Graphene Based Field Effect Transistors for Biosensing: Importance of Surface Modification

$28.50

Graphene Based Field Effect Transistors for Biosensing: Importance of Surface Modification

Sabine Szunerits, Rabah Boukherroub, Alina Vasilescu, Serban Peteu

In the last decade the use of field-effect-based devices has become a basic structural element in a new generation of biosensors that allow label-free analysis. This field has been dominated for a long time by optically based readout techniques utilizing fluorescent markers or those requiring advanced spectroscopic equipment. While other fields have benefited from new technologies based upon advancements in semiconductor integrated circuit technology, chemical and biological sensors have remained dependent upon biochemical assays due to the challenges of achieving sensitivity and selectivity with semiconductor-based sensors. Silicon transistor-based readout sensors have been developed, but these devices suffered from poor sensitivity and selectivity due to fundamental shortcomings of the silicon structure. Recently, new electronic sensors have overcome the limitations of the current silicon sensors through the development of low dimensional materials, nanowires, nanotubes, and two-dimensional (2D) films. While sensors based upon one-dimensional (1D) structures, specifically carbon nanotubes (CNTs), have demonstrated excellent sensitivity and at least the promise of selectivity, the production of devices from 1D structures has proven difficult. Graphene offers the same performance opportunities as 1D structures along with the advantages of working with a planar film. The advancements in the production of graphene from the easier mechanical cleavage to more complex and higher quality constructions together with the synthesis of graphene on an industrial sale has been an important factor for considering graphene as element in biosensors. In this chapter, we aim to show the advances made in the integration of graphene and graphene composite materials into FET devices and present the surface chemistry strategies employed for GFETs based sensing applications for biological relevant molecules. We conclude with some critical comments on the advantages and experimental challenges as well as some perspectives for the future research and development in this field.

Keywords
Graphene, Field Effect Transistor (FET), Biosensing, Surface Modification

Published online 9/20/2019, 38 pages

Citation: Sabine Szunerits, Rabah Boukherroub, Alina Vasilescu, Serban Peteu, Graphene Based Field Effect Transistors for Biosensing: Importance of Surface Modification, Materials Research Foundations, Vol. 56, pp 115-152, 2019

