Graphene as an Organic and Bioelectronic Material
D. Kireev, A.Offenhäusser
Graphene and graphene-based devices have recently shown a great potential in the field of bioelectronics and healthcare. Graphene-based electrodes and more complex transistors that comprise a new type of bioelectronic devices will be introduced in this chapter. Biocompatibility, stability, excellent and unique electronic properties, scalability, and pure two-dimensional structure make graphene the perfect material for bioelectronic applications. Usage of these devices was shown successful for in vitro studies of cardiac-like cell lines and cortical neuronal networks with signal to noise up to 100. Furthermore, in vivo applications of graphene based devices can lead to higher level of understanding of the brain.
Keywords
Graphene, GFETs, GMEAs, Extracellular Electrophysiology, Neuroprosthetics
Published online 9/20/2019, 32 pages
Citation: D. Kireev, A.Offenhäusser, Graphene as an Organic and Bioelectronic Material, Materials Research Foundations, Vol. 56, pp 153-184, 2019
DOI: https://doi.org/10.21741/9781644900376-5
Part of the book on Organic Bioelectronics for Life Science and Healthcare
References
[1] Novoselov K. S. S., Geim A. K. K., Morozov S. V. V, Jiang D., Zhang Y., Dubonos S. V. V, Grigorieva I. V. V and Firsov A. A. A. Electric field effect in atomically thin carbon films., Science 306 (2004) 666–9. https://doi.org/10.1126/science.1102896
[2] Kostarelos K. and Novoselov K. S. Graphene devices for life, Nat. Nanotechnol. 9 (2014) 744–5. https://doi.org/10.1038/nnano.2014.224
[3] Servant a, Bianco a, Prato M. and Kostarelos K. Graphene for multi-functional synthetic biology: the last “zeitgeist” in nanomedicine., Bioorg. Med. Chem. Lett. 24 (2014) 1638–49. https://doi.org/10.1016/j.bmcl.2014.01.051
[4] Li N., Cheng Y., Song Q., Jiang Z., Tang M. and Cheng G. Graphene meets biology, Chinese Sci. Bull. 59 (2014) 1341–54. https://doi.org/10.1007/s11434-014-0158-0
[5] Duan X., Fu T.-M., Liu J. and Lieber C. M. Nanoelectronics-biology frontier: From nanoscopic probes for action potential recording in live cells to three-dimensional cyborg tissues, Nano Today 8 (2013) 351–73. https://doi.org/10.1016/j.nantod.2013.05.001
[6] Veliev F., Briançon-Marjollet A., Bouchiat V. and Delacour C. Impact of crystalline quality on neuronal affinity of pristine graphene, Biomaterials 86 (2016) 33–41. https://doi.org/10.1016/j.biomaterials.2016.01.042
[7] Fabbro A., Scaini D., León V., Vázquez E., Cellot G., Privitera G., Lombardi L., Torrisi F., Tomarchio F., Bonaccorso F., Bosi S., Ferrari A. C., Ballerini L. and Prato M. Graphene-Based Interfaces Do Not Alter Target Nerve Cells, ACS Nano 10 (2016) 615–23. https://doi.org/10.1021/acsnano.5b05647
[8] Bendali A., Hess L. H., Seifert M., Forster V., Stephan A., Garrido J. a and Picaud S. Purified Neurons can Survive on Peptide-Free Graphene Layers, Adv. Healthc. Mater. 2 (2013) 929–33. https://doi.org/10.1002/adhm.201200347
