Microwave Absorption in Ceramics: Different Mechanisms and its Optimization

$28.50

Microwave Absorption in Ceramics: Different Mechanisms and its Optimization

Charanjeet Singh, Sukhleen Bindra Narang, Rajshree Jotania

In the current scenario of technological devices, industrial, domestic and military applications involve high speed electronic devices operating in GHz region. The microwave absorbers are the key materials incorporated to mitigate electromagnetic interference emanated from high speed electronic devices. In the present chapter, we have discussed microwave absorption mechanisms which are not much explored analytically as well as comprehensively. The necessary mathematical models responsible for absorption have been elaborated with pertinent mechanisms. Both material science and engineering aspects have been covered to elaborate on the conceptual understanding of optimization of microwave absorptions in any ceramics.

Keywords
Ceramics, Microwave Absorption, Mechanisms, Magnetic Hysteresis Loop

Published online 9/20/2019, 16 pages

Citation: Charanjeet Singh, Sukhleen Bindra Narang, Rajshree Jotania, Microwave Absorption in Ceramics: Different Mechanisms and its Optimization, Materials Research Foundations, Vol. 57, pp 175-190, 2019

DOI: https://doi.org/10.21741/9781644900390-8

Part of the book on Engineering Magnetic, Dielectric and Microwave Properties of Ceramics and Alloys

