Nanoscale Metal Organic Framework for Phototherapy of Cancer
Fulya Gülbağça, Fatima Elmusa, Kemal Cellat, Anish Khan, Fatih Şen1
Phototherapy is generally used to describe Ultraviolet B (UVB) therapy, but it is a general term and concept using the non-ionizing electromagnetic radiation and its therapeutic effects Photodynamic therapy (PDT) and Photothermal therapy (PTT) are the basis of phototherapy. In PDT, there is usually a need for Photosensitizers (PSs). In this way, the selectivity, safety and efficiency of phototherapy can be increased via increased singlet oxygen production and photothermal responses in PTT. Effective and selective administration of PSs to diseased tissues is of great importance in both cases. Nano-scale metal-organic frameworks (nMOFs), made of metal anchor points and bridge ligands for high biocompatibility, compositional and structural adjustment, were investigated as nano-carriers for drug delivery as a new class of hybrid materials. This review summarizes the growing and evolving areas of nMOFs as nanoparticle photosensitizers for PDT and PTT.
Keywords
Nano-Scale Metal-Organic Frameworks, n(MOFs), Cancer, Photodynamic Therapy (PDT), Photothermal Therapy (PTT), Photosensitizers (PSs)
Published online 10/5/2019, 56 pages
Citation: Fulya Gülbağça, Fatima Elmusa, Kemal Cellat, Anish Khan, Fatih Şen1, Nanoscale Metal Organic Framework for Phototherapy of Cancer, Materials Research Foundations, Vol. 58, pp 361-416, 2019
DOI: https://doi.org/10.21741/9781644900437-12
Part of the book on Metal-Organic Framework Composites
References
1. J. R. Heath & M. E. Davis, Nanotechnology and Cancer. Annual Review of Medicine, 59 (2008) 251–265. https://doi.org/10.1146/annurev.med.59.061506.185523.
2. R. Ackroyd, C. Kelty, N. Brown, & M. Reed, The history of photodetection and photodynamic therapy. Photochemistry and photobiology, 74 (2001) 656–69.
3. S. K. Pushpan, S. Venkatraman, V. G. Anand, J. Sankar, D. Parmeswaran, S. Ganesan, & T. K. Chandrashekar, Porphyrins in photodynamic therapy – a search for ideal photosensitizers. Current medicinal chemistry. Anti-cancer agents, 2 (2002) 187–207.
4. P. Agostinis, K. Berg, K. A. Cengel, T. H. Foster, A. W. Girotti, S. O. Gollnick, S. M. Hahn, M. R. Hamblin, A. Juzeniene, D. Kessel, M. Korbelik, J. Moan, P. Mroz, D. Nowis, J. Piette, B. C. Wilson, & J. Golab, Photodynamic therapy of cancer: An update. CA: A Cancer Journal for Clinicians, 61 (2011) 250–281. https://doi.org/10.3322/caac.20114.
5. A. Master, M. Livingston, & A. Sen Gupta, Photodynamic nanomedicine in the treatment of solid tumors: Perspectives and challenges. Journal of Controlled Release, 168 (2013) 88–102. https://doi.org/10.1016/j.jconrel.2013.02.020.
6. D. E. J. G. J. Dolmans, D. Fukumura, & R. K. Jain, Photodynamic therapy for cancer. Nature Reviews Cancer, 3 (2003) 380–387. https://doi.org/10.1038/nrc1071.
7. P.-J. Lou, L. Jones, & C. Hopper, Clinical Outcomes of Photodynamic Therapy for Head-and-Neck Cancer. Technology in Cancer Research & Treatment, 2 (2003) 311–317. https://doi.org/10.1177/153303460300200405.
8. M. G. Bredell, E. Besic, C. Maake, & H. Walt, The application and challenges of clinical PD–PDT in the head and neck region: A short review. Journal of Photochemistry and Photobiology B: Biology, 101 (2010) 185–190. https://doi.org/10.1016/J.JPHOTOBIOL.2010.07.002.
9. D. Nowis, M. Makowski, T. Stokłosa, M. Legat, T. Issat, & J. Gołab, Direct tumor damage mechanisms of photodynamic therapy. Acta biochimica Polonica, 52 (2005) 339–52.
10. H. Abrahamse & M. R. Hamblin, New photosensitizers for photodynamic therapy. Biochemical Journal, 473 (2016) 347–364. https://doi.org/10.1042/BJ20150942.
11. J. A. González-Delgado, P. J. Kennedy, M. Ferreira, J. P. C. Tomé, & B. Sarmento, Use of Photosensitizers in Semisolid Formulations for Microbial Photodynamic Inactivation. Journal of Medicinal Chemistry, 59 (2016) 4428–4442. https://doi.org/10.1021/acs.jmedchem.5b01129.
12. J. Bhaumik, A. K. Mittal, A. Banerjee, Y. Chisti, & U. C. Banerjee, Applications of phototheranostic nanoagents in photodynamic therapy. Nano Research, 8 (2015) 1373–1394. https://doi.org/10.1007/s12274-014-0628-3.
13. S. Kwiatkowski, B. Knap, D. Przystupski, J. Saczko, E. Kędzierska, K. Knap-Czop, J. Kotlińska, O. Michel, K. Kotowski, & J. Kulbacka, Photodynamic therapy – mechanisms, photosensitizers and combinations. Biomedicine & Pharmacotherapy, 106 (2018) 1098–1107. https://doi.org/10.1016/j.biopha.2018.07.049.
14. R. Chouikrat, A. Seve, R. Vanderesse, H. Benachour, M. Barberi-Heyob, S. Richeter, L. Raehm, J.-O. Durand, M. Verelst, & C. Frochot, Non Polymeric Nanoparticles for Photodynamic Therapy Applications: Recent Developments. Current Medicinal Chemistry, 19 (2012) 781–792. https://doi.org/10.2174/092986712799034897.
15. E. Corredor, P. S. Testillano, M. J. Coronado, P. González-Melendi, R. Fernández-Pacheco, C. Marquina, M. R. Ibarra, J. M. De La Fuente, D. Rubiales, A. Pérez-De-Luque, & M. C. Risuẽo, Nanoparticle penetration and transport in living pumpkin plants: In situ subcellular identification. BMC Plant Biology, 9 (2009) 1–11. https://doi.org/10.1186/1471-2229-9-45.
16. R. Ayranci, G. Baskaya, M. Guzel, S. Bozkurt, M. Ak, A. Savk, & F. Sen, Enhanced optical and electrical properties of PEDOT via nanostructured carbon materials: A comparative investigation. Nano-Structures and Nano-Objects, 11 (2017) 13–19. https://doi.org/10.1016/j.nanoso.2017.05.008.
17. S. Bozkurt, B. Tosun, B. Sen, S. Akocak, A. Savk, M. F. Ebeoğlugil, & F. Sen, A Hydrogen Peroxide Sensor Based on TNM Functionalized Reduced Graphene Oxide Grafted with Highly Monodisperse Pd Nanoparticles. Analytica Chimica Acta, 989 (2017) 88–94. https://doi.org/10.1016/j.aca.2017.07.051.
18. R. Ayranci, G. Başkaya, M. Güzel, S. Bozkurt, F. Şen, & M. Ak, Carbon Based Nanomaterials for High Performance Optoelectrochemical Systems. ChemistrySelect, 2 (2017) 1548–1555. https://doi.org/10.1002/slct.201601632.
19. F. Şen & G. Gökaǧaç, Improving Catalytic Efficiency in The Methanol Oxidation Reaction by Inserting Ru in Face-Centered Cubic Pt Nanoparticles Prepared by A New Surfactant, Tert-octanethiol. Energy and Fuels, 22 (2008) 1858–1864. https://doi.org/10.1021/ef700575t.