DOI: https://doi.org/10.21741/9781644900376-4

Part of the book on Organic Bioelectronics for Life Science and Healthcare

References
[1] Wong, H. S. P., Beyond the conventional transistor. Solid-State Electronics 2005, 49 (5), 755-762. https://doi.org/10.1016/j.sse.2004.10.014
[2] Elfström, N.; Karlström, A. E.; Linnros, J., Silicon Nanoribbons for Electrical Detection of Biomolecules. Nano Letters 2008, 8 (3), 945-949. https://doi.org/10.1021/nl080094r
[3] Vacic, A.; Criscione, J. M.; Stern, E.; Rajan, N. K.; Fahmy, T.; Reed, M. A., Multiplexed SOI BioFETs. Biosensors and Bioelectronics 2011, 28 (1), 239-242. https://doi.org/10.1016/j.bios.2011.07.025
[4] Li, Z.; Chen, Y.; Li, X.; Kamins, T. I.; Nauka, K.; Williams, R. S., Sequence-Specific Label-Free DNA Sensors Based on Silicon Nanowires. Nano Letters 2004, 4 (2), 245-247. https://doi.org/10.1021/nl034958e
[5] Stern, E.; Klemic, J. F.; Routenberg, D. A.; Wyrembak, P. N.; Turner-Evans, D. B.; Hamilton, A. D.; LaVan, D. A.; Fahmy, T. M.; Reed, M. A., Label-free immunodetection with CMOS-compatible semiconducting nanowires. Nature 2007, 445 (7127), 519-522. https://doi.org/10.1038/nature05498
[6] Larisika, M.; Kotlowski, C.; Steininger, C.; Mastrogiacomo, R.; Pelosi, P.; Schütz, S.; Peteu, S. F.; Kleber, C.; Reiner-Rozman, C.; Nowak, C.; Knoll, W., Electronic Olfactory Sensor Based on A. mellifera Odorant-Binding Protein 14 on a Reduced Graphene Oxide Field-Effect Transistor. Angewandte Chemie International Edition 2015, 54 (45), 13245-13248. https://doi.org/10.1002/anie.201505712
[7] Bergveld, P., Development of an ion-sensitive solid-state device for neurophysiological measurements. IEEE Trans Biomed Eng 1970, 17 (1), 70-1. https://doi.org/10.1109/TBME.1970.4502688
[8] Cui, Y.; Wei, Q.; Park, H.; Lieber, C. M., Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 2001, 293 (5533), 1289-92. https://doi.org/10.1126/science.1062711
[9] Hahm, J.-i.; Lieber, C. M., Direct Ultrasensitive Electrical Detection of DNA and DNA Sequence Variations Using Nanowire Nanosensors. Nano Letters 2004, 4 (1), 51-54. https://doi.org/10.1021/nl034853b
[10] Zheng, G.; Patolsky, F.; Lieber, C. M., Multiplexed Electrical Detection of Single Viruses. MRS Proceedings 2011, 828, 79-84. https://doi.org/10.1557/PROC-828-A2.2
[11] Schwierz, F., Graphene transistors. Nature Nanotechnology 2010, 5, 487–496. https://doi.org/10.1038/nnano.2010.89
[12] Li, X.; Cai, W.; An, J.; Kim, S.; Nah, J.; Yang, D.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E.; Banerjee, S. K.; Colombo, L.; Ruoff, R. S., Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324 (5932), 1312-4. https://doi.org/10.1126/science.1171245
[13] Akhavan, O.; Ghaderi, E.; Esfandiar, A., Wrapping Bacteria by Graphene Nanosheets for Isolation from Environment, Reactivation by Sonication, and Inactivation by Near-Infrared Irradiation. The Journal of Physical Chemistry B 2011, 115 (19), 6279-6288. https://doi.org/10.1021/jp200686k
[14] Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S.; Geim, A. K., Raman Spectrum of Graphene and Graphene Layers. Physical Review Letters 2006, 97 (18), 187401. https://doi.org/10.1103/PhysRevLett.97.187401
[15] Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J.-H.; Kim, P.; Choi, J.-Y.; Hong, B. H., Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 2009, 457 (7230), 706-710. https://doi.org/10.1038/nature07719
[16] Chen, J.-H.; Jang, C.; Xiao, S.; Ishigami, M.; Fuhrer, M. S., Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nature Nanotechnology 2008, 3 (4), 206-209. https://doi.org/10.1038/nnano.2008.58
[17] Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A., Electric field in atomically thin carbon films. Science 2004, 306 (5696), 666-669. https://doi.org/10.1126/science.1102896
[18] Geim, A. K.; Novoselov, K. S., The rise of graphene. Nature Materials 2007, 6 (3), 183-191. https://doi.org/10.1038/nmat1849
[19] Pumera, M., Graphene-based nanomaterials and their electrochemistry. Chemical Society reviews 2010, 39 (11), 4146-4157. https://doi.org/10.1039/c002690p
