatibility. Journal of Inorganic Biochemistry, 138 (2014) 114–121. https://doi.org/10.1016/J.JINORGBIO.2014.05.005.
82. W. Zhuang, D. Yuan, J.-R. Li, Z. Luo, H.-C. Zhou, S. Bashir, & J. Liu, Highly Potent Bactericidal Activity of Porous Metal-Organic Frameworks. Advanced Healthcare Materials, 1 (2012) 225–238. https://doi.org/10.1002/adhm.201100043.
83. C. Tamames-Tabar, D. Cunha, E. Imbuluzqueta, F. Ragon, C. Serre, M. J. Blanco-Prieto, & P. Horcajada, Cytotoxicity of nanoscaled metal–organic frameworks. J. Mater. Chem. B, 2 (2014) 262–271. https://doi.org/10.1039/C3TB20832J.
84. M. Berchel, T. Le Gall, C. Denis, S. Le Hir, F. Quentel, C. Elléouet, T. Montier, J.-M. Rueff, J.-Y. Salaün, J.-P. Haelters, G. B. Hix, P. Lehn, & P.-A. Jaffrès, A silver-based metal–organic framework material as a ‘reservoir’ of bactericidal metal ions. New Journal of Chemistry, 35 (2011) 1000. https://doi.org/10.1039/c1nj20202b.
85. S. Aguado, J. Quirós, J. Canivet, D. Farrusseng, K. Boltes, & R. Rosal, Antimicrobial activity of cobalt imidazolate metal–organic frameworks. Chemosphere, 113 (2014) 188–192. https://doi.org/10.1016/J.CHEMOSPHERE.2014.05.029.
86. Y. Liu, X. Xu, Q. Xia, G. Yuan, Q. He, & Y. Cui, Multiple topological isomerism of three-connected networks in silver-based metal–organoboron frameworks. Chemical Communications, 46 (2010) 2608. https://doi.org/10.1039/b923365b.
87. C. Chiericatti, J. C. Basilico, M. L. Zapata Basilico, & J. M. Zamaro, Novel application of HKUST-1 metal–organic framework as antifungal: Biological tests and physicochemical characterizations. Microporous and Mesoporous Materials, 162 (2012) 60–63. https://doi.org/10.1016/J.MICROMESO.2012.06.012.
88. Y.-C. Wang, H. Zhao, Q. Ye, Z.-F. Chen, R.-G. Xiong, & H.-K. Fun, Novel 2D supramolecular array based on antibacterial drug norfloxacin. Inorganica Chimica Acta, 357 (2004) 4303–4308. https://doi.org/10.1016/J.ICA.2004.05.036.
89. A. R. Abbasi, K. Akhbari, & A. Morsali, Dense coating of surface mounted CuBTC Metal–Organic Framework nanostructures on silk fibers, prepared by layer-by-layer method under ultrasound irradiation with antibacterial activity. Ultrasonics Sonochemistry, 19 (2012) 846–852. https://doi.org/10.1016/J.ULTSONCH.2011.11.016.
90. H. S. Rodríguez, J. P. Hinestroza, C. Ochoa-Puentes, C. A. Sierra, & C. Y. Soto, Antibacterial activity against Escherichia coli of Cu-BTC (MOF-199) metal-organic framework immobilized onto cellulosic fibers. Journal of Applied Polymer Science, 131 (2014) n/a-n/a. https://doi.org/10.1002/app.40815.
91. F. N. Azad, M. Ghaedi, K. Dashtian, S. Hajati, & V. Pezeshkpour, Ultrasonically assisted hydrothermal synthesis of activated carbon–HKUST-1-MOF hybrid for efficient simultaneous ultrasound-assisted removal of ternary organic dyes and antibacterial investigation: Taguchi optimization. Ultrasonics Sonochemistry, 31 (2016) 383–393. https://doi.org/10.1016/J.ULTSONCH.2016.01.024.
92. E. Lashkari, H. Wang, L. Liu, J. Li, & K. Yam, Innovative application of metal-organic frameworks for encapsulation and controlled release of allyl isothiocyanate. Food Chemistry, 221 (2017) 926–935. https://doi.org/10.1016/J.FOODCHEM.2016.11.072.
93. F. Pu, X. Liu, B. Xu, J. Ren, & X. Qu, Miniaturization of Metal-Biomolecule Frameworks Based on Stereoselective Self-Assembly and Potential Application in Water Treatment and as Antibacterial Agents. Chemistry – A European Journal, 18 (2012) 4322–4328. https://doi.org/10.1002/chem.201103524.
94. M. P. Arpa Sancet, M. Hanke, Z. Wang, S. Bauer, C. Azucena, H. K. Arslan, M. Heinle, H. Gliemann, C. Wöll, & A. Rosenhahn, Surface anchored metal-organic frameworks as stimulus responsive antifouling coatings. Biointerphases, 8 (2013) 29. https://doi.org/10.1186/1559-4106-8-29.