20. B. Şen, A. Aygün, A. Şavk, S. Akocak, & F. Şen, Bimetallic Palladium–iridium Alloy Nanoparticles as Highly Efficient and Stable Catalyst for The Hydrogen Evolution Reaction. International Journal of Hydrogen Energy, 43 (2018) 20183–20191. https://doi.org/10.1016/j.ijhydene.2018.07.081.
21. B. Şen, S. Kuzu, E. Demir, & F. Akocak, SüleymanŞSen, Highly Monodisperse RuCo Nanoparticles Decorated on Functionalized Multiwalled Carbon Nanotube with The Highest Observed Catalytic Activity in The Dehydrogenation of Dimethylamine−borane. International Journal of Hydrogen Energy, 42 (2017) 23292–23298. https://doi.org/10.1016/j.ijhydene.2017.06.032.
22. B. Sen, E. Kuyuldar, B. Demirkan, T. Onal Okyay, A. Şavk, & F. Sen, Highly Efficient Polymer Supported Monodisperse Ruthenium-nickel Nanocomposites for Dehydrocoupling of Dimethylamine Borane. Journal of Colloid and Interface Science, 526 (2018) 480–486. https://doi.org/10.1016/j.jcis.2018.05.021.
23. Y. Yıldız, S. Kuzu, B. Sen, A. Savk, S. Akocak, & F. Şen, Different Ligand Based Monodispersed Pt Nanoparticles Decorated with rGO As Highly Active and Reusable Catalysts for The Methanol Oxidation. International Journal of Hydrogen Energy, 42 (2017) 13061–13069. https://doi.org/10.1016/j.ijhydene.2017.03.230.
24. B. Sen, B. Demirkan, B. Şimşek, A. Savk, & F. Sen, Monodisperse Palladium Nanocatalysts for Dehydrocoupling of Dimethylamineborane. Nano-Structures & Nano-Objects, 16 (2018) 209–214. https://doi.org/10.1016/j.nanoso.2018.07.008.
25. B. Şahin, E. Demir, A. Aygün, H. Gündüz, & F. Şen, Investigation of The Effect Of Pomegranate Extract And Monodisperse Silver Nanoparticle Combination on MCF-7 Cell Line. Journal of Biotechnology, 260 (2017) 79–83. https://doi.org/10.1016/j.jbiotec.2017.09.012.
26. A. Minchom, C. Aversa, & J. Lopez, Dancing with the DNA damage response: next-generation anti-cancer therapeutic strategies. Therapeutic advances in medical oncology, 10 (2018) 1758835918786658. https://doi.org/10.1177/1758835918786658.
27. R. L. Manthe, S. P. Foy, N. Krishnamurthy, B. Sharma, & V. Labhasetwar, Tumor Ablation and Nanotechnology. (n.d.). https://doi.org/10.1021/mp1001944.
28. C. C. Lee, J. A. MacKay, J. M. J. Fréchet, & F. C. Szoka, Designing dendrimers for biological applications. Nature Biotechnology, 23 (2005) 1517–1526. https://doi.org/10.1038/nbt1171.
29. V. P. Torchilin, Recent advances with liposomes as pharmaceutical carriers. Nature Reviews Drug Discovery, 4 (2005) 145–160. https://doi.org/10.1038/nrd1632.
30. K. Kataoka, A. Harada, & Y. Nagasaki, Block copolymer micelles for drug delivery: design, characterization and biological significance. Advanced Drug Delivery Reviews, 47 (2001) 113–131. https://doi.org/10.1016/S0169-409X(00)00124-1.
31. M. Hamidi, K. Rostamizadeh, & M. A. Shahbazi, Hydrogel Nanoparticles in Drug Delivery. Intelligent Nanomaterials: Processes, Properties, and Applications, 60 (2012) 583–624. https://doi.org/10.1002/9781118311974.ch15.
32. X. Gao, Y. Cui, R. M. Levenson, L. W. K. Chung, & S. Nie, In vivo cancer targeting and imaging with semiconductor quantum dots. Nature Biotechnology, 22 (2004) 969–976. https://doi.org/10.1038/nbt994.
33. X. Huang, I. H. El-Sayed, W. Qian, & M. A. El-Sayed, Cancer Cell Imaging and Photothermal Therapy in the Near-Infrared Region by Using Gold Nanorods. Journal of the American Chemical Society, 128 (2006) 2115–2120. https://doi.org/10.1021/ja057254a.
34. Z. Li, J. Hüve, C. Krampe, G. Luppi, M. Tsotsalas, J. Klingauf, L. De Cola, & K. Riehemann, Internalization Pathways of Anisotropic Disc-Shaped Zeolite L Nanocrystals with Different Surface Properties in HeLa Cancer Cells. Small, 9 (2013) 1809–1820. https://doi.org/10.1002/smll.201201702.
35. A. K. Gupta & M. Gupta, Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials, 26 (2005) 3995–4021. https://doi.org/10.1016/j.biomaterials.2004.10.012.
36. Z. Li, J. C. Barnes, A. Bosoy, J. F. Stoddart, & J. I. Zink, Mesoporous silica nanoparticles in biomedical applications. Chemical Society Reviews, 41 (2012) 2590. https://doi.org/10.1039/c1cs15246g.
37. A. Bianco, K. Kostarelos, C. D. Partidos, & M. Prato, Biomedical applications of functionalised carbon nanotubes. Chemical Communications, (2005) 571–577. https://doi.org/10.1039/b410943k.
38. J. Shen, L. Zhao, & G. Han, Lanthanide-doped upconverting luminescent nanoparticle platforms for optical imaging-guided drug delivery and therapy. Advanced Drug Delivery Reviews, 65 (2013) 744–755. https://doi.org/10.1016/j.addr.2012.05.007.
39. C. He, D. Liu, & W. Lin, Nanomedicine Applications of Hybrid Nanomaterials Built from Metal–Ligand Coordination Bonds: Nanoscale Metal–Organic Frameworks and Nanoscale Coordination Polymers. Chemical Reviews, 115 (2015) 11079–11108. https://doi.org/10.1021/acs.chemrev.5b00125.
40. M. Giménez-Marqués, T. Hidalgo, C. Serre, & P. Horcajada, Nanostructured metal–organic frameworks and their bio-related applications. Coordination Chemistry Reviews, 307 (2016) 342–360. https://doi.org/10.1016/j.ccr.2015.08.008.
41. M. Lismont, L. Dreesen, & S. Wuttke, Metal-Organic Framework Nanoparticles in Photodynamic Therapy: Current Status and Perspectives. Advanced Functional Materials, 27 (2017) 1606314. https://doi.org/10.1002/adfm.201606314.
42. H. Göksu, B. Çelik, Y. Yıldız, F. Şen, & B. Kılbaş, Superior Monodisperse CNT-Supported CoPd (CoPd@CNT) Nanoparticles for Selective Reduction of Nitro Compounds to Primary Amines with NaBH4 in Aqueous Medium. ChemistrySelect, 1 (2016) 2366–2372. https://doi.org/10.1002/slct.201600509.
43. S. Günbatar, A. Aygun, Y. Karataş, M. Gülcan, & F. Şen, Carbon-nanotube-based Rhodium Nanoparticles as Highly-Active Catalyst for Hydrolytic Dehydrogenation of Dimethylamineborane at Room Temperature. Journal of Colloid and Interface Science, 530 (2018) 321–327. https://doi.org/10.1016/j.jcis.2018.06.100.
44. N. M. Iverson, P. W. Barone, M. Shandell, L. J. Trudel, S. Sen, F. Sen, V. Ivanov, E. Atolia, E. Farias, T. P. McNicholas, N. Reuel, N. M. A. Parry, G. N. Wogan, & M. S. Strano, In vivo Biosensing via Tissue-localizable Near-infrared-fluorescent Single-walled Carbon Nanotubes. Nature Nanotechnology, 8 (2013) 873–880. https://doi.org/10.1038/nnano.2013.222.
