Metal-Organic-Framework-Quantum Dots (QD@MOF) Composites
M. Ramesh, M. Muthukrishnan, Anish Khan, Mohammed Azam
The developments in the field of metal-organic frameworks-quantum dot (QD@MOF) composites have improved recently, especially in terms of production, better performance, and wide area of industrial applications. The combination of the high surface areas, micro-porosity and tunable compositions of MOFs with QDs, allows the preparation of composite materials with enhanced properties for several applications such as photo-catalysis, energy storage, gas-storage and sensing. This chapter summarizes the production mechanisms such as crystallization, interfacial diffusion, micro-fluidic processing, and vapour deposition methods of QD@MOF composites in detail. The application of QD@MOF in gas separation, nano-filtration, ionic sieving, stimuli responsiveness, and catalysis are reviewed, and the separation mechanisms are also discussed in detail. Moreover, the opportunities and challenges for further development of QD@MOF are pointed out.
Keywords
Metal-Organic Frameworks, Quantum Dot Composites, Production Methodologies, Modification Strategies, Applications
Published online 10/5/2019, 36 pages
Citation: M. Ramesh, M. Muthukrishnan, Anish Khan, Mohammed Azam, Metal-Organic-Framework-Quantum Dots (QD@MOF) Composites, Materials Research Foundations, Vol. 58, pp 49-84, 2019
DOI: https://doi.org/10.21741/9781644900437-4
Part of the book on Metal-Organic Framework Composites
References
[1] S. Kitagawa, R. Kitaura, S.-i. Noro, Functional porous coordination polymers, Angew. Chem. Int. Ed., 43 (2004) 2334-2375. https://doi.org/10.1002/anie.200300610
[2] H. Li, M. Eddaoudi, M. O’Keeffe, O.M. Yaghi, Design and synthesis of an exceptionally stable and highly porous metal-organic framework, Nature, 402 (1999) 276-279. https://doi.org/10.1038/46248
[3] A.K. Cheetham, C.N.R. Rao, R.K. Feller, Structural diversity and chemical trends in hybrid inorganic–organic framework materials, Chem. Commun., 0 (2006) 4780-4795. https://doi.org/10.1039/B610264F
[4] J.-R.Li, R.J. Kuppler, H.-C.Zhou, Selective gas adsorption and separation in metal-organic frameworks, Chem. Soc. Rev. 38 (2009) 1477-1504. https://doi.org/10.1039/b802426j
[5] J. Lee, O.K. Farha, J. Roberts, K.A. Scheidt, S.T. Nguyen, J.T. Hupp, Metal-organic framework materials as catalystsChem. Soc. Rev. 38(2009) 1450-1459. https://doi.org/10.1039/b807080f
[6] J.-R.Li, J. Sculley, H.-C. Zhou, Metal-organic frameworks for separations Chem. Rev. 112 (2011) 869-932. https://doi.org/10.1021/cr200190s
[7] L.E. Kreno, K. Leong, O.K. Farha, M. Allendorf, R.P. Van Duyne, J.T. Hupp, Metal-organic framework materials as chemical sensors, Chem. Rev. 112 (2011) 1105-1125. https://doi.org/10.1021/cr200324t
[8] P. Juzenas, W. Chen, Y.-P. Sun, M.A.N. Coelho, R. Generalov, N. Generalova, I.L. Christensen, Quantum dots and nanoparticles for photodynamic and radiation therapies of cancer, Adv. Drug Deliver. Rev. 60 (2008) 1600-1614. https://doi.org/10.1016/j.addr.2008.08.004
[9] C.E. Probst, P. Zrazhevskiy, V. Bagalkot, X. Gao, Quantum dots as a platform for nanoparticle drug delivery vehicle design, Adv. Drug Deliver. Rev. 65 (2013) 703-718. https://doi.org/10.1016/j.addr.2012.09.036
[10] J. Rabone, Y.-F. Yue, S.Y. Chong, K.C. Stylianou, J. Bacsa, D. Bradshaw, G.R. Darling, N.G.Berry, Y.Z. Khimyak, A.Y. Ganin, P. Wiper, J.B. Claridge, M.J. Rosseinsky, An adaptable peptide-based porous material, Science, 329 (2010) 1053-1057. https://doi.org/10.1126/science.1190672
[11] A. Ghoufi, A. Subercaze, Q. Ma, P.G. Yot, Y. Ke, I. Puente-Orench, T. Devic, V. Guillerm, C. Zhong, C. Serre, G. Ferey, G. Maurin, Comparative Guest, Thermal, and Mechanical Breathing of the Porous Metal Organic Framework MIL-53(Cr): A Computational Exploration Supported by Experiments, J. Phys. Chem. C, 116 (2012) 13289-13295. https://doi.org/10.1021/jp303686m
[12] Y. Sakata, S. Furukawa, M. Kondo, K. Hirai, N. Horike, Y. Takashima, H. Uehara, N. Louvain, M. Meilikhov, T. Tsuruoka, S. Isoda, W. Kosaka, O. Sakata, S. Kitagawa, Shape-memory nanopores induced in coordination frameworks by crystal downsizing, Science, 339 (2013) 193-196. https://doi.org/10.1126/science.1231451
[13] T.D. Bennett, J. Sotelo, J.-C.Tan, S.A. Moggach, Mechanical properties of zeolitic metal–organic frameworks: mechanically flexible topologies and stabilization against structural collapse, Cryst. Eng. Comm. 17 (2015) 286-289. https://doi.org/10.1039/C4CE02145B
[14] D. Bradshaw, A. Garai, J. Huo, Metal–organic framework growth at functional interfaces: thin films and composites for diverse applications, Chem. Soc. Rev. 41 (2012) 2344-2381. https://doi.org/10.1039/C1CS15276A
[15] A. Betard, R.A. Fischer, Metal–Organic Framework Thin Films: From Fundamentals to Applications, Chem. Rev., 112 (2012) 1055-1083. https://doi.org/10.1021/cr200167v
[16] Y. Hu, X. Dong, J. Nan, W. Jin, X. Ren, N. Xu, Y.M. Lee, Metal-organic framework membranes fabricated via reactive seeding Chem. Commun. 47 (2011) 737-739. https://doi.org/10.1039/C0CC03927F
[17] M.S. Denny, S.M. Cohen, In situ modification of metal-organic frameworks in mixed-matrix membranes, Angew. Chem. Int. Ed., 54 (2015) 9029-9032. https://doi.org/10.1002/anie.201504077
[18] J. Huo, J. Aguilera-Sigalat, S. El-Hankari, D. Bradshaw, Magnetic MOF microreactors for recyclable size-selective biocatalysis, Chem. Sci. 6 (2015) 1938-1943. https://doi.org/10.1039/C4SC03367A
[19] A. Carne-Sanchez, I. Imaz, M. Cano-Sarabia, D. Maspoch, A spray-drying strategy for synthesis of nanoscale metal-organic frameworks and their assembly into hollow superstructures, Nat, Chem, 5 (2013) 203-211. https://doi.org/10.1038/nchem.1569
[20] Q.-L.Zhu, Q. Xu, Metal–organic framework composites, Chem. Soc. Rev. 43 (2014) 5468-5512. https://doi.org/10.1039/C3CS60472A
[21] Ekimov, A. I.; Onushchenko, A. A. Quantum size effect in three-dimensional microscopic semiconductor crystals, JETP Lett. 34 (1981) 345–349.