95. M. Hanke, H. K. Arslan, S. Bauer, O. Zybaylo, C. Christophis, H. Gliemann, A. Rosenhahn, & C. Wöll, The Biocompatibility of Metal–Organic Framework Coatings: An Investigation on the Stability of SURMOFs with Regard to Water and Selected Cell Culture Media. Langmuir, 28 (2012) 6877–6884. https://doi.org/10.1021/la300457z.
96. A. Wojciechowska, A. Gągor, W. Zierkiewicz, A. Jarząb, A. Dylong, & M. Duczmal, Metal–organic framework in an l -arginine copper( ii ) ion polymer: structure, properties, theoretical studies and microbiological activity. RSC Advances, 5 (2015) 36295–36306. https://doi.org/10.1039/C5RA02790J.
97. Nathaniel L. Rosi, Jaheon Kim, Mohamed Eddaoudi, Banglin Chen, and Michael O’Keeffe, & Omar M. Yaghi, Rod Packings and Metal−Organic Frameworks Constructed from Rod-Shaped Secondary Building Units. (2005). https://doi.org/10.1021/JA045123O.
98. H. Wang, E. Lashkari, H. Lim, C. Zheng, T. J. Emge, Q. Gong, K. Yam, & J. Li, The moisture-triggered controlled release of a natural food preservative from a microporous metal–organic framework. Chemical Communications, 52 (2016) 2129–2132. https://doi.org/10.1039/C5CC09634K.
99. K. S. Park, Z. Ni, A. P. Côté, J. Y. Choi, R. Huang, F. J. Uribe-Romo, H. K. Chae, M. O’Keeffe, & O. M. Yaghi, Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proceedings of the National Academy of Sciences of the United States of America, 103 (2006) 10186–10191. https://doi.org/10.1073/pnas.0602439103.
100. J. Chen, X. Zhang, C. Huang, H. Cai, S. Hu, Q. Wan, X. Pei, & J. Wang, Osteogenic activity and antibacterial effect of porous titanium modified with metal-organic framework films. Journal of Biomedical Materials Research Part A, 105 (2017) 834–846. https://doi.org/10.1002/jbm.a.35960.
101. F.-X. Coudert, Molecular Mechanism of Swing Effect in Zeolitic Imidazolate Framework ZIF-8: Continuous Deformation upon Adsorption. ChemPhysChem, 18 (2017) 2732–2738. https://doi.org/10.1002/cphc.201700463.
102. A.-N. Au-Duong & C.-K. Lee, Iodine-loaded metal organic framework as growth-triggered antimicrobial agent. Materials Science and Engineering: C, 76 (2017) 477–482. https://doi.org/10.1016/J.MSEC.2017.03.114.
103. A. R. Chowdhuri, B. Das, A. Kumar, S. Tripathy, S. Roy, & S. K. Sahu, One-pot synthesis of multifunctional nanoscale metal-organic frameworks as an effective antibacterial agent against multidrug-resistant Staphylococcus aureus. Nanotechnology, 28 (2017) 095102. https://doi.org/10.1088/1361-6528/aa57af.
104. C. Tamames-Tabar, E. Imbuluzqueta, N. Guillou, C. Serre, S. R. Miller, E. Elkaïm, P. Horcajada, & M. J. Blanco-Prieto, A Zn azelate MOF: combining antibacterial effect. CrystEngComm, 17 (2015) 456–462. https://doi.org/10.1039/C4CE00885E.
105. J. Restrepo, Z. Serroukh, J. Santiago-Morales, S. Aguado, P. Gómez-Sal, M. E. G. Mosquera, & R. Rosal, An Antibacterial Zn-MOF with Hydrazinebenzoate Linkers. European Journal of Inorganic Chemistry, 2017 (2017) 574–580. https://doi.org/10.1002/ejic.201601185.
106. A. M. Marti, M. Van, & K. J. Balkus, Tuning the crystal size and morphology of the substituted imidazole material, SIM-1. Journal of Porous Materials, 21 (2014) 889–902. https://doi.org/10.1007/s10934-014-9840-5.
107. S. Aguado, C.-H. Nicolas, V. Moizan-Baslé, C. Nieto, H. Amrouche, N. Bats, N. Audebrand, & D. Farrusseng, Facile synthesis of an ultramicroporous MOF tubular membrane with selectivity towards CO 2. New J. Chem., 35 (2011) 41–44. https://doi.org/10.1039/C0NJ00667J.
108. R. Banerjee, A. Phan, B. Wang, C. Knobler, H. Furukawa, M. O’Keeffe, & O. M. Yaghi, High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science (New York, N.Y.), 319 (2008) 939–43. https://doi.org/10.1126/science.1152516.