45. S. Sen, F. Sen, A. A. Boghossian, J. Zhang, & M. S. Strano, Effect of Reductive Dithiothreitol and Trolox on Nitric Oxide Quenching of Single-walled Carbon Nanotubes. The Journal of Physical Chemistry C, 117 (2013) 593–602. https://doi.org/10.1021/jp307175f.
46. Z. W. Ulissi, F. Sen, X. Gong, S. Sen, N. Iverson, A. A. Boghossian, L. C. Godoy, G. N. Wogan, D. Mukhopadhyay, & M. S. Strano, Spatiotemporal Intracellular Nitric Oxide Signaling Captured Using Internalized, Near-infrared Fluorescent Carbon Nanotube Nanosensors. Nano Letters, 14 (2014) 4887–4894. https://doi.org/10.1021/nl502338y.
47. M. P. Landry, H. Ando, A. Y. Chen, J. Cao, V. I. Kottadiel, L. Chio, D. Yang, J. Dong, T. K. Lu, & M. S. Strano, Single-molecule detection of protein efflux from microorganisms using fluorescent single-walled carbon nanotube sensor arrays. Nature Nanotechnology, 12 (2017) 368–377. https://doi.org/10.1038/nnano.2016.284.
48. J. D. Evans, B. Garai, H. Reinsch, W. Li, S. Dissegna, V. Bon, I. Senkovska, R. A. Fischer, S. Kaskel, C. Janiak, N. Stock, & D. Volkmer, Metal–organic frameworks in Germany: From synthesis to function. Coordination Chemistry Reviews, 380 (2019) 378–418. https://doi.org/10.1016/j.ccr.2018.10.002.
49. Y.-R. Lee, J. Kim, & W.-S. Ahn, Synthesis of metal-organic frameworks: A mini review. Korean Journal of Chemical Engineering, 30 (2013) 1667–1680. https://doi.org/10.1007/s11814-013-0140-6.
50. C. Vaitsis, G. Sourkouni, & C. Argirusis, Metal Organic Frameworks (MOFs) and ultrasound: A review. Ultrasonics Sonochemistry, (2018) 0–1. https://doi.org/10.1016/j.ultsonch.2018.11.004.
51. T. L. Doane & C. Burda, The unique role of nanoparticles in nanomedicine: imaging, drug delivery and therapy. Chemical Society Reviews, 41 (2012) 2885. https://doi.org/10.1039/c2cs15260f.
52. J. Peng, L. Zhao, X. Zhu, Y. Sun, W. Feng, Y. Gao, L. Wang, & F. Li, Hollow silica nanoparticles loaded with hydrophobic phthalocyanine for near-infrared photodynamic and photothermal combination therapy. Biomaterials, 34 (2013) 7905–7912. https://doi.org/10.1016/j.biomaterials.2013.07.027.
53. J. Wang, T. T. Wang, P. F. Gao, & C. Z. Huang, Biomolecules-conjugated nanomaterials for targeted cancer therapy. J. Mater. Chem. B, 2 (2014) 8452–8465. https://doi.org/10.1039/C4TB01263A.
54. R. R. Allison, H. C. Mota, V. S. Bagnato, & C. H. Sibata, Bio-nanotechnology and photodynamic therapy—State of the art review. Photodiagnosis and Photodynamic Therapy, 5 (2008) 19–28. https://doi.org/10.1016/j.pdpdt.2008.02.001.
55. A. F. McDonagh, Phototherapy: From Ancient Egypt to the New Millennium. Journal of Perinatology, 21 (2001) S7–S12. https://doi.org/10.1038/sj.jp.7210625.
56. D. S. Rassmussen-Taxdal, G. E. Ward, & F. H. J. Figge, Fluorescence of human lymphatic and cancer tissues following high doses of intravenous hematoporphyrin. Cancer, 8 (1955) 78–81. https://doi.org/10.1002/1097-0142(1955)8:1<78::AID-CNCR2820080109>3.0.CO;2-L.
57. H. v. Tappeiner, Die photodynamische Erscheinung (Sensibilisierung durch fluoreszierende Stoffe). Ergebnisse der Physiologie, 8 (1909) 698–741. https://doi.org/10.1007/BF02321096.
58. R. L. LIPSON, E. J. BALDES, & A. M. OLSEN, Hematoporphyrin derivative: a new aid for endoscopic detection of malignant disease. The Journal of thoracic and cardiovascular surgery, 42 (1961) 623–9.
59. T. J. Dougherty, STUDIES ON THE STRUCTURE OF PORPHYRINS CONTAINED IN PHOTOFRIN® II. Photochemistry and Photobiology, 46 (1987) 569–573. https://doi.org/10.1111/j.1751-1097.1987.tb04815.x.
60. T. J. Dougherty, Photodynamic therapy—new approaches. Seminars in Surgical Oncology, 5 (1989) 6–16. https://doi.org/10.1002/ssu.2980050104.
61. J. G. PARKER, The Importance of Singlet Delta Oxygen in Cancer Photoradiation Therapy. Johns Hopkins APL Technical Digest, 5 (1984) 48–50.
62. G. H. Kliman, C. A. Puliafito, G. A. Grossman, & W. A. Gregory, Retinal and choroidal vessel closure using phthalocyanine photodynamic therapy. Lasers in Surgery and Medicine, 15 (1994) 11–18. https://doi.org/10.1002/lsm.1900150104.
63. H. Miller & B. Miller, Photodynamic Therapy of Subretinal Neovascularization in the Monkey Eye. Archives of Ophthalmology, 111 (1993) 855–860. https://doi.org/10.1001/archopht.1993.01090060145039.
64. A. J. Packer, D. T. Tse, X. Q. Gu, & S. S. Hayreh, Hematoporphyrin photoradiation therapy for iris neovascularization. A preliminary report. Archives of ophthalmology (Chicago, Ill. : 1960), 102 (1984) 1193–7.
65. S. K. Nanda, D. L. Hatchell, J. S. Tiedeman, J. J. Dutton, M. C. Hatchell, & T. McAdoo, A new method for vascular occlusion. Photochemical initiation of thrombosis. Archives of ophthalmology (Chicago, Ill. : 1960), 105 (1987) 1121–4.
66. C. S. Foote, Definition of type I and type II photosensitized oxidation. Photochemistry and photobiology, 54 (1991) 659.
67. Sharman, Allen, & van Lier JE, Photodynamic therapeutics: basic principles and clinical applications. Drug discovery today, 4 (1999) 507–517.
68. T. Dai, B. B. Fuchs, J. J. Coleman, R. A. Prates, C. Astrakas, T. G. St Denis, M. S. Ribeiro, E. Mylonakis, M. R. Hamblin, & G. P. Tegos, Concepts and principles of photodynamic therapy as an alternative antifungal discovery platform. Frontiers in microbiology, 3 (2012) 120. https://doi.org/10.3389/fmicb.2012.00120.
69. L. B. Josefsen & R. W. Boyle, Photodynamic therapy: novel third-generation photosensitizers one step closer? 154 (2008) 1–3. https://doi.org/10.1038/bjp.2008.98.
70. A. Ormond, H. Freeman, A. B. Ormond, & H. S. Freeman, Dye Sensitizers for Photodynamic Therapy. Materials, 6 (2013) 817–840. https://doi.org/10.3390/ma6030817.
71. J. Saczko, J. Kulbacka, A. Chwiłkowska, M. Lugowski, & T. Banaś, Levels of lipid peroxidation in A549 cells after PDT in vitro. Roczniki Akademii Medycznej w Bialymstoku (1995), 49 Suppl 1 (2004) 82–4.
72. B. W. Henderson & T. J. Dougherty, HOW DOES PHOTODYNAMIC THERAPY WORK? Photochemistry and Photobiology, 55 (1992) 145–157. https://doi.org/10.1111/j.1751-1097.1992.tb04222.x.