[22] Kastner, M. A. Artificial Atoms, Physics Today 46 (1) (1993) 24. https://doi.org/10.1063/1.881393. https://doi.org/10.1063/1.881393
[23] Ashoori, R. C.Electrons in artificial atoms, Nature, 379(6564) (1996)413-419. https://doi.org/10.1038/379413a0
[24] Collier, C. P.; Vossmeyer, T.; Heath, J. R. Nanocrystal superlattices, Annual Review of Physical Chemistry, 49 (1998) 371-404. https://doi.org/10.1146/annurev.physchem.49.1.371
[25] Yoffe, A.D. Semiconductor quantum dots and related systems: Electronic, optical, luminescence and related properties of low dimensional systems, Advances in Physics, 50(1) (2001) 1-208. https://doi.org/10.1080/00018730010006608
[26] Brus L., Electron-electron and electron-hole interactions in small semiconductor crystallites:the size dependence of the lowest excited electronic state. J Chem Phys 80 (1984) 4403–44093. https://doi.org/10.1063/1.447218
[27] Brus L., Electronic wave functions in semiconductor clusters: experiment and theory.J Phys Chem 90(12) (1986) 2555–2560. https://doi.org/10.1021/j100403a003
[28] Sabaeian, Mohammad; Khaledi-Nasab, Ali,”Size-dependent intersubband optical properties of dome-shaped InAs/GaAs quantum dots with wetting layer”.Applied Optics. 51 (18): 4176–4185. https://doi.org/10.1364/AO.51.004176
[29] Khaledi-Nasab, Ali; Sabaeian, Mohammad; Sahrai, Mostafa; Fallahi, Vahid (2014). “Kerr nonlinearity due to intersubband transitions in a three-level InAs/GaAs quantum dot: the impact of a wetting layer on dispersion curves”. Journal of Optics. 16 (5): 055004. https://doi.org/10.1088/2040-8978/16/5/055004
[30] X. Michalet, F.F. Pinaud, L.A. Bentolila, J.M. Tsay, S. Doose, J.J. Li, G. Sundaresan, A.M. Wu, S.S. Gambhir, S. Weiss, Quantum dots for live cells, in vivo imaging, and diagnostics, Science, 307 (2005) 538-544. https://doi.org/10.1126/science.1104274
[31] P. Alivisatos, The use of nanocrystals in biological detectionNat Biotech, 22 (2004) 47-52. https://doi.org/10.1038/nbt927
[32] R.C. Somers, M.G. Bawendi, D.G. Nocera, CdSe nanocrystal based chem-/bio-sensors Chem. Soc. Rev. 36 (2007) 579-591. https://doi.org/10.1039/b517613c
[33] F. Chen, D. Gerion, Fluorescent CdSe/ZnS nanocrystal-peptide conjugates for long-term, nontoxic imaging and nuclear targeting in living cells, Nano Lett., 4 (2004) 1827-1832. https://doi.org/10.1021/nl049170q
[34] M.G. Bawendi, M.L. Steigerwald, L.E. Brus, The quantum mechanics of larger semiconductor clusters (“quantum dots”), Annu. Rev. Phys. Chem., 41 (1990) 477-496. https://doi.org/10.1146/annurev.pc.41.100190.002401
[35] U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, T. Nann, Quantum dots versus organic dyes as fluorescent labels, Nat Meth, 5(2008) 763-775. https://doi.org/10.1038/nmeth.1248
[36] B.O. Dabbousi, J. Rodriguez-Viejo, F.V. Mikulec, J.R. Heine, H. Mattoussi, R. Ober, K.F.Jensen, M.G. Bawendi, (CdSe)ZnS core−shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites, J. Phys. Chem. B, 101 (1997) 9463-9475. https://doi.org/10.1021/jp971091y
[37] M.A. Hines, P. Guyot-Sionnest, Synthesis and characterization of strongly luminescing zns-capped cdse nanocrystals, J. Phys. Chem., 100 (1996) 468-471. https://doi.org/10.1021/jp9530562
[38] D.V. Talapin, A.L. Rogach, A. Kornowski, M. Haase, H. Weller, Highly luminescent monodisperse CdSe and CdSe/ZnS nanocrystals synthesized in a hexadecylamine-trioctylphosphine oxide−trioctylphospine mixture, Nano Lett., 1 (2001) 207-211. https://doi.org/10.1021/nl0155126
[39] C.B. Murray, D.J. Norris, M.G. Bawendi, Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites, J. Am. Chem. Soc., 115 (1993) 8706-8715. https://doi.org/10.1021/ja00072a025
[40] H. Shen, H. Wang, Z. Tang, J.Z. Niu, S. Lou, Z. Du, L.S. Li, High quality synthesis of monodisperse zinc-blende CdSe and CdSe/ZnS nanocrystals with a phosphine-free method, Cryst.Eng Comm, 11 (2009) 1733-1738. https://doi.org/10.1039/b909063k
[41] J. Aguilera-Sigalat, S. Rocton, J.F. Sanchez-Royo, R.E. Galian, J. Perez-Prieto, Highly fluorescent and photostable organic- and water-soluble CdSe/ZnS core-shell quantum dotscapped with thiols, RSC Adv., 2(2012) 1632-1638. https://doi.org/10.1039/C1RA01005K
[42] N.I. Hammer, T. Emrick, M.D. Barnes, Quantum dots coordinated with conjugated organic ligands: new nanomaterials with novel photophysics, Nanoscale Res. Lett. 2 (2007) 282-290. https://doi.org/10.1007/s11671-007-9062-8
[43] B. Dubertret, P. Skourides, D.J. Norris, V. Noireaux, A.H. Brivanlou, A. Libchaber, In vivo imaging of quantum dots encapsulated in phospholipid micelles, Science,298 (2002) 1759-1762. https://doi.org/10.1126/science.1077194
[44] S.T. Selvan, Silica-coated quantum dots and magnetic nanoparticles for bioimagingapplications, Biointerphases, 5 (2010) FA110-FA115. https://doi.org/10.1116/1.3516492
[45] Wang F, Tan W B, Zhang Y, Fan X, Wang M,Upconverting rare-earth nanoparticles with a paramagnetic lanthanide complex shell for upconversion fluorescent and magnetic resonance dual-modality imaging, Nanotechnology, 2006, 17 R1.