[9] Cohen-Karni T., Qing Q., Li Q., Fang Y. and Lieber C. M. Graphene and Nanowire Transistors for Cellular Interfaces and Electrical Recording, Nano Lett. 10 (2010) 1098–102. https://doi.org/10.1021/nl1002608
[10] Hess L. H., Hauf M. V., Seifert M., Speck F., Seyller T., Stutzmann M., Sharp I. D. and Garrido J. A. High-transconductance graphene solution-gated field effect transistors, Appl. Phys. Lett. 99 (2011) 33503. https://doi.org/10.1063/1.3614445
[11] Kireev D., Brambach M., Seyock S., Maybeck V., Fu W., Wolfrum B. and Offenhäusser A. Graphene transistors for interfacing with cells: towards a deeper understanding of liquid gating and sensitivity, Sci. Rep. 7 (2017) 6658. https://doi.org/10.1038/s41598-017-06906-5
[12] Hess L. H., Jansen M., Maybeck V., Hauf M. V, Seifert M., Stutzmann M., Sharp I. D., Offenhäusser A. and Garrido J. a Graphene transistor arrays for recording action potentials from electrogenic cells., Adv. Mater. 23 (2011) 5045–9, 4968. https://doi.org/10.1002/adma.201102990
[13] Kuzum D., Takano H., Shim E., Reed J. C., Juul H., Richardson A. G., de Vries J., Bink H., Dichter M. A., Lucas T. H., Coulter D. A., Cubukcu E. and Litt B. Transparent and flexible low noise graphene electrodes for simultaneous electrophysiology and neuroimaging, Nat. Commun. 5 (2014) 5259. https://doi.org/10.1038/ncomms6259
[14] Park D.-W., Schendel A. A., Mikael S., Brodnick S. K., Richner T. J., Ness J. P., Hayat M. R., Atry F., Frye S. T., Pashaie R., Thongpang S., Ma Z. and Williams J. C. Graphene-based carbon-layered electrode array technology for neural imaging and optogenetic applications, Nat. Commun. 5 (2014) 5258. https://doi.org/10.1038/ncomms6258
[15] Du X., Wu L., Cheng J., Huang S., Cai Q., Jin Q. and Zhao J. Graphene microelectrode arrays for neural activity detection, J. Biol. Phys. 41 (2015) 339–47. https://doi.org/10.1007/s10867-015-9382-3
[16] Kireev D., Seyock S., Lewen J., Maybeck V., Wolfrum B. and Offenhäusser A. Graphene Multielectrode Arrays as a Versatile Tool for Extracellular Measurements, Adv. Healthc. Mater. 6 (2017) 1601433. https://doi.org/10.1002/adhm.201601433
[17] Castro Neto A. H., Guinea F., Peres N. M. R., Novoselov K. S. and Geim A. K. The electronic properties of graphene, Rev. Mod. Phys. 81 (2009) 109–62. https://doi.org/10.1103/RevModPhys.81.109
[18] Sham A. Y. W. and Notley S. M. A review of fundamental properties and applications of polymer–graphene hybrid materials, Soft Matter 9 (2013) 6645. https://doi.org/10.1039/c3sm00092c
[19] Norimatsu W. and Kusunoki M. Epitaxial graphene on SiC{0001}: advances and perspectives, Phys. Chem. Chem. Phys. 16 (2014) 3501. https://doi.org/10.1039/c3cp54523g
[20] Mattevi C., Kim H. and Chhowalla M. A review of chemical vapour deposition of graphene on copper, J. Mater. Chem. 21 (2011) 3324–34. https://doi.org/10.1039/C0JM02126A
[21] Wu T., Zhang X., Yuan Q., Xue J., Lu G., Liu Z., Wang H., Wang H., Ding F., Yu Q., Xie X. and Jiang M. Fast growth of inch-sized single-crystalline graphene from a controlled single nucleus on Cu–Ni alloys, Nat. Mater. 15 (2015) 43–7. https://doi.org/10.1038/nmat4477