73. B. J. Tromberg, A. Orenstein, S. Kimel, S. J. Barker, J. Hyatt, J. S. Nelson, & M. W. Berns, In vivo tumor oxygen tension measurements for the evaluation of the efficiency of photodynamic therapy. Photochemistry and photobiology, 52 (1990) 375–85.
74. A. Manuscript & S. R. Ablation, NIH Public Access. 4 (2008) 208–214. https://doi.org/10.1021/mp1001944.Tumor.
75. J. M. Ang, I. Bin Riaz, M. U. Kamal, G. Paragh, & N. C. Zeitouni, Photodynamic therapy and pain: A systematic review. Photodiagnosis and Photodynamic Therapy, 19 (2017) 308–344. https://doi.org/10.1016/j.pdpdt.2017.07.002.
76. C. H. Sibata, V. C. Colussi, N. L. Oleinick, & T. J. Kinsella, Photodynamic therapy: a new concept in medical treatment. Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas, 33 (2000) 869–80.
77. A. M. van den Besselaar & A. C. Moor, Photodynamic treatment of pooled coumarin plasma for external quality assessment of the prothrombin time. Journal of clinical pathology, 53 (2000) 470–5.
78. J. C. Kennedy & R. H. Pottier, New trends in photobiology. Journal of Photochemistry and Photobiology B: Biology, 14 (1992) 275–292. https://doi.org/10.1016/1011-1344(92)85108-7.
79. C. H. Yang, J. C. Lee, C. H. Chen, C. Y. Hui, H. S. Hong, & H. W. Kuo, Photodynamic therapy for bowenoid papulosis using a novel incoherent light-emitting diode device. The British journal of dermatology, 149 (2003) 1297–9.
80. Z. Luksiene, Photodynamic therapy: mechanism of action and ways to improve the efficiency of treatment. Medicina (Kaunas, Lithuania), 39 (2003) 1137–50.
81. S. Karrer, R.-M. Szeimies, U. Hohenleutner, & M. Landthaler, Role of Lasers and Photodynamic Therapy in the Treatment of Cutaneous Malignancy. American Journal of Clinical Dermatology, 2 (2001) 229–237. https://doi.org/10.2165/00128071-200102040-00004.
82. T. S. Mang, Lasers and light sources for PDT: past, present and future. Photodiagnosis and photodynamic therapy, 1 (2004) 43–8. https://doi.org/10.1016/S1572-1000(04)00012-2.
83. S. Tuncel, A. Trivella, D. Atilla, K. Bennis, H. Savoie, F. Albrieux, L. Delort, H. Billard, V. Dubois, V. Ahsen, F. Caldefie-Chézet, C. Richard, R. W. Boyle, S. Ducki, & F. Dumoulin, Assessing the Dual Activity of a Chalcone–Phthalocyanine Conjugate: Design, Synthesis, and Antivascular and Photodynamic Properties. Molecular Pharmaceutics, 10 (2013) 3706–3716. https://doi.org/10.1021/mp400207v.
84. L. Cohen & S. Schwartz, Modification of radiosensitivity by porphyrins. II. Transplanted rhabdomyosarcoma in mice. Cancer research, 26 (1966) 1769–73.
85. T. J. Dougherty, A brief history of clinical photodynamic therapy development at Roswell Park Cancer Institute. Journal of clinical laser medicine & surgery, 14 (1996) 219–21. https://doi.org/10.1089/clm.1996.14.219.
86. R. R. Allison & C. H. Sibata, Oncologic photodynamic therapy photosensitizers: A clinical review. Photodiagnosis and Photodynamic Therapy, 7 (2010) 61–75. https://doi.org/10.1016/j.pdpdt.2010.02.001.
87. R. Hudson, M. Carcenac, K. Smith, L. Madden, O. J. Clarke, A. Pèlegrin, J. Greenman, & R. W. Boyle, The development and characterisation of porphyrin isothiocyanate-monoclonal antibody conjugates for photoimmunotherapy. British journal of cancer, 92 (2005) 1442–9. https://doi.org/10.1038/sj.bjc.6602517.
88. H. Dummin, T. Cernay, & H. W. Zimmermann, Selective photosensitization of mitochondria in HeLa cells by cationic Zn (II) phthalocyanines with lipophilic side-chains. Journal of photochemistry and photobiology. B, Biology, 37 (1997) 219–29.
89. R. Sidbury, D. M. Davis, D. E. Cohen, K. M. Cordoro, T. G. Berger, J. N. Bergman, S. L. Chamlin, K. D. Cooper, S. R. Feldman, J. M. Hanifin, A. Krol, D. J. Margolis, A. S. Paller, K. Schwarzenberger, R. A. Silverman, E. L. Simpson, W. L. Tom, H. C. Williams, C. A. Elmets, J. Block, C. G. Harrod, W. S. Begolka, L. F. Eichenfield, & American Academy of Dermatology, Guidelines of care for the management of atopic dermatitis. Journal of the American Academy of Dermatology, 71 (2014) 327–349. https://doi.org/10.1016/j.jaad.2014.03.030.
90. A. C. Moor, Signaling pathways in cell death and survival after photodynamic therapy. Journal of Photochemistry and Photobiology B: Biology, 57 (2000) 1–13. https://doi.org/10.1016/S1011-1344(00)00065-8.
91. S. L. Manoto, N. Houreld, N. Hodgkinson, & H. Abrahamse, Modes of Cell Death Induced by Photodynamic Therapy Using Zinc Phthalocyanine in Lung Cancer Cells Grown as a Monolayer and Three-Dimensional Multicellular Spheroids. Molecules, 22 (2017) 791. https://doi.org/10.3390/molecules22050791.
92. N. Gargiulo, F. Pepe, & D. Caputo, CO2 adsorption by functionalized nanoporous materials: a review. Journal of nanoscience and nanotechnology, 14 (2014) 1811–22.
93. J. Kim, B. Chen, T. M. Reineke, H. Li, M. Eddaoudi, D. B. Moler, M. O’Keeffe, & O. M. Yaghi, Assembly of metal-organic frameworks from large organic and inorganic secondary building units: New examples and simplifying principles for complex structures. Journal of the American Chemical Society, 123 (2001) 8239–8247. https://doi.org/10.1021/ja010825o.
94. W. J. Rieter, K. M. L. Taylor, H. An, W. Lin, & W. Lin, Nanoscale Metal−Organic Frameworks as Potential Multimodal Contrast Enhancing Agents. Journal of the American Chemical Society, 128 (2006) 9024–9025. https://doi.org/10.1021/ja0627444.
95. K. M. L. Taylor, W. J. Rieter, & W. Lin, Manganese-Based Nanoscale Metal−Organic Frameworks for Magnetic Resonance Imaging. Journal of the American Chemical Society, 130 (2008) 14358–14359. https://doi.org/10.1021/ja803777x.
96. K. E. deKrafft, Z. Xie, G. Cao, S. Tran, L. Ma, O. Z. Zhou, & W. Lin, Iodinated Nanoscale Coordination Polymers as Potential Contrast Agents for Computed Tomography. Angewandte Chemie, 121 (2009) 10085–10088. https://doi.org/10.1002/ange.200904958.
97. K. E. deKrafft, W. S. Boyle, L. M. Burk, O. Z. Zhou, & W. Lin, Zr- and Hf-based nanoscale metal–organic frameworks as contrast agents for computed tomography. Journal of Materials Chemistry, 22 (2012) 18139. https://doi.org/10.1039/c2jm32299d.
98. A. Foucault-Collet, K. A. Gogick, K. A. White, S. Villette, A. Pallier, G. Collet, C. Kieda, T. Li, S. J. Geib, N. L. Rosi, & S. Petoud, Lanthanide near infrared imaging in living cells with Yb3+ nano metal organic frameworks. Proceedings of the National Academy of Sciences of the United States of America, 110 (2013) 17199–204. https://doi.org/10.1073/pnas.1305910110.