109. R. Singleton, J. Bye, J. Dyson, G. Baker, R. M. Ranson, & G. B. Hix, Tailoring the photoluminescence properties of transition metal phosphonates. Dalton Transactions, 39 (2010) 6024. https://doi.org/10.1039/c000531b.
110. J. A. Prince, S. Bhuvana, V. Anbharasi, N. Ayyanar, K. V. K. Boodhoo, & G. Singh, Self-cleaning Metal Organic Framework (MOF) based ultra filtration membranes–a solution to bio-fouling in membrane separation processes. Scientific reports, 4 (2014) 6555. https://doi.org/10.1038/srep06555.
111. W. Li, S. Zhou, S. Gao, S. Chen, M. Huang, & R. Cao, Spatioselective Fabrication of Highly Effective Antibacterial Layer by Surface-Anchored Discrete Metal-Organic Frameworks. Advanced Materials Interfaces, 2 (2015) 1400405. https://doi.org/10.1002/admi.201400405.
112. D. Sun, R. Cao, W. Bi, J. Weng, M. Hong, & Y. Liang, Syntheses and characterizations of a series of silver-carboxylate polymers. Inorganica Chimica Acta, 357 (2004) 991–1001. https://doi.org/10.1016/J.ICA.2003.10.010.
113. A. M. Kirillov, S. W. Wieczorek, A. Lis, M. F. C. Guedes da Silva, M. Florek, J. Król, Z. Staroniewicz, P. Smoleński, & A. J. L. Pombeiro, 1,3,5-Triaza-7-phosphaadamantane-7-oxide (PTA═O): New Diamondoid Building Block for Design of Three-Dimensional Metal–Organic Frameworks. Crystal Growth & Design, 11 (2011) 2711–2716. https://doi.org/10.1021/cg200571y.
114. S. W. Jaros, P. Smoleński, M. F. C. Guedes da Silva, M. Florek, J. Król, Z. Staroniewicz, A. J. L. Pombeiro, & A. M. Kirillov, New silver BioMOFs driven by 1,3,5-triaza-7-phosphaadamantane-7-sulfide (PTAS): synthesis, topological analysis and antimicrobial activity. CrystEngComm, 15 (2013) 8060. https://doi.org/10.1039/c3ce40913a.
115. S. W. Jaros, M. F. C. Guedes da Silva, M. Florek, M. C. Oliveira, P. Smoleński, A. J. L. Pombeiro, & A. M. Kirillov, Aliphatic Dicarboxylate Directed Assembly of Silver(I) 1,3,5-Triaza-7-phosphaadamantane Coordination Networks: Topological Versatility and Antimicrobial Activity. Crystal Growth & Design, 14 (2014) 5408–5417. https://doi.org/10.1021/cg500557r.
116. O. Z. Yeşilel, G. Günay, C. Darcan, M. S. Soylu, S. Keskin, & S. W. Ng, An unusual 3D metal–organic framework, {[Ag4(μ4-pzdc)2(μ-en)2]·H2O}n: C–H⋯Ag, N–H⋯Ag and (O–H)⋯Ag interactions and an unprecedented coordination mode for pyrazine-2,3-dicarboxylate. CrystEngComm, 14 (2012) 2817. https://doi.org/10.1039/c2ce06603c.
117. X. Wang, D. Zhao, A. Tian, & J. Ying, Three 3D silver-bis(triazole) metal–organic frameworks stabilized by high-connected Wells–Dawson polyoxometallates. Dalton Transactions, 43 (2014) 5211. https://doi.org/10.1039/c3dt53437e.
118. C.-B. Liu, Y.-N. Gong, Y. Chen, & H.-L. Wen, Self-assembly and structures of new transition metal complexes with phenyl substituted pyrazole carboxylic acid and N-donor co-ligands. Inorganica Chimica Acta, 383 (2012) 277–286. https://doi.org/10.1016/J.ICA.2011.11.015.
119. X. Lu, J. Ye, L. Zhao, Y. Lin, & G. Ning, Synthesis, structure, magnetism and antibacterial properties of a 2-D nickel(II) metal–organic framework based on 3-nitrophthalic acid and 4,4′-bipyridine. Journal of Coordination Chemistry, 67 (2014) 1133–1140. https://doi.org/10.1080/00958972.2014.910773.
120. Z.-H. Zhang, Q.-Q. Zhang, S. Feng, Z.-J. Hu, S.-C. Chen, Q. Chen, & M.-Y. He, Fluorinated metal–organic frameworks of 1,4-bis(1,2,4-triazol-1-ylmethyl)-2,3,5,6-tetrafluorobenzene: synergistic interactions of ligand isomerism and counteranions. Dalton Trans., 43 (2014) 646–655. https://doi.org/10.1039/C3DT52211C.