[22] Pierce J. R. The naming of the transistor, Proc. IEEE 86 (1998) 37–45. https://doi.org/10.1109/5.658756
[23] Bolotin K. I., Sikes K. J., Jiang Z., Klima M., Fudenberg G., Hone J., Kim P. and Stormer H. L. Ultrahigh electron mobility in suspended graphene, Solid State Commun. 146 (2008) 351–5. https://doi.org/10.1016/j.ssc.2008.02.024
[24] Banszerus L., Schmitz M., Engels S., Dauber J., Oellers M., Haupt F., Watanabe K., Taniguchi T., Beschoten B. and Stampfer C. Ultrahigh-mobility graphene devices from chemical vapor deposition on reusable copper, Sci. Adv. 1 (2015) e1500222. https://doi.org/10.1126/sciadv.1500222
[25] Morozov S. V., Novoselov K. S., Katsnelson M. I., Schedin F., Elias D. C., Jaszczak J. A. and Geim A. K. Giant Intrinsic Carrier Mobilities in Graphene and Its Bilayer, Phys. Rev. Lett. 100 (2008) 16602. https://doi.org/10.1103/PhysRevLett.100.016602
[26] Schwierz F. Graphene transistors., Nat. Nanotechnol. 5 (2010) 487–96. https://doi.org/10.1038/nnano.2010.89
[27] Ramayya E. B., Vasileska D., Goodnick S. M. and Knezevic I. Electron Mobility in Silicon Nanowires, IEEE Trans. Nanotechnol. 6 (2007) 113–7. https://doi.org/10.1109/TNANO.2006.888521
[28] Hess L. H., Seifert M. and Garrido J. a. Graphene Transistors for Bioelectronics, Proc. IEEE 101 (2013) 1780–92. https://doi.org/10.1109/JPROC.2013.2261031
[29] Kim K., Choi J.-Y., Kim T., Cho S.-H. and Chung H.-J. A role for graphene in silicon-based semiconductor devices., Nature 479 (2011) 338–44. https://doi.org/10.1038/nature10680
[30] Dankerl M., Hauf M. V., Lippert A., Hess L. H., Birner S., Sharp I. D., Mahmood A., Mallet P., Veuillen J.-Y. Y., Stutzmann M. and Garrido J. a. Graphene Solution-Gated Field-Effect Transistor Array for Sensing Applications, Adv. Funct. Mater. 20 (2010) 3117–24. https://doi.org/10.1002/adfm.201000724
[31] Cheng Z., Li Q., Li Z., Zhou Q. and Fang Y. Suspended graphene sensors with improved signal and reduced noise, Nano Lett. 10 (2010) 1864–8. https://doi.org/10.1021/nl100633g
[32] Kireev D., Zadorozhnyi I., Qiu T., Sarik D., Brings F., Wu T., Seyock S., Maybeck V., Lottner M., Blaschke B., Garrido J., Xie X., Vitusevich S., Wolfrum B. and Offenhausser A. Graphene field effect transistors for in vitro and ex vivo recordings, IEEE Trans. Nanotechnol. 17 (2016) 1–1. https://doi.org/10.1109/TNANO.2016.2639028
[33] Drieschner S., Guimerà A., Cortadella R. G., Viana D., Makrygiannis E., Blaschke B. M., Vieten J. and Garrido J. A. Frequency response of electrolyte-gated graphene electrodes and transistors, J. Phys. D. Appl. Phys. 50 (2017) 95304. https://doi.org/10.1088/1361-6463/aa5443
[34] Kireev D., Sarik D., Wu T., Xie X., Wolfrum B. and Offenhäusser A. High throughput transfer technique: Save your graphene, Carbon N. Y. 107 (2016) 319–24. https://doi.org/10.1016/j.carbon.2016.05.058
[35] Bard A. J. and Faulkner L. R. Electrochemical Methods: Fundamentals and Applications (Wiley).