[46] Du D, Chen W, Cai J, Zhang J, Qu F and Li H, Development of Acetylcholinesterase biosensor based on CdTe quantum dots modified cysteamine self-assembled monolayers, J. Electroanal. Chem. 623 (2008) 81-85. https://doi.org/10.1016/j.jelechem.2008.06.020
[47] Yu T, Shen J-S, Bai H-H, Guo L, Tang J-J, Jiang Y-B and Xie J-W,A photoluminescent nanocrystal-based signaling protocol highly sensitive to nerve agents and highly toxic organophosphate pesticides, Analyst 134 (2009) 2153-2157. https://doi.org/10.1039/b915159c
[48] Periasamy A P, Umasankar Y and Chen S-M,Nanomaterials – Acetylcholinesterase enzyme matrices for organophosphorus pesticides electrochemical sensors: a review, Sensors 9 (2009) 4034-4055. https://doi.org/10.3390/s90604034
[49] L.Shcherbyna, T.Torchynska. Si quantum dot structures and their applications,Physica E: Low-dimensional Systems and Nanostructures,51(2013) 65-70. https://doi.org/10.1016/j.physe.2012.09.026
[50] W. Deng, E.M. Goldys, Chemical sensing with nanoparticles as optical reporters: from noble metal nanoparticles to quantum dots and upconverting nanoparticles, Analyst 139 (2014) 5321-5334. https://doi.org/10.1039/C4AN01272K
[51] C. Kim, P. Ghosh, V.M. Rotello, Multimodal drug delivery using gold nanoparticles, Nanoscale 1 (2009) 61-67. https://doi.org/10.1039/b9nr00112c
[52] Q.H. Tran, V.Q. Nguyen, A.-T. Le, Silver nanoparticles: synthesis, properties, toxicology, applications and perspectives, Adv. Nat. Sci.: Nanosci. Nanotechnol.4 (2013) 033001/1–033001/20. https://doi.org/10.1088/2043-6262/4/3/033001
[53] Averitt, R.D., Sarkar, D., Halas, N.J. Plasmon resonance shifts of Au-coated Au2S nanoshells: insight into multicomponent nanoparticle growth, Phys. Rev. Lett. 78 (1997) 4217-4220. https://doi.org/10.1103/PhysRevLett.78.4217
[54] Luis M. Liz‐Marzán‐Nanometals:formation and color, Materials Today, 7 (2004) 26-31. https://doi.org/10.1016/S1369-7021(04)00080-X
[55] Oldenburg, S.J., Averitt, R.D., Westcott, S.L., Halas, N.J. Nanoengineering of optical, resonances.Chem. Phys. Lett. 288 (1998) 243-247. https://doi.org/10.1016/S0009-2614(98)00277-2
[56] Sershen, S.R., Westcott, S.L., Halas, N.J., and West, J.L. Temperature-sensitive polymer-nanoshell composites for photothermally modulated drug delivery, J. Biomed. Mater. Res. 51 (2000) 293-298. https://doi.org/10.1002/1097-4636(20000905)51:3<293::AID-JBM1>3.0.CO;2-T
[57] Erik T. Thostenson, Chunyu Li, Tsu-Wei Chou, Nanocomposites in context,Composites Science and Technology, 65 (2005) 491–516. https://doi.org/10.1016/j.compscitech.2004.11.003
[58] Suarez I, Gordillo H, Abargues R, Albert S, Martınez-Pastor J Photoluminescence waveguiding in CdSe and CdTe QDs–PMMA nanocomposite films. Nanotechnology 22 (2011) 435202–435209. https://doi.org/10.1088/0957-4484/22/43/435202
[59] Zhu L, Yang S, Wang J, Wang C-F, Chen L, Chen S, Quantum-dot-embedded polymeric fiber films with photoluminescence and superhydrophobicity. Mater Lett 99 (2013) 54–56. https://doi.org/10.1016/j.matlet.2012.03.118
[60] Tomczak N, Janczewski D, Han M, Vancso GJ, Designer polymer–quantum dot architectures. Prog.Polym.Sci. 34(5) (2009) 393–430. https://doi.org/10.1016/j.progpolymsci.2008.11.004
[61] Dubois F, Mahler B, Dubertret B, Doris E, Mioskowski C A, Versatile strategy for quantum dot ligand exchange, J Am ChemSoc 129 (2007) 482-483. https://doi.org/10.1021/ja067742y
[62] Wisher AC, Bronstein I, Chechik V,Thiolated PAMAM dendrimer-coated CdSe/ZnSe nanoparticles as protein transfection agents, Chem. Commun. 31 (2006) 1637-1639. https://doi.org/10.1039/b518115a
[63] Selvan ST, Tan TT, Ying JY Robust, Non‐Cytotoxic, Silica‐coated CdSe quantum dots with efficient photoluminescence,Adv Mater 17 (2005)1620-1625. https://doi.org/10.1002/adma.200401960
[64] Kim HC, Hong HG, Yoon C, Choi H, Ahn IS, Lee DC, Kim YJ, Lee K, Fabrication of high quantum yield quantum dot/polymer films by enhancing dispersion of quantum dots using silica particles. J Colloid Interface Sci 393 (2013)74–79. https://doi.org/10.1016/j.jcis.2012.10.045
[65] Ullah MH, Kim J-H, Ha C-S, Highly transparent o- PDA functionalized ZnS-polymer nanocomposite thin films with high refractive index. Mater Lett 62 (15) (2008) 2249–2252. https://doi.org/10.1016/j.matlet.2007.11.065