[20] Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Khotkevich, V. V.; Morozov, S. V.; Geim, A. K., Two-dimensional atomic crystals. Proceedings of the National Academy of Sciences 2005, 102 (30), 10451-3. https://doi.org/10.1073/pnas.0502848102
[21] Shang, N. G.; Papakonstantinou, P.; McMullan, M.; Chu, M.; Stamboulis, A.; Potenza, A.; Dhesi, S. S.; Marchetto, H., Catalyst-Free Efficient Growth, Orientation and Biosensing Properties of Multilayer Graphene Nanoflake Films with Sharp Edge Planes. Advanced Functional Materials 2008, 18 (21), 3506-3514. https://doi.org/10.1002/adfm.200800951
[22] Li, X.; Magnuson, C. W.; Venugopal, A.; Tromp, R. M.; Hannon, J. B.; Vogel, E. M.; Colombo, L.; Ruoff, R. S., Large-Area Graphene Single Crystals Grown by Low-Pressure Chemical Vapor Deposition of Methane on Copper. Journal of the American Chemical Society 2011, 133 (9), 2816-2819. https://doi.org/10.1021/ja109793s
[23] Son, J. G.; Son, M.; Moon, K.-J.; Lee, B. H.; Myoung, J.-M.; Strano, M. S.; Ham, M.-H.; Ross, C. A., Sub-10 nm Graphene Nanoribbon Array Field-Effect Transistors Fabricated by Block Copolymer Lithography. Advanced materials (Deerfield Beach, Fla.) 2013, 25 (34), 4723-4728. https://doi.org/10.1002/adma.201300813
[24] Hummers, W. S.; Offeman, R. E., Preparation of Graphitic Oxide. Journal of the American Chemical Society 1958, 80 (6), 1339-1339. https://doi.org/10.1021/ja01539a017
[25] Marcano, D. C.; Kosynkin, D. V.; Berlin, J. M.; Sinitskii, A.; Sun, Z.; Slesarev, A.; Alemany, L. B.; Lu, W.; Tour, J. M., Improved Synthesis of Graphene Oxide. ACS Nano 2010, 4 (8), 4806-4814. https://doi.org/10.1021/nn1006368
[26] Staudenmaier, L., Verfahren zur Darstellung der Graphitsäure. Berichte der deutschen chemischen Gesellschaft 1899, 31 (2), 1481–1487. https://doi.org/10.1002/cber.18980310237
[27] He, H.; Klinowski, J.; Forster, M.; Lerf, A., A new structural model for graphite oxide. Chemical Physics Letters 1998, 287 (1), 53-56. https://doi.org/10.1016/S0009-2614(98)00144-4
[28] Lerf, A.; He, H.; Forster, M.; Klinowski, J., Structure of Graphite Oxide Revisited. The Journal of Physical Chemistry B 1998, 102 (23), 4477-4482. https://doi.org/10.1021/jp9731821
[29] Allen, M. J.; Tung, V. C.; Kaner, R. B., Honeycomb Carbon: A Review of Graphene. Chemical Reviews 2010, 110 (1), 132-145. https://doi.org/10.1021/cr900070d
[30] Amarnath, C. A.; Hong, C. E.; Kim, N. H.; Ku, B.-C.; Kuila, T.; Lee, J. H., Efficient synthesis of graphene sheets using pyrrole as a reducing agent. Carbon 2011, 49 (11), 3497-3502. https://doi.org/10.1016/j.carbon.2011.04.048
[31] Compton, O. C.; Jain, B.; Dikin, D. A.; Abouimrane, A.; Amine, K.; Nguyen, S. T., Chemically Active Reduced Graphene Oxide with Tunable C/O Ratios. ACS Nano 2011, 5 (6), 4380-4391. https://doi.org/10.1021/nn1030725
[32] Dreyer, D. R.; Murali, S.; Zhu, Y.; Ruoff, R. S.; Bielawski, C. W., Reduction of graphite oxide using alcohols. Journal of Materials Chemistry 2011, 21 (10), 3443-3447. https://doi.org/10.1039/C0JM02704A
[33] Dreyer, D. R.; Park, S.; Bielawski, C. W.; Ruoff, R. S., The chemistry of graphene oxide. Chemical Society reviews 2010, 39 (1), 228-40. https://doi.org/10.1039/B917103G
[34] Fan, X.; Peng, W.; Li, Y.; Li, X.; Wang, S.; Zhang, G.; Zhang, F., Deoxygenation of Exfoliated Graphite Oxide under Alkaline Conditions: A Green Route to Graphene Preparation. Advanced materials (Deerfield Beach, Fla.) 2008, 20 (23), 4490-4493. https://doi.org/10.1002/adma.200801306
[35] Fan, Z.-J.; Kai, W.; Yan, J.; Wei, T.; Zhi, L.-J.; Feng, J.; Ren, Y.-m.; Song, L.-P.; Wei, F., Facile Synthesis of Graphene Nanosheets via Fe Reduction of Exfoliated Graphite Oxide. ACS Nano 2011, 5 (1), 191-198. https://doi.org/10.1021/nn102339t
[36] Fellahi, O.; Das, M. R.; Coffinier, Y.; Szunerits, S.; Hadjersi, T.; Maamache, M.; Boukherroub, R., Silicon nanowire arrays-induced graphene oxide reduction under UV irradiation. Nanoscale 2011, 3 (11), 4662-4669. https://doi.org/10.1039/c1nr10970g
[37] Kaminska, I.; Das, M. R.; Coffinier, Y.; Niedziolka-Jonsson, J.; Sobczak, J.; Woisel, P.; Lyskawa, J.; Opallo, M.; Boukherroub, R.; Szunerits, S., Reduction and Functionalization of Graphene Oxide Sheets Using Biomimetic Dopamine Derivatives in One Step. ACS Applied Materials & Interfaces 2012, 4 (2), 1016-1020. https://doi.org/10.1021/am201664n