99. C. He, K. Lu, & W. Lin, Nanoscale Metal–Organic Frameworks for Real-Time Intracellular pH Sensing in Live Cells. Journal of the American Chemical Society, 136 (2014) 12253–12256. https://doi.org/10.1021/ja507333c.
100. R. Xu, Y. Wang, X. Duan, K. Lu, D. Micheroni, A. Hu, & W. Lin, Nanoscale Metal–Organic Frameworks for Ratiometric Oxygen Sensing in Live Cells. Journal of the American Chemical Society, 138 (2016) 2158–2161. https://doi.org/10.1021/jacs.5b13458.
101. C. He, K. Lu, D. Liu, & W. Lin, Nanoscale Metal–Organic Frameworks for the Co-Delivery of Cisplatin and Pooled siRNAs to Enhance Therapeutic Efficacy in Drug-Resistant Ovarian Cancer Cells. Journal of the American Chemical Society, 136 (2014) 5181–5184. https://doi.org/10.1021/ja4098862.
102. R. C. Huxford, K. E. deKrafft, W. S. Boyle, D. Liu, & W. Lin, Lipid-coated nanoscale coordination polymers for targeted delivery of antifolates to cancer cells. Chem. Sci., 3 (2012) 198–204. https://doi.org/10.1039/C1SC00499A.
103. K. M. L. Taylor, A. Jin, & W. Lin, Surfactant-Assisted Synthesis of Nanoscale Gadolinium Metal-Organic Frameworks for Potential Multimodal Imaging. Angewandte Chemie, 120 (2008) 7836–7839. https://doi.org/10.1002/ange.200802911.
104. K. Lu, C. He, & W. Lin, Nanoscale Metal–Organic Framework for Highly Effective Photodynamic Therapy of Resistant Head and Neck Cancer. Journal of the American Chemical Society, 136 (2014) 16712–16715. https://doi.org/10.1021/ja508679h.
105. K. Lu, C. He, & W. Lin, A Chlorin-Based Nanoscale Metal–Organic Framework for Photodynamic Therapy of Colon Cancers. Journal of the American Chemical Society, 137 (2015) 7600–7603. https://doi.org/10.1021/jacs.5b04069.
106. D. Yang, G. Yang, S. Gai, F. He, G. An, Y. Dai, R. Lv, & P. Yang, Au 25 cluster functionalized metal–organic nanostructures for magnetically targeted photodynamic/photothermal therapy triggered by single wavelength 808 nm near-infrared light. Nanoscale, 7 (2015) 19568–19578. https://doi.org/10.1039/C5NR06192J.
107. H. Zhang, Y.-H. Li, Y. Chen, M.-M. Wang, X.-S. Wang, & X.-B. Yin, Fluorescence and Magnetic Resonance Dual-Modality Imaging-Guided Photothermal and Photodynamic Dual-Therapy with Magnetic Porphyrin-Metal Organic Framework Nanocomposites. Scientific Reports, 7 (2017) 44153. https://doi.org/10.1038/srep44153.
108. L. He, M. Brasino, C. Mao, S. Cho, W. Park, A. P. Goodwin, & J. N. Cha, DNA-Assembled Core-Satellite Upconverting-Metal-Organic Framework Nanoparticle Superstructures for Efficient Photodynamic Therapy. Small, 13 (2017) 1700504. https://doi.org/10.1002/smll.201700504.
109. X. Zheng, L. Wang, Q. Pei, S. He, S. Liu, & Z. Xie, Metal–Organic Framework@Porous Organic Polymer Nanocomposite for Photodynamic Therapy. Chemistry of Materials, 29 (2017) 2374–2381. https://doi.org/10.1021/acs.chemmater.7b00228.
110. J. Liu, L. Zhang, J. Lei, H. Shen, & H. Ju, Multifunctional Metal–Organic Framework Nanoprobe for Cathepsin B-Activated Cancer Cell Imaging and Chemo-Photodynamic Therapy. ACS Applied Materials & Interfaces, 9 (2017) 2150–2158. https://doi.org/10.1021/acsami.6b14446.
111. D. Bůžek, J. Zelenka, P. Ulbrich, T. Ruml, I. Křížová, J. Lang, P. Kubát, J. Demel, K. Kirakci, & K. Lang, Nanoscaled porphyrinic metal–organic frameworks: photosensitizer delivery systems for photodynamic therapy. Journal of Materials Chemistry B, 5 (2017) 1815–1821. https://doi.org/10.1039/C6TB03230C.
112. X. Chen, M. Zhang, S. Li, L. Li, L. Zhang, T. Wang, M. Yu, Z. Mou, & C. Wang, Facile synthesis of polypyrrole@metal–organic framework core–shell nanocomposites for dual-mode imaging and synergistic chemo-photothermal therapy of cancer cells. Journal of Materials Chemistry B, 5 (2017) 1772–1778. https://doi.org/10.1039/C6TB03218D.
113. L. Fang, W. Wang, Y. Liu, Z. Xie, & L. Chen, Zeolitic imidazole framework coated Au nanorods for enhanced photothermal therapy and stability. Dalton Transactions, 46 (2017) 8933–8937. https://doi.org/10.1039/C7DT00613F.
114. G. Fu, W. Liu, S. Feng, & X. Yue, Prussian blue nanoparticles operate as a new generation of photothermal ablation agents for cancer therapy. Chemical Communications, 48 (2012) 11567. https://doi.org/10.1039/c2cc36456e.
115. L. Jing, X. Liang, Z. Deng, S. Feng, X. Li, M. Huang, C. Li, & Z. Dai, Prussian blue coated gold nanoparticles for simultaneous photoacoustic/CT bimodal imaging and photothermal ablation of cancer. Biomaterials, 35 (2014) 5814–5821. https://doi.org/10.1016/J.BIOMATERIALS.2014.04.005.
116. K. Lu, C. He, N. Guo, C. Chan, K. Ni, R. R. Weichselbaum, & W. Lin, Chlorin-Based Nanoscale Metal–Organic Framework Systemically Rejects Colorectal Cancers via Synergistic Photodynamic Therapy and Checkpoint Blockade Immunotherapy. Journal of the American Chemical Society, 138 (2016) 12502–12510. https://doi.org/10.1021/jacs.6b06663.
117. Y. Y. Su, Z. Teng, H. Yao, S. J. Wang, Y. Tian, Y. L. Zhang, W. F. Liu, W. Tian, L. J. Zheng, N. Lu, Q. Q. Ni, X. D. Su, Y. X. Tang, J. Sun, Y. Liu, J. Wu, G. F. Yang, G. M. Lu, & L. J. Zhang, A Multifunctional PB@mSiO 2 –PEG/DOX Nanoplatform for Combined Photothermal–Chemotherapy of Tumor. ACS Applied Materials & Interfaces, 8 (2016) 17038–17046. https://doi.org/10.1021/acsami.6b01147.
118. Z. Tian, X. Yao, K. Ma, X. Niu, J. Grothe, Q. Xu, L. Liu, S. Kaskel, & Y. Zhu, Metal–Organic Framework/Graphene Quantum Dot Nanoparticles Used for Synergistic Chemo- and Photothermal Therapy. ACS Omega, 2 (2017) 1249–1258. https://doi.org/10.1021/acsomega.6b00385.
119. D. Wang, J. Zhou, R. Chen, R. Shi, G. Zhao, G. Xia, R. Li, Z. Liu, J. Tian, H. Wang, Z. Guo, H. Wang, & Q. Chen, Controllable synthesis of dual-MOFs nanostructures for pH-responsive artemisinin delivery, magnetic resonance and optical dual-model imaging-guided chemo/photothermal combinational cancer therapy. Biomaterials, 100 (2016) 27–40. https://doi.org/10.1016/J.BIOMATERIALS.2016.05.027.