[66] Lawrence WG, Thacker S, Palamakumbura S, Riley KJ, Nagarkar VV, Quantum dot-organic polymer composite materials for radiation detection and imaging. IEEE Trans Nucl. Sci 59(1) (2012) 215–221. https://doi.org/10.1109/TNS.2011.2178861
[67] Zhang H, Tang Y, Zhang J, Li M, Yao X, Li X, Yang B Manipulation of semiconductor nanocrystals growth in polymer soft materials. Soft Matter 5 (2009) 4113–4117. https://doi.org/10.1039/b914213d
[68] F. Fleischhaker and R. Zentel, Photonic crystals from core-shell colloids with incorporated highly fluorescent quantum dots, Chemistry of Materials, 17 (2005) 1346-1351. https://doi.org/10.1021/cm0481022
[69] Bradley, M.; Bruno, N.; Vincent, B. Distribution of CdSe quantum dots within swollen polystyrene microgel particles using confocal microscopy. Langmuir 21 (7) (2005) 2750–2753. https://doi.org/10.1021/la047322r
[70] Han, M.; Gao, X.; Su, J. Z.; Nie, S. Quantum-Dot-Tagged Microbeads for Multiplexed Optical Coding of Biomolecules. Nat. Biotechnol. 19 (7) (2001) 631–635. https://doi.org/10.1038/90228
[71] Li, M.; Zhang, H.; Zhang, J.; Wang, C.; Han, K.; Yang, B. Easy Preparation and Characterization of Highly Fluorescent Polymer Composite Microspheres from Aqueous CdTe Nanocrystals. J. Colloid Interface Sci. 300 (2) (2006) 564–568. https://doi.org/10.1016/j.jcis.2006.04.031
[72] Kuang, M.; Wang, D.; Bao, H.; Gao, M.; Möhwald, H.; Jiang, M. Fabrication of multicolor-encoded microspheres by tagging semiconductor nanocrystals to hydrogel spheres. Adv. Mater. 17 (2) (2005) 267–270. https://doi.org/10.1002/adma.200400818
[73] O’Brien, P.; Cummins, S. S.; Darcy, D.; Dearden, A.; Masala, O.; Pickett, N. L.; Ryley, S.; Sutherland, A. J. Quantum Dot-labelled polymer beads by suspension polymerisation.Chem. Commun. (Camb). 1 (2003)2532–2533. https://doi.org/10.1039/b307500a
[74] Sheng, W.; Kim, S.; Lee, J.; Kim, S.-W.; Jensen, K.; Bawendi, M. G. In-situ encapsulation of quantum dots into polymer microspheres. Langmuir 22 (8) (2006)3782–3790. https://doi.org/10.1021/la051973l
[75] Yang, X.; Zhang, Y. Encapsulation of quantum nanodots in polystyrene and silica micro-/nanoparticles. Langmuir, 20 (14) (2004) 6071–6073. https://doi.org/10.1021/la049610t
[76] Asua, J. M. Mapping the morphology of polymer-inorganic nanocomposites synthesized by miniemulsion polymerization. Macromol. Chem. Phys. 215 (5) (2014) 458–464. https://doi.org/10.1002/macp.201300696
[77] Fleischhaker, F.; Zentel, R. Photonic crystals from core-shell colloids with incorporated highly fluorescent quantum dots. Chem. Mater. 17 (6) (2005) 1346–1351. https://doi.org/10.1021/cm0481022
[78] Joumaa, N.; Lansalot, M.; Théretz, A.; Elaissari, A.; Sukhanova, A.; Artemyev, M.; Nabiev, I.; Cohen, J. H. M. Synthesis of quantum dot-tagged submicrometer polystyrene particles by miniemulsion polymerization. Langmuir 22 (4) (2006)1810–1816. https://doi.org/10.1021/la052197k
[79] Michalet, X.; Pinaud, F.F.; Bentolila, L.A.; Tsay, J.M.; Doose, S.; Li, J.J.; Sundaresan, G.;Wu, A.M.; Gambhir, S.S.; Weiss, S. Quantum dots for live cells, in vivo imaging, and diagnastics, Science 307 (2005) 538-544. https://doi.org/10.1126/science.1104274
[80] Rosenthal, S.J.; Chang, J.C.; Kovtun, O.; McBride, J.R.; Tomlinson, I.D. Biocompatible quantumdots for biological applications. Chem. Biol. 18 (2011) 10-24. https://doi.org/10.1016/j.chembiol.2010.11.013
[81] Tomczak, N.; Jańczewski, D.; Han, M.; Vancso, G.J. Designer polymer-quantum dots architectures. Prog. Polym. Sci. 34 (2009) 393-430. https://doi.org/10.1016/j.progpolymsci.2008.11.004
[82] Hezinger, A.F.E.; Teβmar, J.; Göpferich, A. Polymer coating of quantum dots-A powerful tool toward diagnostics and sensorics. E. J. Pharm. Biopharm. 68 (2008) 138-152. https://doi.org/10.1016/j.ejpb.2007.05.013
[83] Lei Shen,Biocompatible polymer/quantum dots hybrid materials: current status and future developments, J. Funct. Biomater. 2 (2011)355-372. https://doi.org/10.3390/jfb2040355
[84] Uyeda, H.T.; Medintz, I.L.; Jaiswal, J.K.; Simon, S.M.; Mattoussi, H. Synthesis of compact multidentate ligands to prepare stable hydrophilic quantum dot fluorophores. J. Am. Chem. Soc. 127(2005) 3870-3878. https://doi.org/10.1021/ja044031w
[85] Yildiz, I.; McCaughan, B.; Cruickshank, S.F.; Callan, J.F.; Raymo, F.M. Biocompatible CdSe-ZnS core-shell quantum dots coated with hydrophilic polythiols. Langmuir, 25 (2009) 7090-7096. https://doi.org/10.1021/la900148m