121. T. Drake, P. Ji, & W. Lin, Site Isolation in Metal–Organic Frameworks Enables Novel Transition Metal Catalysis. Accounts of Chemical Research, 51 (2018) 2129–2138. https://doi.org/10.1021/acs.accounts.8b00297.
122. P. Horcajada, R. Gref, T. Baati, P. K. Allan, G. Maurin, P. Couvreur, G. Férey, R. E. Morris, & C. Serre, Metal–Organic Frameworks in Biomedicine. Chemical Reviews, 112 (2012) 1232–1268. https://doi.org/10.1021/cr200256v.
123. M.-X. Wu & Y.-W. Yang, Metal-Organic Framework (MOF)-Based Drug/Cargo Delivery and Cancer Therapy. Advanced Materials, 29 (2017) 1606134. https://doi.org/10.1002/adma.201606134.
124. C. Doonan, R. Riccò, K. Liang, D. Bradshaw, & P. Falcaro, Metal–Organic Frameworks at the Biointerface: Synthetic Strategies and Applications. Accounts of Chemical Research, 50 (2017) 1423–1432. https://doi.org/10.1021/acs.accounts.7b00090.
125. J. An, S. J. Geib, & N. L. Rosi, Cation-Triggered Drug Release from a Porous Zinc−Adeninate Metal−Organic Framework. Journal of the American Chemical Society, 131 (2009) 8376–8377. https://doi.org/10.1021/ja902972w.
126. Q. Hu, J. Yu, M. Liu, A. Liu, Z. Dou, & Y. Yang, A Low Cytotoxic Cationic Metal–Organic Framework Carrier for Controllable Drug Release. Journal of Medicinal Chemistry, 57 (2014) 5679–5685. https://doi.org/10.1021/jm5004107.
127. X. Meng, B. Gui, D. Yuan, M. Zeller, & C. Wang, Mechanized azobenzene-functionalized zirconium metal-organic framework for on-command cargo release. Science Advances, 2 (2016) e1600480. https://doi.org/10.1126/sciadv.1600480.
128. W. P. Lustig, S. Mukherjee, N. D. Rudd, A. V. Desai, J. Li, & S. K. Ghosh, Metal–organic frameworks: functional luminescent and photonic materials for sensing applications. Chemical Society Reviews, 46 (2017) 3242–3285. https://doi.org/10.1039/C6CS00930A.
129. B. Chen, S. Xiang, & G. Qian, Metal−Organic Frameworks with Functional Pores for Recognition of Small Molecules. Accounts of Chemical Research, 43 (2010) 1115–1124. https://doi.org/10.1021/ar100023y.
130. L. E. Kreno, K. Leong, O. K. Farha, M. Allendorf, R. P. Van Duyne, & J. T. Hupp, Metal–Organic Framework Materials as Chemical Sensors. Chemical Reviews, 112 (2012) 1105–1125. https://doi.org/10.1021/cr200324t.
131. Z. Hu, B. J. Deibert, & J. Li, Luminescent metal–organic frameworks for chemical sensing and explosive detection. Chem. Soc. Rev., 43 (2014) 5815–5840. https://doi.org/10.1039/C4CS00010B.
132. B. Yan, Lanthanide-Functionalized Metal–Organic Framework Hybrid Systems To Create Multiple Luminescent Centers for Chemical Sensing. Accounts of Chemical Research, 50 (2017) 2789–2798. https://doi.org/10.1021/acs.accounts.7b00387.
133. F.-Y. Yi, D. Chen, M.-K. Wu, L. Han, & H.-L. Jiang, Chemical Sensors Based on Metal-Organic Frameworks. ChemPlusChem, 81 (2016) 675–690. https://doi.org/10.1002/cplu.201600137.
134. S. S. Nagarkar, B. Joarder, A. K. Chaudhari, S. Mukherjee, & S. K. Ghosh, Highly Selective Detection of Nitro Explosives by a Luminescent Metal-Organic Framework. Angewandte Chemie International Edition, 52 (2013) 2881–2885. https://doi.org/10.1002/anie.201208885.
135. H.-T. Zhang, J.-W. Zhang, G. Huang, Z.-Y. Du, & H.-L. Jiang, An amine-functionalized metal–organic framework as a sensing platform for DNA detection. Chem. Commun., 50 (2014) 12069–12072. https://doi.org/10.1039/C4CC05571C.
136. H.-L. Jiang, D. Feng, K. Wang, Z.-Y. Gu, Z. Wei, Y.-P. Chen, & H.-C. Zhou, An Exceptionally Stable, Porphyrinic Zr Metal–Organic Framework Exhibiting pH-Dependent Fluorescence. Journal of the American Chemical Society, 135 (2013) 13934–13938. https://doi.org/10.1021/ja406844r.