[36] Park D.-W., Ness J. P., Brodnick S. K., Esquibel C., Novello J., Atry F., Baek D.-H., Kim H., Bong J., Swanson K. I., Suminski A. J., Otto K. J., Pashaie R., Williams J. C. and Ma Z. Electrical Neural Stimulation and Simultaneous in Vivo Monitoring with Transparent Graphene Electrode Arrays Implanted in GCaMP6f Mice, ACS Nano 12 (2018) 148–57. https://doi.org/10.1021/acsnano.7b04321
[37] Lu Y., Lyu H., Richardson A. G., Lucas T. H. and Kuzum D. Flexible Neural Electrode Array Based-on Porous Graphene for Cortical Microstimulation and Sensing, Sci. Rep. 6 (2016) 33526. https://doi.org/10.1038/srep33526
[38] Fu W., Nef C., Knopfmacher O., Tarasov A., Weiss M., Calame M. and Schönenberger C. Graphene transistors are insensitive to pH changes in solution, Nano Lett. 11 (2011) 3597–600. https://doi.org/10.1021/nl201332c
[39] Kuila T., Bose S., Khanra P., Mishra A. K., Kim N. H. and Lee J. H. Recent advances in graphene-based biosensors, Biosens. Bioelectron. 26 (2011) 4637–48. https://doi.org/10.1016/j.bios.2011.05.039
[40] Fu W., Jiang L., van Geest E. P., Lima L. M. C. and Schneider G. F. Sensing at the Surface of Graphene Field-Effect Transistors, Adv. Mater. 29 (2017) 1603610. https://doi.org/10.1002/adma.201603610
[41] Ecken H., Ingebrandt S., Krause M., Richter D., Hara M. and Offenhäusser A. 64-Channel extended gate electrode arrays for extracellular signal recording, Electrochim. Acta 48 (2003) 3355–62. https://doi.org/10.1016/S0013-4686(03)00405-5
[42] Krause M., Ingebrandt S., Richter D., Denyer M., Scholl M., Sprössler C. and Offenhäusser A. Extended gate electrode arrays for extracellular signal recordings, Sensors Actuators, B Chem. 70 (2000) 101–7. https://doi.org/10.1016/S0925-4005(00)00568-2
[43] Neher E. and Sakmann B. Single-channel currents recorded from membrane of denervated frog muscle fibres., Nature 260 (1976) 799–802. https://doi.org/10.1038/260799a0
[44] Rutten W. L. C. Selective electrical interfaces with the nervous system., Annu. Rev. Biomed. Eng. 4 (2002) 407–52. https://doi.org/10.1146/annurev.bioeng.4.020702.153427
[45] Hess L. H., Becker-Freyseng C., Wismer M. S., Blaschke B. M., Lottner M., Rolf F., Seifert M. and Garrido J. A. Electrical Coupling Between Cells and Graphene Transistors, Small 11 (2015) 1703–10. https://doi.org/10.1002/smll.201402225
[46] Brown M. A., Crosser M. S., Leyden M. R., Qi Y. and Minot E. D. Measurement of high carrier mobility in graphene in an aqueous electrolyte environment, Appl. Phys. Lett. 109 (2016) 93104. https://doi.org/10.1063/1.4962141
[47] Cheng Z., Hou J., Zhou Q., Li T., Li H., Yang L., Jiang K., Wang C., Li Y. and Fang Y. Sensitivity Limits and Scaling of Bioelectronic Graphene Transducers, Nano Lett. 13 (2013) 2902–7. https://doi.org/10.1021/nl401276n
[48] Blaschke B. M., Lottner M., Drieschner S., Calia A. B., Stoiber K., Rousseau L., Lissourges G. and Garrido J. A. Flexible graphene transistors for recording cell action potentials, 2D Mater. 3 (2016) 25007. https://doi.org/10.1088/2053-1583/3/2/025007