[86] Wu, Y.; Chakrobortty, S.; Gropeanu, R.A.; Wilhelmi, J.; Xu, Y.; Shih Er, K.; Kuan, S.L.; Koynov, K.; Chan, Y.; Weil, T. pH-responsive quantum dots via an albumin polymer surface coating. J. Am. Chem. Soc. 132 (2010) 5012-5014. https://doi.org/10.1021/ja909570v
[87] Wang, Y.A.; Li, J.J.; Chen, H.; Peng, X. Stabilization of inorganic nanocrystals by organic dendrons. J. Am. Chem. Soc. 124 (2002) 2293-2299. https://doi.org/10.1021/ja016711u
[88] Mattheakis, L.C.; Dias, J.M.; Choi, Y.J.; Gong, J.; Bruchez, M.P.; Liu, J.; Wang, E. Optical coding of mammalian cells using semiconductor quantum dots. Anal. Biochem. 327 (2004) 200-208. https://doi.org/10.1016/j.ab.2004.01.031
[89] Smith, A.M.; Nie, S. Minimizing the hydrodynamic size of quantum dots with ultifunctional multidentate polymer ligands. J. Am. Chem. Soc. 130 (2008) 11278-11279. https://doi.org/10.1021/ja804306c
[90] Potapova, I.; Mruk, R.; Hübner, C.; Zentel, R.; Basché, T.; Mews, A. CdSe/ZnS nanocrystals with dye-functionalized polymer ligands containing many anchor groups. Angew. Chem. Int. Ed. 44 (2005) 2437-2440. https://doi.org/10.1002/anie.200462236
[91] Nikolic, M.S.; Krack, M.; Aleksandrovic, V.; Kornowski, A.; Förster, S.; Weller, H. Tailor-made ligands for biocompatible nanoparticles. Angew. Chem. Int. Ed. 45 (2006) 6577-6580. https://doi.org/10.1002/anie.200602209
[92] Wang, X.; Dykstra, T.E.; Salvador, M.R.; Manners, I.; Scholes, G.D.; Winnik, M.A. Surface passivation of luminescent colloidal quantum dots with poly (dimethylaminoethyl ethacrylate) through a ligand exchange process. J. Am. Chem. Soc. 126 (2004) 7784-7785. https://doi.org/10.1021/ja0489339
[93] Shen, L.; Soong, R.; Wang, M.; Lee, A.; Wu, C.; Scholes, G.D.; Macdonald, P.M.; Winnik, M.A. Pulsed field gradient NMR studies of polymer adsorption on colloidal CdSe quantum dots. J. Phys.Chem. B 112 (2008) 1626-1633. https://doi.org/10.1021/jp0768975
[94] Skaff. H.: Emi-ick. T. The use of 4-substituted pyridines to afford amphiphilic, pegylated cadmium selenide nanoparticles, Chem. Commun. 9 (2003) 52-53. https://doi.org/10.1039/b208718a
[95] Balazs, A.; Ginzburg, V. V.; Qui, F.; Peng, G.; Jasnow, D. Multi-Scale model for binary mixtures containing nanoscopic particles, J. Phys. Chem. B 104 (2000) 3411-3422. https://doi.org/10.1021/jp993356+
[96] Ballou, B.; Lagerholm, B.C.; Ernst, L.A.; Bruchez, M.P.; Waggoner, A.S. Noninvasive imaging of quantum dots in mice. Bioconjugate Chem. 15 (2004) 79-86. https://doi.org/10.1021/bc034153y
[97] Tan, S.J.; Jana, N.R.; Gao, S.; Patra, P.K.; Ying, J.Y. Surface-ligand-dependent cellular interaction, subcellular localization, and cytotoxicity of polymer-coated quantum dots. Chem. Mater. 22 (2010) 2239-2247. https://doi.org/10.1021/cm902989f
[98] Carrot, G.; Rutot-Houzé, D.; Pottier, A.; Degée, P.; Hiborn, J.; Dubois, P. Surface-initiated ring-opening polymerization: A versatile method for nanoparticle ordering. Macromolecules, 35 (2002) 8400-8404. https://doi.org/10.1021/ma020558m
[99] Skaff, H.; Emrick, T. Reversible addition fragmentation chain transfer (RAFT) polymerization from unprotected cadmium selenide nanoparticles. Angew. Chem. Int. Ed. 43 (2004) 5383-5386. https://doi.org/10.1002/anie.200453822
[100] Sill, K.; Emrick, T. Nitroxide-mediated radical polymerization from CdSe nanoparticles. Chem.Mater. 16 (2004) 1240-1243. https://doi.org/10.1021/cm035077b
[101] Farmer, S.; Patten, T.E. photoluminescent polymer/quantum dot composite nanoparticles. Chem.Mater. 13 (2001) 3920-3926. https://doi.org/10.1021/cm010291q
[102] Esteves, A.C.C.; Bombalski, L.; Trindade, T.; Matyjaszewski, K.; Barros-Timmons, A. Polymer grafting from CdS quantum dots via AGET ATRP in miniemulsion. Small 3 (2007) 1230-1236. https://doi.org/10.1002/smll.200600510
[103] Dubertret, B.; Skourides, P.; Norris, D.J.; Noireaux, V.; Brivanlou, A.H.; Libchaber, A. In vivoimaging of quantum dots encapsulated in phospholipid micelles. Science 298 (2002) 1759-1762. https://doi.org/10.1126/science.1077194
[104] Gao, X.; Cui, Y.; Levenson, R.M.; Chung, L.W.K.; Nie, S. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat. Biotechnol. 22 (2004) 969-975. https://doi.org/10.1038/nbt994
[105] Boulmedais, F.; Bauchat, P.; Brienne, M.J.; Arnal, I.; Artzner, F.; Gacoin, T.; Dahan, M.; Marchi-Artzner, V. Water-soluble pegylated quantum dots: From a composite hexagonal phase to isolated micelles. Langmuir, 22 (2006) 9797-9803. https://doi.org/10.1021/la061849h