137. W. Zhan, Q. Kuang, J. Zhou, X. Kong, Z. Xie, & L. Zheng, Semiconductor@Metal–Organic Framework Core–Shell Heterostructures: A Case of ZnO@ZIF-8 Nanorods with Selective Photoelectrochemical Response. Journal of the American Chemical Society, 135 (2013) 1926–1933. https://doi.org/10.1021/ja311085e.
138. B. Wang, X.-L. Lv, D. Feng, L.-H. Xie, J. Zhang, M. Li, Y. Xie, J.-R. Li, & H.-C. Zhou, Highly Stable Zr(IV)-Based Metal–Organic Frameworks for the Detection and Removal of Antibiotics and Organic Explosives in Water. Journal of the American Chemical Society, 138 (2016) 6204–6216. https://doi.org/10.1021/jacs.6b01663.
139. L. Ai, L. Li, C. Zhang, J. Fu, & J. Jiang, MIL-53(Fe): A Metal-Organic Framework with Intrinsic Peroxidase-Like Catalytic Activity for Colorimetric Biosensing. Chemistry – A European Journal, 19 (2013) 15105–15108. https://doi.org/10.1002/chem.201303051.
140. W. Dong, X. Liu, W. Shi, & Y. Huang, Metal–organic framework MIL-53(Fe): facile microwave-assisted synthesis and use as a highly active peroxidase mimetic for glucose biosensing. RSC Advances, 5 (2015) 17451–17457. https://doi.org/10.1039/C4RA15840G.
141. J.-W. Zhang, H.-T. Zhang, Z.-Y. Du, X. Wang, S.-H. Yu, & H.-L. Jiang, Water-stable metal–organic frameworks with intrinsic peroxidase-like catalytic activity as a colorimetric biosensing platform. Chem. Commun., 50 (2014) 1092–1094. https://doi.org/10.1039/C3CC48398C.
142. E.-L. Zhou, C. Qin, P. Huang, X.-L. Wang, W.-C. Chen, K.-Z. Shao, & Z.-M. Su, A Stable Polyoxometalate-Pillared Metal-Organic Framework for Proton-Conducting and Colorimetric Biosensing. Chemistry – A European Journal, 21 (2015) 11894–11898. https://doi.org/10.1002/chem.201501515.
143. F. Liu, J. He, M. Zeng, J. Hao, Q. Guo, Y. Song, & L. Wang, Cu–hemin metal-organic frameworks with peroxidase-like activity as peroxidase mimics for colorimetric sensing of glucose. Journal of Nanoparticle Research, 18 (2016) 106. https://doi.org/10.1007/s11051-016-3416-z.
144. H. Yang, R. Yang, P. Zhang, Y. Qin, T. Chen, & F. Ye, A bimetallic (Co/2Fe) metal-organic framework with oxidase and peroxidase mimicking activity for colorimetric detection of hydrogen peroxide. Microchimica Acta, 184 (2017) 4629–4635. https://doi.org/10.1007/s00604-017-2509-4.
145. W. Dong, L. Yang, & Y. Huang, Glycine post-synthetic modification of MIL-53(Fe) metal–organic framework with enhanced and stable peroxidase-like activity for sensitive glucose biosensing. Talanta, 167 (2017) 359–366. https://doi.org/10.1016/J.TALANTA.2017.02.039.
146. F.-X. Qin, S.-Y. Jia, F.-F. Wang, S.-H. Wu, J. Song, & Y. Liu, Hemin@metal–organic framework with peroxidase-like activity and its application to glucose detection. Catalysis Science & Technology, 3 (2013) 2761. https://doi.org/10.1039/c3cy00268c.
147. Y. Wu, Y. Y. Ma, G. Xu, F. Wei, Y. Y. Ma, Q. Song, X. Wang, T. Tang, Y. Song, M. Shi, X. Xu, & Q. Hu, Metal-organic framework coated Fe3O4 magnetic nanoparticles with peroxidase-like activity for colorimetric sensing of cholesterol. Sensors and Actuators B: Chemical, 249 (2017) 195–202. https://doi.org/10.1016/J.SNB.2017.03.145.
148. B. Tan, H. Zhao, W. Wu, X. Liu, Y. Zhang, & X. Quan, Fe 3 O 4 -AuNPs anchored 2D metal–organic framework nanosheets with DNA regulated switchable peroxidase-like activity. Nanoscale, 9 (2017) 18699–18710. https://doi.org/10.1039/C7NR05541B.
149. F. Cui, Q. Deng, & L. Sun, Prussian blue modified metal–organic framework MIL-101(Fe) with intrinsic peroxidase-like catalytic activity as a colorimetric biosensing platform. RSC Advances, 5 (2015) 98215–98221. https://doi.org/10.1039/C5RA18589K.