120. S. Wang, L. Shang, L. Li, Y. Yu, C. Chi, K. Wang, J. Zhang, R. Shi, H. Shen, G. I. N. Waterhouse, S. Liu, J. Tian, T. Zhang, & H. Liu, Metal-Organic-Framework-Derived Mesoporous Carbon Nanospheres Containing Porphyrin-Like Metal Centers for Conformal Phototherapy. Advanced Materials, 28 (2016) 8379–8387. https://doi.org/10.1002/adma.201602197.
121. Y. Yang, Y. Chao, J. Liu, Z. Dong, W. He, R. Zhang, K. Yang, M. Chen, & Z. Liu, Core-shell and co-doped nanoscale metal-organic particles (NMOPs) obtained via post-synthesis cation exchange for multimodal imaging and synergistic thermo-radiotherapy. NPG Asia Materials, 9 (2017) e344–e344. https://doi.org/10.1038/am.2016.205.
122. Y. Yang, J. Liu, C. Liang, L. Feng, T. Fu, Z. Dong, Y. Chao, Y. Li, G. Lu, M. Chen, & Z. Liu, Nanoscale Metal–Organic Particles with Rapid Clearance for Magnetic Resonance Imaging-Guided Photothermal Therapy. ACS Nano, 10 (2016) 2774–2781. https://doi.org/10.1021/acsnano.5b07882.
123. W.-K. Tsai, C.-I. Wang, C.-H. Liao, C.-N. Yao, T.-J. Kuo, M.-H. Liu, C.-P. Hsu, S.-Y. Lin, C.-Y. Wu, J. R. Pyle, J. Chen, & Y.-H. Chan, Molecular design of near-infrared fluorescent Pdots for tumor targeting: aggregation-induced emission versus anti-aggregation-caused quenching. Chemical Science, 10 (2019) 198–207. https://doi.org/10.1039/C8SC03510E.
124. D. Wang, Z. Guo, J. Zhou, J. Chen, G. Zhao, R. Chen, M. He, Z. Liu, H. Wang, & Q. Chen, Novel Mn 3 [Co(CN) 6 ] 2 @SiO 2 @Ag Core-Shell Nanocube: Enhanced Two-Photon Fluorescence and Magnetic Resonance Dual-Modal Imaging-Guided Photothermal and Chemo-therapy. Small, 11 (2015) 5956–5967. https://doi.org/10.1002/smll.201502102.
125. J. Park, D. Feng, S. Yuan, & H.-C. Zhou, Photochromic Metal-Organic Frameworks: Reversible Control of Singlet Oxygen Generation. Angewandte Chemie, 127 (2015) 440–445. https://doi.org/10.1002/ange.201408862.
126. J. F. Liu, Y. B. Guo, T. M. Butler, & M. L. Weaver, Crystallography, compositions, and properties of white layer by wire electrical discharge machining of nitinol shape memory alloy. Materials & Design, 109 (2016) 1–9. https://doi.org/10.1016/J.MATDES.2016.07.063.
127. L. Zhang, J. Lei, F. Ma, P. Ling, J. Liu, & H. Ju, A porphyrin photosensitized metal–organic framework for cancer cell apoptosis and caspase responsive theranostics. Chemical Communications, 51 (2015) 10831–10834. https://doi.org/10.1039/C5CC03028E.
128. J. Park, Q. Jiang, D. Feng, & H.-C. Zhou, Controlled Generation of Singlet Oxygen in Living Cells with Tunable Ratios of the Photochromic Switch in Metal-Organic Frameworks. Angewandte Chemie International Edition, 55 (2016) 7188–7193. https://doi.org/10.1002/anie.201602417.
129. J. Park, Q. Jiang, D. Feng, L. Mao, & H.-C. Zhou, Size-Controlled Synthesis of Porphyrinic Metal–Organic Framework and Functionalization for Targeted Photodynamic Therapy. Journal of the American Chemical Society, 138 (2016) 3518–3525. https://doi.org/10.1021/jacs.6b00007.
130. W. Wang, L. Wang, Z. Li, & Z. Xie, BODIPY-containing nanoscale metal–organic frameworks for photodynamic therapy. Chemical Communications, 52 (2016) 5402–5405. https://doi.org/10.1039/C6CC01048B.
131. H.-J. Cai, T.-T. Shen, J. Zhang, C.-F. Shan, J.-G. Jia, X. Li, W.-S. Liu, & Y. Tang, A core–shell metal–organic-framework (MOF)-based smart nanocomposite for efficient NIR/H 2 O 2 -responsive photodynamic therapy against hypoxic tumor cells. Journal of Materials Chemistry B, 5 (2017) 2390–2394. https://doi.org/10.1039/C7TB00314E.
132. W. Morris, W. E. Briley, E. Auyeung, M. D. Cabezas, & C. A. Mirkin, Nucleic Acid–Metal Organic Framework (MOF) Nanoparticle Conjugates. Journal of the American Chemical Society, 136 (2014) 7261–7264. https://doi.org/10.1021/ja503215w.
133. B. Xiao, P. S. Wheatley, X. Zhao, A. J. Fletcher, S. Fox, A. G. Rossi, I. L. Megson, S. Bordiga, L. Regli, K. Mark Thomas, & R. E. Morris, High-Capacity Hydrogen and Nitric Oxide Adsorption and Storage in a Metal−Organic Framework. (2007). https://doi.org/10.1021/JA066098K.
134. A. C. McKinlay, B. Xiao, D. S. Wragg, P. S. Wheatley, I. L. Megson, & R. E. Morris, Exceptional Behavior over the Whole Adsorption−Storage−Delivery Cycle for NO in Porous Metal Organic Frameworks. Journal of the American Chemical Society, 130 (2008) 10440–10444. https://doi.org/10.1021/ja801997r.
135. A. C. McKinlay, J. F. Eubank, S. Wuttke, B. Xiao, P. S. Wheatley, P. Bazin, J.-C. Lavalley, M. Daturi, A. Vimont, G. De Weireld, P. Horcajada, C. Serre, & R. E. Morris, Nitric Oxide Adsorption and Delivery in Flexible MIL-88(Fe) Metal–Organic Frameworks. Chemistry of Materials, 25 (2013) 1592–1599. https://doi.org/10.1021/cm304037x.
136. G. Lan, K. Ni, R. Xu, K. Lu, Z. Lin, C. Chan, & W. Lin, Nanoscale Metal-Organic Layers for Deeply Penetrating X-ray-Induced Photodynamic Therapy. Angewandte Chemie International Edition, 56 (2017) 12102–12106. https://doi.org/10.1002/anie.201704828.
137. J. L. Phillips & J. L. Phillips, A Topical Review of Magnetic Fluid Hyperthermia. (n.d.).
138. A. Jordan, R. Scholz, P. Wust, H. Fähling, & Roland Felix, Magnetic fluid hyperthermia (MFH): Cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles. Journal of Magnetism and Magnetic Materials, 201 (1999) 413–419. https://doi.org/10.1016/S0304-8853(99)00088-8.
139. A. DIEING, O. Ahlers, T. Kerner, P. Wust, R. Felix, J. Löffel, H. Riess, & B. Hildebrandt, Whole body hyperthermia induces apoptosis in subpopulations of blood lymphocytes. Immunobiology, 207 (2003) 265–273. https://doi.org/10.1078/0171-2985-00236.
140. R. Hergt, R. Hiergeist, I. Hilger, W. . Kaiser, Y. Lapatnikov, S. Margel, & U. Richter, Maghemite nanoparticles with very high AC-losses for application in RF-magnetic hyperthermia. Journal of Magnetism and Magnetic Materials, 270 (2004) 345–357. https://doi.org/10.1016/J.JMMM.2003.09.001.
141. S. Goodwin, C. Peterson, C. Hoh, & C. Bittner, Targeting and retention of magnetic targeted carriers (MTCs) enhancing intra-arterial chemotherapy. Journal of Magnetism and Magnetic Materials, 194 (1999) 132–139. https://doi.org/10.1016/S0304-8853(98)00584-8.