References
[1] J. Tak, E. Jeong and J. Choi, “Metamaterial absorbers for 24-GHz automotive radar applications”, Journal of Electromagnetic Waves and Applications, 31(6) (2017) 577-593. https://doi.org/10.1080/09205071.2017.1297257
[2] Y. J. Yoo, J. S. Hwang and Y. P. Lee, “Flexible perfect metamaterial absorbers for electromagnetic wave”, Journal of Electromagnetic Waves and Applications, 31(7) (2017) 663-715. https://doi.org/10.1080/09205071.2017.1312557
[3] X. X. Xu, J. J. Jiang ,S.W. Bie,Q. Chen,C. K. Zhang and L. Miao, “Optimal Design Of Electromagnetic AbsorbersUsing Visualization Method For Wideband Potential Applications”, Journal of Electromagnetic Waves and Applications, 26 (8-9) (2012) 1215-1225. https://doi.org/10.1080/09205071.2012.710575
[4] Q. Deng, C. E. Huang, H. Wang, L. Zhao, C. Shen, “Microwave Dielectric Properties of (1−x)(Ca0.88Sr0.12)TiO3–x(Bi0.5Na0.5)TiO3 High Dielectric Constant Ceramics”, Journal of Materials Science: Materials in Electronics, 29(5) (2018) 4035–4040. https://doi.org/10.1007/s10854-017-8346-8
[5] J. Zhang, “Interference Effects on Microwave Absorbing Properties of W-Type BaZn2Fe16O27 Prepared by Solid Method”, Journal of Materials Science: Materials in Electronics (2019). https://doi.org/10.1007/s10854-019-01162-x
[6] Y. Liu, X. Su, F. Luo, J. Xu, J. Wang, X. He, Y. Qu, “Enhanced Electromagnetic and Microwave Absorption Properties of Hybrid Ti3SiC2/BaFe12O19 Powders”, Journal of Electronic Materials, 48(4) (2019) 2364–2372. https://doi.org/10.1007/s11664-019-06928-x
[7] U. J. Mahanta, M. Borah, N. S. Bhattacharyya, J. P. Gogoi, “High-Performance Broadband Microwave Absorbers Using Multilayer Dual-Phase Dielectric Composites”, Journal of Electronic Materials, 48(4) (2019) 2438–2448. https://doi.org/10.1007/s11664-019-07038-4
[8] K. G. Kjelgard, D. T. Wisland and T. S. Lande, “3D Printed Wideband Microwave Absorbers using Composite Graphite/PLA Filament”, European Microwave Conference (EuMC), Madrid, 48 (2018) 859-862. https://doi.org/10.23919/EuMC.2018.8541699
[9] S. Ishiyama and N. Kuga, “Non-contact PIM measurement of dielectric wave absorbers by using a metallic resonator”, IEEE MTT-S International Microwave Symposium (IMS), Honololu, HI, (2017) 1270-1273. https://doi.org/10.1109/MWSYM.2017.8058841
[10] R. Deng, K. Zhang, M. Li, L. Song, T. Zhang, “Targeted Design, Analysis and Experimental Characterization of Flexible Microwave Absorber for Window Application”, Materials and Design, 162 (2019) 119–129. https://doi.org/10.1016/j.matdes.2018.11.038
[11] H. Liao, L. Da, Z. Chen L. Tong, “Microporous Co/RGO Nanocomposites: Strong and Broadband Microwave Absorber with Well-Matched Dielectric and Magnetic Loss”, Journal of Alloys and Compounds, 782 (2019) 556–565. https://doi.org/10.1016/j.jallcom.2018.12.241
[12] J. Kuang, P. Jiang, X. Hou, T. Xiao, Q. Zheng, Q. Wang, W. Liu, W. Cao, “Dielectric Permittivity and Microwave Absorption Properties of SiC Nanowires with Different Lengths”, Solid State Sciences, 91(2019) 73–76. https://doi.org/10.1016/j.solidstatesciences.2019.03.015
[13] M. Ma, R. Yang, C. Zhang, B. Wang, Z. Zhao, W. Hu, Z. Liu, D. Yu, F. Wen, J. He, Y. Tian, “Direct Large-Scale Fabrication of C Encapsulated B 4 C Nanoparticles with Tunable Dielectric Properties as Excellent Microwave Absorbers.” Carbon, 148 (2019) 504–511. https://doi.org/10.1016/j.carbon.2019.04.020
[14] Y. Xu, J. Li, H. Ji, X. Zou, J. Zhang, Y. Yan, “Constructing Excellent Electromagnetic Wave Absorber with Dielectric-Dielectric Media Based on 3D Reduced Graphene and Ag(I)-Schiff Base Coordination Compounds”, Journal of Alloys and Compounds, 781 (2019) 560–570. https://doi.org/10.1016/j.jallcom.2018.12.069
[15] D. Zhang, Y. Ma, L. Jiang, X. Zhang, M. Yan, “Milimeter-Scale Metacomposite Absorbers by Structuring Ni@C Nanocapsules for Tunable Microwave Absorption”, Journal of Alloys and Compounds, 784 (2019) 1205–1211. https://doi.org/10.1016/j.jallcom.2019.01.089
[16] A. Ling, J. Pan, G. Tan, X. Gu, Y. Lou, S. Chen, Q. Man, R.-Wei Li, X. Liu, “Thin and Broadband Ce2Fe17N3-δ /MWCNTs Composite Absorber with Efficient Microwave Absorption”, Journal of Alloys and Compounds, 787 (2019) 1097–1103. https://doi.org/10.1016/j.jallcom.2019.02.164
[17] H. Lv, G. Ji, H. Zhang, M. Li, Z. Zuo, Y. Zhao, B. Zhang, D. Tang and Y. Du, “CoxFey@C Composites with Tunable Atomic Ratios for Excellent Electromagnetic Absorption Properties,” Sci. Rep., 5 (2015)18249 (1-5). https://doi.org/10.1038/srep18249
[18] Y. Du, W. Liu, R. Qiang, Y. Wang, X. Han, J. Ma and P. Xu, “Shell Thickness-Dependent Microwave Absorption of Core–Shell Fe3O4@C Composites,” ACS Appl. Mater .Interfaces, vol.6, pp. 12997, 2014. https://doi.org/10.1021/am502910d
[19] B. Wang, J. Wei, Y. Yang, T. Wang and F. Li, “Investigation on peak frequency of the microwave absorption for carbonyl iron/epoxy resin composite,” J. Magn. Magn. Mater., vol. 323, pp. 1101–1103, 2011. https://doi.org/10.1016/j.jmmm.2010.12.028
[20] T. Inui, K. Konishi and K. Oda, “Fabrications of broad-band RF-absorber composed of planar hexagonal ferrites”, IEEE Trans. Magn., 35(1999) 3148–3150. https://doi.org/10.1109/20.801110
[21] H. Kaur, C. Singh, A. Marwaha, S. B. Narang, R. Jotania, S. R. Mishra, Y. Bai, K. C. James Raju, D. Singh, M. Ghimire, P. Dhruv, S. Sombra, “Elucidation of microwave absorption mechanisms in Co-Ga substituted Ba-Sr hexaferrites in X-band”, Journal of Materials Science: Materials in Electronics, 29 (2018) 14995-15005. https://doi.org/10.1007/s10854-018-9638-3
[22] G‑Mei Shi, L. Sun, X. Wang, X. Bao, “Excellent electromagnetic wave absorption properties of LaOCl/C/MnO composites”, Journal of Materials Science: Materials in Electronics 29 (2018) 2236-2243. https://doi.org/10.1007/s10854-017-8138-1
[23] R. Joshi, C. Singh, D. Kaur, S. B. Narang, R. Jotania, J. Singh, Microwave absorption characteristics of Co2+ and W4+ substituted M-type Ba0.5Sr0.5CoxWxFeO19 hexagonal ferrites, Journal of Materials Science: Materials in Electronics, 28 (2017) 228-235. https://doi.org/10.1007/s10854-016-5515-0
[24] K.-K. Ji, Y. Li, M.-S. Cao, “Mn, Ti substituted barium ferrite to tune electromagnetic properties and enhanced microwave absorption”, J. Material Science Materials in Electronics, 27 (2016) 5128-5135. https://doi.org/10.1007/s10854-016-4404-x
[25] G. Mendoza-Suarez, L. P. Rivas-Vazquez, J. C. Corral-Huacuz, A. F. Fuentes, J. I. Escalante-Garcıa, “Magnetic properties and microstructure of BaFe11.6− 2xTixMxO19 (M = Co, Zn, Sn) compounds”, Phy. B 339 (2003) 110–118. https://doi.org/10.1016/j.physb.2003.08.120
[26] A. Ghasemi, A. Morisako, “Static and high frequency magnetic properties of Mn–Co–Zr substituted Ba-ferrite”, J. Alloys Compd. 456 (2008) 485-491. https://doi.org/10.1016/j.jallcom.2007.02.101