150. Y. Yin, C. Gao, Q. Xiao, G. Lin, Z. Lin, Z. Cai, & H. Yang, Protein-Metal Organic Framework Hybrid Composites with Intrinsic Peroxidase-like Activity as a Colorimetric Biosensing Platform. ACS Applied Materials & Interfaces, 8 (2016) 29052–29061. https://doi.org/10.1021/acsami.6b09893.
151. C. Hou, Y. Wang, Q. Ding, L. Jiang, M. Li, W. Zhu, D. Pan, H. Zhu, & M. Liu, Facile synthesis of enzyme-embedded magnetic metal–organic frameworks as a reusable mimic multi-enzyme system: mimetic peroxidase properties and colorimetric sensor. Nanoscale, 7 (2015) 18770–18779. https://doi.org/10.1039/C5NR04994F.
152. H. Tan, C. Ma, L. Gao, Q. Li, Y. Song, F. Xu, T. Wang, & L. Wang, Metal-Organic Framework-Derived Copper Nanoparticle@Carbon Nanocomposites as Peroxidase Mimics for Colorimetric Sensing of Ascorbic Acid. Chemistry – A European Journal, 20 (2014) 16377–16383. https://doi.org/10.1002/chem.201404960.
153. W. Yang, J. Hao, Z. Zhang, & B. Zhang, Metal–organic frameworks-derived synthesis of porous FeP nanocubes: An effective peroxidase mimetic. Journal of Colloid and Interface Science, 460 (2015) 55–60. https://doi.org/10.1016/J.JCIS.2015.08.032.
154. W. Dong, Y. Zhuang, S. Li, X. Zhang, H. Chai, & Y. Huang, High peroxidase-like activity of metallic cobalt nanoparticles encapsulated in metal–organic frameworks derived carbon for biosensing. Sensors and Actuators B: Chemical, 255 (2018) 2050–2057. https://doi.org/10.1016/J.SNB.2017.09.013.
155. F.-F. Chen, Y.-J. Zhu, Z.-C. Xiong, & T.-W. Sun, Hydroxyapatite Nanowires@Metal-Organic Framework Core/Shell Nanofibers: Templated Synthesis, Peroxidase-Like Activity, and Derived Flexible Recyclable Test Paper. Chemistry – A European Journal, 23 (2017) 3328–3337. https://doi.org/10.1002/chem.201604813.
156. Y. L. Liu, X. J. Zhao, X. X. Yang, & Y. F. Li, A nanosized metal–organic framework of Fe-MIL-88NH2 as a novel peroxidase mimic used for colorimetric detection of glucose. The Analyst, 138 (2013) 4526. https://doi.org/10.1039/c3an00560g.
157. Y. Huang, M. Zhao, S. Han, Z. Lai, J. Yang, C. Tan, Q. Ma, Q. Lu, J. Chen, X. Zhang, Z. Zhang, B. Li, B. Chen, Y. Zong, & H. Zhang, Growth of Au Nanoparticles on 2D Metalloporphyrinic Metal-Organic Framework Nanosheets Used as Biomimetic Catalysts for Cascade Reactions. Advanced Materials, 29 (2017) 1700102. https://doi.org/10.1002/adma.201700102.
158. Q. Wang, X. Zhang, L. Huang, Z. Zhang, & S. Dong, GOx@ZIF-8(NiPd) Nanoflower: An Artificial Enzyme System for Tandem Catalysis. Angewandte Chemie International Edition, 56 (2017) 16082–16085. https://doi.org/10.1002/anie.201710418.
159. Y. Song, D. Cho, S. Venkateswarlu, & M. Yoon, Systematic study on preparation of copper nanoparticle embedded porous carbon by carbonization of metal–organic framework for enzymatic glucose sensor. RSC Advances, 7 (2017) 10592–10600. https://doi.org/10.1039/C7RA00115K.
160. H. Cheng, L. Zhang, J. He, W. Guo, Z. Zhou, X. Zhang, S. Nie, & H. Wei, Integrated Nanozymes with Nanoscale Proximity for in Vivo Neurochemical Monitoring in Living Brains. Analytical Chemistry, 88 (2016) 5489–5497. https://doi.org/10.1021/acs.analchem.6b00975.
161. C. Gao, H. Zhu, J. Chen, & H. Qiu, Facile synthesis of enzyme functional metal-organic framework for colorimetric detecting H2O2 and ascorbic acid. Chinese Chemical Letters, 28 (2017) 1006–1012. https://doi.org/10.1016/J.CCLET.2017.02.011.
162. Y. Xiong, S. Chen, F. Ye, L. Su, C. Zhang, S. Shen, & S. Zhao, Synthesis of a mixed valence state Ce-MOF as an oxidase mimetic for the colorimetric detection of biothiols. Chemical Communications, 51 (2015) 4635–4638. https://doi.org/10.1039/C4CC10346G.