142. I. Coroiu, Relaxivities of different superparamagnetic particles for application in NMR tomography. Journal of Magnetism and Magnetic Materials, 201 (1999) 449–452. https://doi.org/10.1016/S0304-8853(99)00025-6.
143. S. Thomsen, Pathologic analysis of photothermal and photomechanical effects of laser-tissue interactions. Photochemistry and photobiology, 53 (1991) 825–35.
144. A. J. Welch & M. J. C. van Gemert, Overview of Optical and Thermal Laser-Tissue Interaction and Nomenclature. Opt. Response Laser-Irradiated Tissue (Dordrecht: Springer Netherlands, 2010), pp. 3–11. https://doi.org/10.1007/978-90-481-8831-4_1.
145. M. J. van Gemert, A. J. Welch, J. W. Pickering, O. T. Tan, & G. H. Gijsbers, Wavelengths for laser treatment of port wine stains and telangiectasia. Lasers in surgery and medicine, 16 (1995) 147–55.
146. X. Huang, P. K. Jain, I. H. El-Sayed, & M. A. El-Sayed, Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers in Medical Science, 23 (2008) 217–228. https://doi.org/10.1007/s10103-007-0470-x.
147. G. Mie & G., Contributions to the optics of turbid media, particularly of colloidal metal solutions. Contributions to the optics of turbid media, particularly of colloidal metal solutions Transl. into ENGLISH from Ann. Phys. (Leipzig), v. 25, no. 3, 1908 p 377-445, (1976).
148. E. Boisselier & D. Astruc, Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chemical Society Reviews, 38 (2009) 1759. https://doi.org/10.1039/b806051g.
149. L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, & J. L. West, Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proceedings of the National Academy of Sciences, 100 (2003) 13549–13554. https://doi.org/10.1073/pnas.2232479100.
150. C. Loo, A. Lin, L. Hirsch, M.-H. Lee, J. Barton, N. Halas, J. West, & R. Drezek, Nanoshell-Enabled Photonics-Based Imaging and Therapy of Cancer. Technology in Cancer Research & Treatment, 3 (2004) 33–40. https://doi.org/10.1177/153303460400300104.
151. A. Vogel & V. Venugopalan, Mechanisms of Pulsed Laser Ablation of Biological Tissues. (2003). https://doi.org/10.1021/CR010379N.
152. P. Ghosh, G. Han, M. De, & C. K. Kim, Gold nanoparticles in delivery applications. Advanced Drug Delivery Reviews, 60 (2008) 1307–1315. https://doi.org/10.1016/J.ADDR.2008.03.016.
153. T. M. Allen & P. R. Cullis, Drug Delivery Systems: Entering the Mainstream. Science, 303 (2004) 1818–1822. https://doi.org/10.1126/science.1095833.
154. G. Mayer & A. Heckel, Biologically Active Molecules with a “Light Switch.” Angewandte Chemie International Edition, 45 (2006) 4900–4921. https://doi.org/10.1002/anie.200600387.
155. H. W. Lei, B. Wu, C. S. Cha, & H. Kita, Electro-oxidation of glucose on platinum in alkaline solution and selective oxidation in the presence of additives. Journal of Electroanalytical Chemistry, (1995). https://doi.org/10.1016/0022-0728(94)03673-Q.
156. Y. M. Lvov, D. G. Shchukin, H. Möhwald, & R. R. Price, Halloysite Clay Nanotubes for Controlled Release of Protective Agents. ACS Nano, 2 (2008) 814–820. https://doi.org/10.1021/nn800259q.
157. L. Zhang, J. M. Chan, F. X. Gu, J.-W. Rhee, A. Z. Wang, A. F. Radovic-Moreno, F. Alexis, R. Langer, & O. C. Farokhzad, Self-Assembled Lipid−Polymer Hybrid Nanoparticles: A Robust Drug Delivery Platform. ACS Nano, 2 (2008) 1696–1702. https://doi.org/10.1021/nn800275r.
158. X. Huang, P. K. Jain, I. H. El-Sayed, & M. A. El-Sayed, Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostics and therapy. Nanomedicine, 2 (2007) 681–693. https://doi.org/10.2217/17435889.2.5.681.
159. L. Tong, Y. Zhao, T. B. Huff, M. N. Hansen, A. Wei, & J.-X. Cheng, Gold Nanorods Mediate Tumor Cell Death by Compromising Membrane Integrity. Advanced Materials, 19 (2007) 3136–3141. https://doi.org/10.1002/adma.200701974.
160. R. S. Norman, J. W. Stone, A. Gole, C. J. Murphy, Tara L., & Sabo-Attwood, Targeted Photothermal Lysis of the Pathogenic Bacteria, Pseudomonas aeruginosa, with Gold Nanorods. (2007). https://doi.org/10.1021/NL0727056.
161. K. Bhattacharyya, B. S. Goldschmidt, M. Hannink, S. Alexander, A. Jurkevic, & J. A. Viator, Gold Nanoparticle–Mediated Detection of Circulating Cancer Cells. Clinics in Laboratory Medicine, 32 (2012) 89–101. https://doi.org/10.1016/j.cll.2012.01.001.
162. S. K. Maji, A. K. Mandal, K. T. Nguyen, P. Borah, & Y. Zhao, Cancer Cell Detection and Therapeutics Using Peroxidase-Active Nanohybrid of Gold Nanoparticle-Loaded Mesoporous Silica-Coated Graphene. ACS Applied Materials & Interfaces, 7 (2015) 9807–9816. https://doi.org/10.1021/acsami.5b01758.
163. C. P. Lin, M. W. Kelly, S. A. B. Sibayan, M. A. Latina, & R. R. Anderson, Selective cell killing by microparticle absorption of pulsed laser radiation. IEEE Journal of Selected Topics in Quantum Electronics, 5 (1999) 963–968. https://doi.org/10.1109/2944.796318.
164. C. M. Pitsillides, E. K. Joe, X. Wei, R. R. Anderson, & C. P. Lin, Selective cell targeting with light-absorbing microparticles and nanoparticles. Biophysical journal, 84 (2003) 4023–32. https://doi.org/10.1016/S0006-3495(03)75128-5.
165. V. P. Zharov, V. Galitovsky, & M. Viegas, Photothermal detection of local thermal effects during selective nanophotothermolysis. Applied Physics Letters, 83 (2003) 4897–4899. https://doi.org/10.1063/1.1632546.
166. I. ELSAYED, X. HUANG, & M. ELSAYED, Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles. Cancer Letters, 239 (2006) 129–135. https://doi.org/10.1016/j.canlet.2005.07.035.
167. X. Huang, P. K. Jain, I. H. El-Sayed, & M. A. El-Sayed, Determination of the Minimum Temperature Required for Selective Photothermal Destruction of Cancer Cells with the Use of Immunotargeted Gold Nanoparticles. Photochemistry and Photobiology, 82 (2006) 412. https://doi.org/10.1562/2005-12-14-RA-754.
168. R. P. (Richard P. Feynman, R. B. Leighton, & M. L. (Matthew L. Sands, The Feynman lectures on physics. Volume 1 (Addison-Wesley, 2011).
169. G. Wu, A. Mikhailovsky, H. A. Khant, C. Fu, W. Chiu, & J. A. Zasadzinski, Remotely Triggered Liposome Release by Near-Infrared Light Absorption via Hollow Gold Nanoshells. Journal of the American Chemical Society, 130 (2008) 8175–8177. https://doi.org/10.1021/ja802656d.
170. J. Chen, D. Wang, J. Xi, L. Au, A. Siekkinen, A. Warsen, Z.-Y. Li, H. Zhang, Y. Xia, & X. Li, Immuno Gold Nanocages with Tailored Optical Properties for Targeted Photothermal Destruction of Cancer Cells. Nano Letters, 7 (2007) 1318–1322. https://doi.org/10.1021/nl070345g.