[106] Yu, W.W.; Chang, E.; Falkner, J.C.; Zhang, J.; Al-Somali, A.M.; Sayes, C.M.; Johns, J.; Drezek, R.; Colvin, V.L. Forming biocompatible and nonaggregated nanocrystals in water using amphiphilic polymers. J. Am. Chem. Soc. 129 (2007) 2871-2879. https://doi.org/10.1021/ja067184n
[107] Capek, R.K.; Weber, M.; Eychmuller, A. Alternative incorporation of quantum dots in polymer microspheres. Chem. Mater. 22 (2010) 4912-4918. https://doi.org/10.1021/cm101004m
[108] Zhang, J.; Xu, S.; Kumacheva, E. Polymer microgels: Reactors for semiconductor, metal, and magnetic nanoparticles. J. Am. Chem. Soc. 126 (2004) 7908-7914. https://doi.org/10.1021/ja031523k
[109] Lemon, B.L.; Crooks, R.M. Preparation and characterization of dendrimer-encapsulated cds semiconductor quantum dots. J. Am. Chem. Soc. 122 (2000) 12886-12887. https://doi.org/10.1021/ja0031321
[110] Bruchez, M., Moronne, M., Gin, P., Weiss, S., and Alivisatos, A.P. Semiconductor nanocrystals as fluorescent biological labels. Science 281 (1998) 2013–2016. https://doi.org/10.1126/science.281.5385.2013
[111] Chan,W.C., Maxwell, D.J., Gao, X., Bailey, R.E., Han, M., and Nie, S. Luminescent quantum dots for multiplexed biological detection and imaging, Curr. Opin. Biotechnol.13 (2002) 40–46. https://doi.org/10.1016/S0958-1669(02)00282-3
[112] Chan,W.C. and Nie, S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281 (1998) 2016–2018. https://doi.org/10.1126/science.281.5385.2016
[113] Cao Y, Yang K, Li Z, Zhao C, Shi C, Yang J. Near-infrared quantum-dot-based non-invasive in vivo imaging of squamous cell carcinoma U14. Nanotechnology. 21 (2010) 475104. https://doi.org/10.1088/0957-4484/21/47/475104
[114] Jiang W, Singhal A, Zheng J, Wang C, Chan WCW. Optimizing the synthesis of red- to near-IR-emitting CdS-capped CdTe xSe1-x alloyed quantum dots for biomedical imaging. Chem Mater. 18 (2006) 4845- 4854. https://doi.org/10.1021/cm061311x
[115] Hyun BR, Chen H, Rey DA, Wise FW, Batt CA. Near-infrared fluorescence imaging with water-soluble lead salt quantum dots. J Phys Chem. 111 (2007) 5726-5730. https://doi.org/10.1021/jp068455j
[116] Li H, Shih WY, Shih WH. Synthesis and characterization of aqueous carboxyl-capped CdS quantum dots for bioapplications. Ind Eng Chem Res. 46 (2007) 2013-2019. https://doi.org/10.1021/ie060963s
[117] Mulder WJM, Koole R, Brandwijk RJ, Storm G, Chin PT, Strijkers GJ, de Mello Donegá C, et al. Quantum dots with a paramagnetic coating as a bimodal molecular imaging probe. Nano Lett. 6 (2006) 1-6. https://doi.org/10.1021/nl051935m
[118] Weissleder, R. A clearer vision for in vivo imaging. Nat. Biotechnol. 19 (2001) 316–317. https://doi.org/10.1038/86684
[119] Chem JM, Taniguchi S, Green M, Rizvi B, Seifalian A. The one-pot synthesis of core / shell / shell CdTe / CdSe / ZnSe quantum dots in aqueous media for in vivo deep tissue imaging. 9 (2011) 2877-2882. https://doi.org/10.1039/c0jm03527k
[120] Hyun BR, Chen H, Rey DA, Wise FW, Batt CA. Near-infrared fluorescence imaging with water-soluble lead salt quantum dots. J Phys Chem. 111 (2007) 5726-5730. https://doi.org/10.1021/jp068455j
[121] Sershen, S.R., Westcott, S.L., Halas, N.J., West, J.L. Temperature-sensitive polymernanoshell composites for photothermally modulated drug delivery. J. Biomed. Mater. Res.51 (2000) 293–298. https://doi.org/10.1002/1097-4636(20000905)51:3<293::AID-JBM1>3.0.CO;2-T
[122] Okano, T., Bae, Y.H., Jacobs, H., and Kim, S.W. Thermally on–off switching polymers for drug permeation and release. J. Control. Release 11 (1990) 255–265. https://doi.org/10.1016/0168-3659(90)90138-J
[123] Hirsch, L.R., Stafford, R.J., Bankson, J.A., Sershen, S.R., Rivera,B., Price, R.E.,Hazle, J.D., Halas, N.J., West, J.L. Nanoshell-mediated near infrared thermal therapy of tumors under magnetic resonance guidance. Proc. Natl Acad. Sci. USA 100 (2003) 13549–13554. https://doi.org/10.1073/pnas.2232479100
[124] Colvin, V.L.; Schlamp, M.C. Alivisatos, A.P. Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature 370 (1994) 354–357. https://doi.org/10.1038/370354a0
[125] Zhou, Y.; Riehle, F.S.; Yuan, Y.; Schleiermacher, H.F.; Niggemann, M.; Urban, G.A.; Krueger, M. Improved efficiency of hybrid solar cells based on non-ligand exchanged CdSe quantum dots and poly (3-hexylthiophene). Appl. Phys. Lett. 96 (2010) 013304. https://doi.org/10.1063/1.3280370