163. R. Dalapati, B. Sakthivel, M. K. Ghosalya, A. Dhakshinamoorthy, & S. Biswas, A cerium-based metal–organic framework having inherent oxidase-like activity applicable for colorimetric sensing of biothiols and aerobic oxidation of thiols. CrystEngComm, 19 (2017) 5915–5925. https://doi.org/10.1039/C7CE01053B.
164. Z. Hu, X. Jiang, F. Xu, J. Jia, Z. Long, & X. Hou, Colorimetric sensing of bithiols using photocatalytic UiO-66(NH2) as H2O2-free peroxidase mimics. Talanta, 158 (2016) 276–282. https://doi.org/10.1016/J.TALANTA.2016.05.040.
165. J. Lu, Y. Xiong, C. Liao, & F. Ye, Colorimetric detection of uric acid in human urine and serum based on peroxidase mimetic activity of MIL-53(Fe). Analytical Methods, 7 (2015) 9894–9899. https://doi.org/10.1039/C5AY02240A.
166. C. ZHAO, Y. LIU, & Y. LI, Colorimetric and Fluorometric Assays for Dopamine with a Wide Concentration Range Based on Fe-MIL-88NH<sub>2</sub> Metal-organic Framework. Analytical Sciences, 31 (2015) 1035–1039. https://doi.org/10.2116/analsci.31.1035.
167. H. Liang, F. Lin, Z. Zhang, B. Liu, S. Jiang, Q. Yuan, & J. Liu, Multicopper Laccase Mimicking Nanozymes with Nucleotides as Ligands. ACS Applied Materials & Interfaces, 9 (2017) 1352–1360. https://doi.org/10.1021/acsami.6b15124.
168. H. Li, H. Liu, J. Zhang, Y. Cheng, C. Zhang, X. Fei, & Y. Xian, Platinum Nanoparticle Encapsulated Metal–Organic Frameworks for Colorimetric Measurement and Facile Removal of Mercury(II). ACS Applied Materials & Interfaces, 9 (2017) 40716–40725. https://doi.org/10.1021/acsami.7b13695.
169. Y. Xiong, L. Su, H. Yang, P. Zhang, & F. Ye, Fabrication of copper sulfide using a Cu-based metal organic framework for the colorimetric determination and the efficient removal of Hg 2+ in aqueous solutions. New Journal of Chemistry, 39 (2015) 9221–9227. https://doi.org/10.1039/C5NJ01348H.
170. D. Chen, B. Li, L. Jiang, D. Duan, Y. Li, J. Wang, J. He, & Y. Zeng, Highly efficient colorimetric detection of cancer cells utilizing Fe-MIL-101 with intrinsic peroxidase-like catalytic activity over a broad pH range. RSC Advances, 5 (2015) 97910–97917. https://doi.org/10.1039/C5RA18115A.
171. Y. Wang, Y. Zhu, A. Binyam, M. Liu, Y. Wu, & F. Li, Discovering the enzyme mimetic activity of metal-organic framework (MOF) for label-free and colorimetric sensing of biomolecules. Biosensors and Bioelectronics, 86 (2016) 432–438. https://doi.org/10.1016/J.BIOS.2016.06.036.
172. S. Wang, W. Deng, L. Yang, Y. Tan, Q. Xie, & S. Yao, Copper-Based Metal–Organic Framework Nanoparticles with Peroxidase-Like Activity for Sensitive Colorimetric Detection of Staphylococcus aureus. ACS Applied Materials & Interfaces, 9 (2017) 24440–24445. https://doi.org/10.1021/acsami.7b07307.
173. C. Wang, J. Gao, Y. Cao, & H. Tan, Colorimetric logic gate for alkaline phosphatase based on copper (II)-based metal-organic frameworks with peroxidase-like activity. Analytica Chimica Acta, 1004 (2018) 74–81. https://doi.org/10.1016/J.ACA.2017.11.078.
174. Y. L. Liu, W. L. Fu, C. M. Li, C. Z. Huang, & Y. F. Li, Gold nanoparticles immobilized on metal–organic frameworks with enhanced catalytic performance for DNA detection. Analytica Chimica Acta, 861 (2015) 55–61. https://doi.org/10.1016/J.ACA.2014.12.032.
175. L. Su, Y. Xiong, H. Yang, P. Zhang, & F. Ye, Prussian blue nanoparticles encapsulated inside a metal–organic framework via in situ growth as promising peroxidase mimetics for enzyme inhibitor screening. Journal of Materials Chemistry B, 4 (2016) 128–134. https://doi.org/10.1039/C5TB01924A.
176. A. H. Valekar, B. S. Batule, M. Il Kim, K.-H. Cho, D.-Y. Hong, U.-H. Lee, J.-S. Chang, H. G. Park, & Y. K. Hwang, Novel amine-functionalized iron trimesates with enhanced peroxidase-like activity and their applications for the fluorescent assay of choline and acetylcholine. Biosensors and Bioelectronics, 100 (2018) 161–168. https://doi.org/10.1016/J.BIOS.2017.08.056.