171. C. Loo, A. Lowery, N. Halas, J. West, & R. Drezek, Immunotargeted Nanoshells for Integrated Cancer Imaging and Therapy. Nano Letters, 5 (2005) 709–711. https://doi.org/10.1021/nl050127s.
172. J. Chen, B. Wiley, Z.-Y. Li, D. Campbell, F. Saeki, H. Cang, L. Au, J. Lee, X. Li, & Y. Xia, Gold Nanocages: Engineering Their Structure for Biomedical Applications. Advanced Materials, 17 (2005) 2255–2261. https://doi.org/10.1002/adma.200500833.
173. H. L. and & J. H. Hafner*, Gold Nanorod Bioconjugates. (2005). https://doi.org/10.1021/CM050935K.
174. T. Niidome, M. Yamagata, Y. Okamoto, Y. Akiyama, H. Takahashi, T. Kawano, Y. Katayama, & Y. Niidome, PEG-modified gold nanorods with a stealth character for in vivo applications. Journal of Controlled Release, 114 (2006) 343–347. https://doi.org/10.1016/J.JCONREL.2006.06.017.
175. J. Kreuter, Application of nanoparticles for the delivery of drugs to the brain. International Congress Series, 1277 (2005) 85–94. https://doi.org/10.1016/J.ICS.2005.02.014.
176. G. Liu, M. R. Garrett, P. Men, X. Zhu, G. Perry, & M. A. Smith, Nanoparticle and other metal chelation therapeutics in Alzheimer disease. Biochimica et Biophysica Acta (BBA) – Molecular Basis of Disease, 1741 (2005) 246–252. https://doi.org/10.1016/j.bbadis.2005.06.006.
177. J. Stehr, C. Hrelescu, R. A. Sperling, G. Raschke, Michael Wunderlich, § Alfons Nichtl, § Dieter Heindl, W. J. P. Konrad Kürzinger, & J. Thomas A. Klar, Feldmann, Gold NanoStoves for Microsecond DNA Melting Analysis. (2008). https://doi.org/10.1021/NL073028I.
178. S. E. Lee, G. L. Liu, F. Kim, & L. P. Lee, Remote Optical Switch for Localized and Selective Control of Gene Interference. Nano Letters, 9 (2009) 562–570. https://doi.org/10.1021/nl802689k.
179. S. Tang, M. Chen, & N. Zheng, Sub-10-nm Pd Nanosheets with Renal Clearance for Efficient Near-Infrared Photothermal Cancer Therapy. Small, 10 (2014) 3139–3144. https://doi.org/10.1002/smll.201303631.
180. X. Song, H. Gong, S. Yin, L. Cheng, C. Wang, Z. Li, Y. Li, X. Wang, G. Liu, & Z. Liu, Ultra-Small Iron Oxide Doped Polypyrrole Nanoparticles for In Vivo Multimodal Imaging Guided Photothermal Therapy. Advanced Functional Materials, 24 (2014) 1194–1201. https://doi.org/10.1002/adfm.201302463.
181. M. Aioub & M. A. El-Sayed, A Real-Time Surface Enhanced Raman Spectroscopy Study of Plasmonic Photothermal Cell Death Using Targeted Gold Nanoparticles. Journal of the American Chemical Society, 138 (2016) 1258–1264. https://doi.org/10.1021/jacs.5b10997.
182. C. Zhang, W. Bu, D. Ni, C. Zuo, C. Cheng, Q. Li, L. Zhang, Z. Wang, & J. Shi, A Polyoxometalate Cluster Paradigm with Self-Adaptive Electronic Structure for Acidity/Reducibility-Specific Photothermal Conversion. Journal of the American Chemical Society, 138 (2016) 8156–8164. https://doi.org/10.1021/jacs.6b03375.
183. R. Bardhan, W. Chen, C. Perez-Torres, M. Bartels, R. M. Huschka, L. L. Zhao, E. Morosan, R. G. Pautler, A. Joshi, & N. J. Halas, Nanoshells with Targeted Simultaneous Enhancement of Magnetic and Optical Imaging and Photothermal Therapeutic Response. Advanced Functional Materials, 19 (2009) 3901–3909. https://doi.org/10.1002/adfm.200901235.
184. T.-K. Ryu, S. W. Baek, R. H. Kang, & S.-W. Choi, Selective Photothermal Tumor Therapy Using Nanodiamond-Based Nanoclusters with Folic Acid. Advanced Functional Materials, 26 (2016) 6428–6436. https://doi.org/10.1002/adfm.201601207.
185. Z. Zhang, L. Wang, J. Wang, X. Jiang, X. Li, Z. Hu, Y. Ji, X. Wu, & C. Chen, Mesoporous Silica-Coated Gold Nanorods as a Light-Mediated Multifunctional Theranostic Platform for Cancer Treatment. Advanced Materials, 24 (2012) 1418–1423. https://doi.org/10.1002/adma.201104714.
186. S. Wang, P. Huang, L. Nie, R. Xing, D. Liu, Z. Wang, J. Lin, S. Chen, G. Niu, G. Lu, & X. Chen, Single Continuous Wave Laser Induced Photodynamic/Plasmonic Photothermal Therapy Using Photosensitizer-Functionalized Gold Nanostars. Advanced Materials, 25 (2013) 3055–3061. https://doi.org/10.1002/adma.201204623.
187. Y. Xia, W. Li, C. M. Cobley, J. Chen, X. Xia, Q. Zhang, M. Yang, E. C. Cho, & P. K. Brown, Gold Nanocages: From Synthesis to Theranostic Applications. Accounts of Chemical Research, 44 (2011) 914–924. https://doi.org/10.1021/ar200061q.
188. Y.-W. Chen, Y.-L. Su, S.-H. Hu, & S.-Y. Chen, Functionalized graphene nanocomposites for enhancing photothermal therapy in tumor treatment. Advanced Drug Delivery Reviews, 105 (2016) 190–204. https://doi.org/10.1016/J.ADDR.2016.05.022.
189. S. Shen, S. Wang, R. Zheng, X. Zhu, X. Jiang, D. Fu, & W. Yang, Magnetic nanoparticle clusters for photothermal therapy with near-infrared irradiation. Biomaterials, 39 (2015) 67–74. https://doi.org/10.1016/J.BIOMATERIALS.2014.10.064.
190. J. Song, F. Wang, X. Yang, B. Ning, M. G. Harp, S. H. Culp, S. Hu, P. Huang, L. Nie, J. Chen, & X. Chen, Gold Nanoparticle Coated Carbon Nanotube Ring with Enhanced Raman Scattering and Photothermal Conversion Property for Theranostic Applications. Journal of the American Chemical Society, 138 (2016) 7005–7015. https://doi.org/10.1021/jacs.5b13475.
191. Z. Zha, X. Yue, Q. Ren, & Z. Dai, Uniform Polypyrrole Nanoparticles with High Photothermal Conversion Efficiency for Photothermal Ablation of Cancer Cells. Advanced Materials, 25 (2013) 777–782. https://doi.org/10.1002/adma.201202211.
192. Y. Lyu, Y. Fang, Q. Miao, X. Zhen, D. Ding, & K. Pu, Intraparticle Molecular Orbital Engineering of Semiconducting Polymer Nanoparticles as Amplified Theranostics for in Vivo Photoacoustic Imaging and Photothermal Therapy. ACS Nano, 10 (2016) 4472–4481. https://doi.org/10.1021/acsnano.6b00168.
193. K. M. L. Taylor-Pashow, J. Della Rocca, Z. Xie, S. Tran, & W. Lin, Postsynthetic Modifications of Iron-Carboxylate Nanoscale Metal−Organic Frameworks for Imaging and Drug Delivery. Journal of the American Chemical Society, 131 (2009) 14261–14263. https://doi.org/10.1021/ja906198y.