[126] Zhou, Y.; Eck, M.; Kruger, M. Bulk-heterojunction hybrid solar cells based on colloidal nanocrystals and conjugated polymers. Energy Environ. Sci. 3 (2010) 1851–1864. https://doi.org/10.1039/c0ee00143k
[127] Wang, R.Y.; Feser, J.P.; Lee, J.-S.; Talapin, D.V.; Segalman, R.; Majumdar, A. Enhanced thermopower in PbSe nanocrystal quantum dot superlattices. Nano Lett. 8 (2008) 2283–2288. https://doi.org/10.1021/nl8009704
[128] Colvin, V.L.; Schlamp, M.C. Alivisatos, A.P. Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature 370 (1994) 354–357. https://doi.org/10.1038/370354a0
[129] Schlamp, M.C.; Peng, X.; Alivisatos, A.P. Improved efficiencies in light emitting diodes made with CdSe.CdS.core/shell type nanocrystals and a semiconducting polymer. J. Appl. Phys. 82 (1997) 5837–5842. https://doi.org/10.1063/1.366452
[130] Lee, J.; Sundar, V.C.; Heine, J.R.; Bawendi, M.G.; Jesen, K.F. Full color emission from II-VI semiconductor quantum dot-polymer composites. Adv. Mater. 12 (2000) 1102–1105. https://doi.org/10.1002/1521-4095(200008)12:15<1102::AID-ADMA1102>3.0.CO;2-J
[131] Chung, W.; Park, K.; Yu, H.J.; Kim, B.; Kim, S.H. White emission using mixtures of CdSe quantum dots and PMMA as a phosphor. Opt. Mater. 32 (2010) 515–521. https://doi.org/10.1016/j.optmat.2009.11.005
[132] S. Kobayashi, S. Mikoshiba, and S. Lim, LCD Backlights. New York, NY, USA: Wiley, 2009. https://doi.org/10.1002/9780470744826
[133] T.Okumura, A. Tagaya, Y.Koike, M.Horiguchi, H. Suzuki, Highly efficient backlight for liquid crystal display having no optical films, Appl. Phys. Lett., 83 (2003) 2515–2517. https://doi.org/10.1063/1.1613051
[134] K. Kalantar, Modified functional light-guide plate for backlighting transmissive LCDs, J. Soc. Inf. Display, 11 (2003) 641–645. https://doi.org/10.1889/1.1825692
[135] D. Feng, Y. Yan, X. Yang, G. Jin, and S. Fan, “Novel integrated lightguide plates for liquid crystal display backlight, Journal of Optics A: Pure and Applied Optics, 7 (2005) 111-117. https://doi.org/10.1088/1464-4258/7/3/003
[136] E. Jang et al., White-light-emitting diodes with quantum dot color converters for display backlights, Adv. Mater., 22 (2010) 3076–3080. https://doi.org/10.1002/adma.201000525
[137] Z. Luo, Y. Chen, S. T. Wu, Wide color gamut LCD with a quantum dot backlight, Opt. Express, 21(2013) 26269–26284. https://doi.org/10.1364/OE.21.026269
[138] S. Coe-Sullivan, W. Liu, P. Allen, J. S. Steckel, Quantum dots for LED downconversion in display applications, ECS J. Solid State Sci. Technol., 2 (2013) R3026–R3030, 2013. https://doi.org/10.1149/2.012302jss
[139] Y. Shirasaki, G. J. Supran, M. G. Bawendi, V. Bulovic, Emergence of colloidal quantum-dot light-emitting technologies, Nat. Photon., 7 (2013) 13–23. https://doi.org/10.1038/nphoton.2012.328
[140] J. S. Steckel et al., Quantum dot manufacturing requirements for the high volume LCD market, In Proc. SID Symp. Dig. Tech. Papers, 44 (2013) 943–945. https://doi.org/10.1002/j.2168-0159.2013.tb06377.x
[141] Z. Luo, D. Xu, and S. T. Wu, Emerging quantum-dots-enhanced LCDs, J. Display Technol., 10 (2014) 526–539. https://doi.org/10.1109/JDT.2014.2325218
[142] K. Bourzac, Quantum dots go on display, Nature, 493 (2013) 283. https://doi.org/10.1038/493283a
[143] J. S. Steckel et al., Quantum dots: The ultimate down-conversion material for LCD displays, J. Soc. Inf. Display, 23 (2015) 294–305. https://doi.org/10.1002/jsid.313
[144] Q. Hong, K. C. Lee, Z. Luo, and S. T. Wu, High-efficiency quantum dot remote phosphor film, Appl. Opt. 54 (2015) 4617–4622. https://doi.org/10.1364/AO.54.004617
[145] Wang, Y. Semiconductor nanocrystals in carrier-transporting polymers. charge generation and charge transport. J. Lumin 70 (1996) 48–59. https://doi.org/10.1016/0022-2313(96)00043-9
[146] Yang, C. L.; Wang, J. N.; Ge, W. K.; Wang, S. H.; Cheng, J. X.; Li, X. Y.; Yan, Y. J.; Yang, S. H. Significant enhancement of photoconductivity in truly two-component and chemically hybridized CdS-poly (n-vinylcarbazole) nanocomposites. Appl. Phys. Lett. 78 (2001) 760–762. https://doi.org/10.1063/1.1345826
[147] Han, L.; Donghuan, Q.; Jiang, X.; Liu, Y.; Wang, L.; Chen, J.; Cao, Y. Synthesis of high quality zinc-blende CdSe nanocrystals and their application in hybrid solar cells. Nanotechnology 17 (2006) 4736–4742. https://doi.org/10.1088/0957-4484/17/18/035