[49] Cheng J., Wu L., Du X.-W., Jin Q.-H., Zhao J.-L. and Xu Y.-S. Flexible Solution-Gated Graphene Field Effect Transistor for Electrophysiological Recording, J. Microelectromechanical Syst. 23 (2014) 1311–7. https://doi.org/10.1109/JMEMS.2014.2312714
[50] Sprössler C., Denyer M., Britland S., Knoll W. and Offenhäusser a Electrical recordings from rat cardiac muscle cells using field-effect transistors., Phys. Rev. E. Stat. Phys. Plasmas. Fluids. Relat. Interdiscip. Topics 60 (1999) 2171–6. https://doi.org/10.1103/PhysRevE.60.2171
[51] Schottdorf M., Hofmann B., Kätelhön E., Offenhäusser A. and Wolfrum B. Frequency-dependent signal transfer at the interface between electrogenic cells and nanocavity electrodes, Phys. Rev. E – Stat. Nonlinear, Soft Matter Phys. 85 (2012) 31917. https://doi.org/10.1103/PhysRevE.85.031917
[52] Blaschke B. M., Tort-Colet N., Guimerà-Brunet A., Weinert J., Rousseau L., Heimann A., Drieschner S., Kempski O., Villa R., Sanchez-Vives M. V. and Garrido J. A. Mapping brain activity with flexible graphene micro-transistors, 2D Mater. 4 (2017) 25040. https://doi.org/10.1088/2053-1583/aa5eff
[53] Hébert C., Masvidal-Codina E., Suarez-Perez A., Calia A. B., Piret G., Garcia-Cortadella R., Illa X., Del Corro Garcia E., De la Cruz Sanchez J. M., Casals D. V., Prats-Alfonso E., Bousquet J., Godignon P., Yvert B., Villa R., Sanchez-Vives M. V., Guimerà-Brunet A. and Garrido J. A. Flexible Graphene Solution-Gated Field-Effect Transistors: Efficient Transducers for Micro-Electrocorticography, Adv. Funct. Mater. 1703976 (2017) 1703976. https://doi.org/10.1002/adfm.201703976
[54] Claycomb W. C., Lanson N. A., Stallworth B. S., Egeland D. B., Delcarpio J. B., Bahinski A. and Izzo N. J. HL-1 cells: a cardiac muscle cell line that contracts and retains phenotypic characteristics of the adult cardiomyocyte, Proc Natl Acad Sci USA 95 (1998) 2979–84. https://doi.org/10.1073/pnas.95.6.2979
[55] White S. M., Constantin P. E. and Claycomb W. C. Cardiac physiology at the cellular level: use of cultured HL-1 cardiomyocytes for studies of cardiac muscle cell structure and function., Am. J. Physiol. Heart Circ. Physiol. 286 (2004) H823–9. https://doi.org/10.1152/ajpheart.00986.2003
[56] Spira M. E. and Hai A. Multi-electrode array technologies for neuroscience and cardiology, Nat. Nanotechnol. 8 (2013) 83–94. https://doi.org/10.1038/nnano.2012.265
[57] Czeschik A., Rinklin P., Derra U., Ullmann S., Holik P., Steltenkamp S. S., Offenhäusser A. and Wolfrum B. Nanostructured cavity devices for extracellular stimulation of HL-1 cells, Nanoscale 7 (2015) 9275–81. https://doi.org/10.1039/C5NR01690H
[58] Wang Y. Y., Pham T. D., Zand K., Li J., Burke P. J. and Al W. E. T. Charging the Quantum Capacitance of Graphene with a Single Biological Ion Channel., ACS Nano 8 (2014) 4228–38. https://doi.org/10.1021/nn501376z
[59] Ang P. K., Jaiswal M., Lim C. H. Y. X., Wang Y., Sankaran J., Li A., Lim C. T., Wohland T., Barbaros O. and Loh K. P. A Bioelectronic Platform Using a Graphene−Lipid Bilayer Interface, ACS Nano 4 (2010) 7387–94. https://doi.org/10.1021/nn1022582
[60] Xie C., Lin Z., Hanson L., Cui Y. and Cui B. Intracellular recording of action potentials by nanopillar electroporation, Nat. Nanotechnol. 7 (2012) 185–90. https://doi.org/10.1038/nnano.2012.8