177. Z. Qi, L. Wang, Q. You, & Y. Chen, PA-Tb-Cu MOF as luminescent nanoenzyme for catalytic assay of hydrogen peroxide. Biosensors and Bioelectronics, 96 (2017) 227–232. https://doi.org/10.1016/J.BIOS.2017.05.013.
178. C. Zhao, Z. Jiang, R. Mu, & Y. Li, A novel sensor for dopamine based on the turn-on fluorescence of Fe-MIL-88 metal-organic frameworks–hydrogen peroxide–o-phenylenediamine system. Talanta, 159 (2016) 365–370. https://doi.org/10.1016/J.TALANTA.2016.06.043.
179. Z. J. Sun, J. Z. Jiang, & Y. F. Li, A sensitive and selective sensor for biothiols based on the turn-on fluorescence of the Fe-MIL-88 metal–organic frameworks–hydrogen peroxide system. The Analyst, 140 (2015) 8201–8208. https://doi.org/10.1039/C5AN01673H.
180. H. Tan, Q. Li, Z. Zhou, C. Ma, Y. Song, F. Xu, & L. Wang, A sensitive fluorescent assay for thiamine based on metal-organic frameworks with intrinsic peroxidase-like activity. Analytica Chimica Acta, 856 (2015) 90–95. https://doi.org/10.1016/J.ACA.2014.11.026.
181. H. Cheng, Y. Liu, Y. Hu, Y. Ding, S. Lin, W. Cao, Q. Wang, J. Wu, F. Muhammad, X. Zhao, D. Zhao, Z. Li, H. Xing, & H. Wei, Monitoring of Heparin Activity in Live Rats Using Metal–Organic Framework Nanosheets as Peroxidase Mimics. Analytical Chemistry, 89 (2017) 11552–11559. https://doi.org/10.1021/acs.analchem.7b02895.
182. X. Yi, W. Dong, X. Zhang, J. Xie, & Y. Huang, MIL-53(Fe) MOF-mediated catalytic chemiluminescence for sensitive detection of glucose. Analytical and Bioanalytical Chemistry, 408 (2016) 8805–8812. https://doi.org/10.1007/s00216-016-9681-y.
183. Y. Li, X. You, & X. Shi, Enhanced Chemiluminescence Determination of Hydrogen Peroxide in Milk Sample Using Metal–Organic Framework Fe–MIL–88NH2 as Peroxidase Mimetic. Food Analytical Methods, 10 (2017) 626–633. https://doi.org/10.1007/s12161-016-0617-0.
184. F. Luo, Y. Lin, L. Zheng, X. Lin, & Y. Chi, Encapsulation of Hemin in Metal–Organic Frameworks for Catalyzing the Chemiluminescence Reaction of the H 2 O 2 –Luminol System and Detecting Glucose in the Neutral Condition. ACS Applied Materials & Interfaces, 7 (2015) 11322–11329. https://doi.org/10.1021/acsami.5b01706.
185. X. Qian Tang, Y. Dan Zhang, Z. Wei Jiang, D. Mei Wang, C. Zhi Huang, & Y. Fang Li, Fe3O4 and metal–organic framework MIL-101(Fe) composites catalyze luminol chemiluminescence for sensitively sensing hydrogen peroxide and glucose. Talanta, 179 (2018) 43–50. https://doi.org/10.1016/j.talanta.2017.10.049.
186. Q. Zhu, Y. Chen, W. Wang, H. Zhang, C. Ren, H. Chen, & X. Chen, A sensitive biosensor for dopamine determination based on the unique catalytic chemiluminescence of metal–organic framework HKUST-1. Sensors and Actuators B: Chemical, 210 (2015) 500–507. https://doi.org/10.1016/J.SNB.2015.01.012.
187. Y. Hu, H. Cheng, X. Zhao, J. Wu, F. Muhammad, S. Lin, J. He, L. Zhou, C. Zhang, Y. Deng, P. Wang, Z. Zhou, S. Nie, & H. Wei, Surface-Enhanced Raman Scattering Active Gold Nanoparticles with Enzyme-Mimicking Activities for Measuring Glucose and Lactate in Living Tissues. ACS Nano, 11 (2017) 5558–5566. https://doi.org/10.1021/acsnano.7b00905.
188. Z. Jiang, P. Gao, L. Yang, C. Huang, & Y. Li, Facile in Situ Synthesis of Silver Nanoparticles on the Surface of Metal–Organic Framework for Ultrasensitive Surface-Enhanced Raman Scattering Detection of Dopamine. Analytical Chemistry, 87 (2015) 12177–12182. https://doi.org/10.1021/acs.analchem.5b03058.