[148] Park, E.-K.; Kim, J.-H. J.-H.; Ji, I. A.; Choi, H. M.; Kim, J.-H. J.-H.; Lim, K.-T.; Bang, J. H.; Kim, Y.-S. Optimization of CdSe Quantum Dot Concentration in P3HT:PCBM Layer for the Improved Performance of Hybrid Solar Cells. Microelectron. Eng. 119 (2014) 169–173. https://doi.org/10.1016/j.mee.2014.05.003
[149] Yin, J.; Kumar, M.; Lei, Q.; Ma, L.; Raavi, S. S. K.; Gurzadyan, G. G.; Soci, C. SmallSize Effects on Electron Transfer in P3HT/InP Quantum Dots. J. Phys. Chem. C 119 (2015) 26783–26792. https://doi.org/10.1021/acs.jpcc.5b09397
[150] E. Bundgaard, S. E. Shaheen, F. C. Kerbs, D. S. Ginley,. Bulk heterojunctions based on a low band gap copolymer of thiophene and benzothiadiazole, Solar Energy Materials & Solar Cells, 91 (2007) 1631-1637. https://doi.org/10.1016/j.solmat.2007.05.013
[151] Medintz, I.L., Clapp, A.R., Mattoussi, H., Goldman, E.R., Fisher, B., Mauro, J.M., Self-assembled nanoscale biosensors based on quantum dot FRET donors, Nature Materials 2 (2015) 630–638. https://doi.org/10.1038/nmat961
[152] Medintz, I.L., Uyeda, H.T., Goldman, E.R., Mattoussi, H., Quantum dot bioconjugates for imaging, labelling and sensing, Nature Materials 4 (2005) 435–446. https://doi.org/10.1038/nmat1390
[153] Francesc A. Esteve-Turrillas, Antonio Abad-Fuentes, Applications of quantum dots as probes in immunosensing of small-sized analytes, Biosensors and Bioelectronics 41 (2013) 12–29. https://doi.org/10.1016/j.bios.2012.09.025
[154] V. Lindbergand B Hellsing, Metallic quantum dots, J. Phys.: Condens. Matter 17 (2005) S1075–S1094. https://doi.org/10.1088/0953-8984/17/13/004
[155] Crommie M F, Lutz C P, Eigler D M. Confinement of electrons to quantum corrals on a metal surface, Science 262 (1993) 218-220. https://doi.org/10.1126/science.262.5131.218
[156] Avouris P and Lyo I-W Observation of Quantum-Size Effects at Room Temperature on Metal Surfaces With STM, Science, 264 (1994) 942-945. https://doi.org/10.1126/science.264.5161.942
[157] Rosetti, R.; Hull, R.; Gibson, J. M.; Brus, L. E. J. Chem. Phys. 1985, 82, 552. https://doi.org/10.1063/1.448727
[158] Ricard, D.; Roussignol, P.; Flytzanis, Surface-mediated enhancement of optical phase conjugation in metal colloids, C. Opt. Lett. 10 (1985) 511-513. https://doi.org/10.1364/OL.10.000511
[159] Nie, S.; Emory, S. R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering, Science 275 (1997) 1102-1106. https://doi.org/10.1126/science.275.5303.1102
[160] Jang, N. H. The coordination chemistry of DNA nucleosides on gold nanoparticles as a probe by SERS, Bull. Korean Chem. Soc. 23 (2002) 1790-1800. https://doi.org/10.5012/bkcs.2002.23.12.1790
[161] Rodolphe Antoine, Pierre F. Brevet, Hubert H. Girault, Rodolphe Antoine, Pierre F. Brevet, Donald Bethell, David J. Schiffrin, Surface plasmon enhanced non-linear optical response of gold nanoparticles at the air/toluene interface, Chem. Commun., 0 (1997) 1901-1902. https://doi.org/10.1039/a704846g
[162] Mooradian A, Photoluminescence of metals, Phys. Rev. Lett. 22(5) (1969) 185–187. https://doi.org/10.1103/PhysRevLett.22.185
[163] Diez I, Ras RHA Fluorescent silver nanoclusters, Nanoscale, 3 (2011) 1963–1970. https://doi.org/10.1039/c1nr00006c
[164] Belloni, Metal nanocolloids, J. Curr. Opin. Colloid Interface Sci. 1 (1996) 184-196. https://doi.org/10.1016/S1359-0294(96)80003-3
[165] Satoshi Horikoshi, Nick Serpone, Introduction to Nanoparticles, https://doi.org/10.1002/9783527648122.ch1.
[166] Robin J. White, Rafael Luque, Vitaliy L. Budarin James H. Clark, Duncan J. Macquarrie supported metal nanoparticles on porous materials. Methods and applications, Chem. Soc. Rev, 38 (2009) 481-494. https://doi.org/10.1039/B802654H
[167] Juan M. Campelo, Diego Luna, Rafael Luque, Jose M. Marinas, Antonio A. Romero, Sustainable preparation of supported metal nanoparticles and their applications in catalysis Campelo –Chem Sus Chem 2 (2009) 18-45. https://doi.org/10.1002/cssc.200800227
[168] Rijun Gui, Hui Jin, Zonghua Wang, Lianjiang Tan, Aqueous synthesis of multidentate-polymer-capping Ag2Se quantum dots with bright photoluminescence tunable in a second near-infrared biological window, Coordination Chemistry Reviews, 296 (2015) 91-124.
[169] Wang X, Koleilat GI, Tang J, Liu H, Kramer IJ, et al. Tandem colloidal quantum dot solar cells employing a graded recombination layer. Nature Photon 5 (2011) 480–484. https://doi.org/10.1038/nphoton.2011.123