[61] Fromherz P., Offenhäusser A., Vetter T. and Weis J. A neuron-silicon junction: a Retzius cell of the leech on an insulated-gate field-effect transistor., Science 252 (1991) 1290–3. https://doi.org/10.1126/science.1925540
[62] Kireev D., Seyock S., Ernst M., Maybeck V., Wolfrum B. and Offenhäusser A. Versatile Flexible Graphene Multielectrode Arrays, Biosensors 7 (2016) 1. https://doi.org/10.3390/bios7010001
[63] Gross G. W. Simultaneous Single Unit Recording in vitro with a Photoetched Laser Deinsulated Gold Multimicroelectrode Surface, IEEE Trans. Biomed. Eng. BME-26 (1979) 273–9. https://doi.org/10.1109/TBME.1979.326402
[64] Gross G. W., Williams A. N. and Lucas J. H. Recording of spontaneous activity with photoetched microelectrode surfaces from mouse spinal neurons in culture, J. Neurosci. Methods 5 (1982) 13–22. https://doi.org/10.1016/0165-0270(82)90046-2
[65] Thomas C. A., Springer P. A., Loeb G. E., Berwald-Netter Y. and Okun L. M. A miniature microelectrode array to monitor the bioelectric activity of cultured cells, Exp. Cell Res. 74 (1972) 61–6. https://doi.org/10.1016/0014-4827(72)90481-8
[66] Droge M. H., Gross G. W., Hightower M. H. and Czisny L. E. Multielectrode analysis of coordinated, multisite, rhythmic bursting in cultured CNS monolayer networks., J. Neurosci. 6 (1986) 1583–92. https://doi.org/10.1523/JNEUROSCI.06-06-01583.1986
[67] Bareket-Keren L. and Hanein Y. Carbon nanotube-based multi electrode arrays for neuronal interfacing: progress and prospects, Front. Neural Circuits 6 (2013) 122. https://doi.org/10.3389/fncir.2012.00122
[68] Yi W., Chen C., Feng Z., Xu Y., Zhou C., Masurkar N., Cavanaugh J., Cheng M. M.-C. and Ming-Cheng Cheng M. A flexible and implantable microelectrode arrays using high-temperature grown vertical carbon nanotubes and a biocompatible polymer substrate, Nanotechnology 26 (2015) 125301. https://doi.org/10.1088/0957-4484/26/12/125301
[69] Chen C. H., Lin C. T., Chen J. J., Hsu W. L., Chang Y. C., Yeh S. R., Li L. J. and Yao D. J. A graphene-based microelectrode for recording neural signals 2011 16th International Solid-State Sensors, Actuators and Microsystems Conference (IEEE) pp 1883–6. https://doi.org/10.1109/TRANSDUCERS.2011.5969794
[70] Chen C. H., Lin C. Te, Hsu W. L., Chang Y. C., Yeh S. R., Li L. J. and Yao D. J. A flexible hydrophilic-modified graphene microprobe for neural and cardiac recording, Nanomedicine Nanotechnology, Biol. Med. 9 (2013) 600–4. https://doi.org/10.1016/j.nano.2012.12.004
[71] Park D., Brodnick S. K., Ness J. P., Atry F., Krugner-Higby L., Sandberg A., Mikael S., Richner T. J., Novello J., Kim H., Baek D., Bong J., Frye S. T., Thongpang S., Swanson K. I., Lake W., Pashaie R., Williams J. C. and Ma Z. Fabrication and utility of a transparent graphene neural electrode array for electrophysiology, in vivo imaging, and optogenetics, Nat. Protoc. 11 (2016) 2201–22. https://doi.org/10.1038/nprot.2016.127
[72] D. Kireev and A. Offenhäusser, “Graphene & two-dimensional devices for bioelectronics and neuroprosthetics,” 2D Mater., vol. 5, no. 4, p. 042004, Sep. 2018. https://doi.org/10.1088/2053-1583/aad988