[38] Kaminska, I.; Das, M. R.; Coffinier, Y.; Niedziolka-Jonsson, J.; Woisel, P.; Opallo, M.; Szunerits, S.; Boukherroub, R., Preparation of graphene/tetrathiafulvalene nanocomposite switchable surfaces. Chemical Communications 2012, 48 (9), 1221-1223. https://doi.org/10.1039/C1CC15215G
[39] Kaminska, I.; Barras, A.; Coffinier, Y.; Lisowski, W.; Roy, S.; Niedziolka-Jonsson, J.; Woisel, P.; Lyskawa, J.; Opallo, M.; Siriwardena, A.; Boukherroub, R.; Szunerits, S., Preparation of a Responsive Carbohydrate-Coated Biointerface Based on Graphene/Azido-Terminated Tetrathiafulvalene Nanohybrid Material. ACS Applied Materials & Interfaces 2012, 4 (10), 5386-5393. https://doi.org/10.1021/am3013196
[40] Li, D.; Muller, M. B.; Gilje, S.; Kaner, R. B.; Wallace, G. G., Processable aqueous dispersions of graphene nanosheets. Nature Nanotechnology 2008, 3 (2), 101-105. https://doi.org/10.1038/nnano.2007.451
[41] Moon, I. K.; Lee, J.; Ruoff, R. S.; Lee, H., Reduced graphene oxide by chemical graphitization. Nature communications 2010, 1, 73. https://doi.org/10.1038/ncomms1067
[42] Park, S.; Ruoff, R. S., Chemical methods for the production of graphenes. Nature Nanotechnology 2009, 4 (4), 217-224. https://doi.org/10.1038/nnano.2009.58
[43] Shin, H.-J.; Kim, K. K.; Benayad, A.; Yoon, S.-M.; Park, H. K.; Jung, I.-S.; Jin, M. H.; Jeong, H.-K.; Kim, J. M.; Choi, J.-Y.; Lee, Y. H., Efficient Reduction of Graphite Oxide by Sodium Borohydride and Its Effect on Electrical Conductance. Advanced Functional Materials 2009, 19 (12), 1987-1992. https://doi.org/10.1002/adfm.200900167
[44] Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S. T.; Ruoff, R. S., Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 2007, 45 (7), 1558-1565. https://doi.org/10.1016/j.carbon.2007.02.034
[45] Tung, V. C.; Allen, M. J.; Yang, Y.; Kaner, R. B., High-throughput solution processing of large-scale graphene. Nature Nanotechnology 2009, 4 (1), 25-9. https://doi.org/10.1038/nnano.2008.329
[46] Zhu, C.; Guo, S.; Fang, Y.; Dong, S., Reducing Sugar: New Functional Molecules for the Green Synthesis of Graphene Nanosheets. ACS Nano 2010, 4 (4), 2429-2437. https://doi.org/10.1021/nn1002387
[47] Gao, J.; Liu, F.; Liu, Y.; Ma, N.; Wang, Z.; Zhang, X., Environment-Friendly Method To Produce Graphene That Employs Vitamin C and Amino Acid. Chemistry of Materials 2010, 22 (7), 2213-2218. https://doi.org/10.1021/cm902635j
[48] Fernández-Merino, M. J.; Guardia, L.; Paredes, J. I.; Villar-Rodil, S.; Solís-Fernández, P.; Martínez-Alonso, A.; Tascón, J. M. D., Vitamin C Is an Ideal Substitute for Hydrazine in the Reduction of Graphene Oxide Suspensions. The Journal of Physical Chemistry C 2010, 114 (14), 6426-6432. https://doi.org/10.1021/jp100603h
[49] Pei, S.; Zhao, J.; Du, J.; Ren, W.; Cheng, H.-M., Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids. Carbon 2010, 48 (15), 4466-4474. https://doi.org/10.1016/j.carbon.2010.08.006
[50] Fan, Z.; Wang, K.; Wei, T.; Yan, J.; Song, L.; Shao, B., An environmentally friendly and efficient route for the reduction of graphene oxide by aluminum powder. Carbon 2010, 48 (5), 1686-1689. https://doi.org/10.1016/j.carbon.2009.12.063
[51] Zhang, Z.; Chen, H.; Xing, C.; Guo, M.; Xu, F.; Wang, X.; Gruber, H. J.; Zhang, B.; Tang, J., Sodium citrate: A universal reducing agent for reduction / decoration of graphene oxide with au nanoparticles. Nano Research 2011, 4 (6), 599-611. https://doi.org/10.1007/s12274-011-0116-y
[52] Wang, Y.; Shi, Z.; Yin, J., Facile Synthesis of Soluble Graphene via a Green Reduction of Graphene Oxide in Tea Solution and Its Biocomposites. ACS Applied Materials & Interfaces 2011, 3 (4), 1127-1133. https://doi.org/10.1021/am1012613
[53] Yang, F.; Liu, Y.; Gao, L.; Sun, J., pH-Sensitive Highly Dispersed Reduced Graphene Oxide Solution Using Lysozyme via an in Situ Reduction Method. The Journal of Physical Chemistry C 2010, 114 (50), 22085-22091. https://doi.org/10.1021/jp1079636
[54] Xu, L. Q.; Yang, W. J.; Neoh, K.-G.; Kang, E.-T.; Fu, G. D., Dopamine-Induced Reduction and Functionalization of Graphene Oxide Nanosheets. Macromolecules 2010, 43 (20), 8336-8339. https://doi.org/10.1021/ma101526k
[55] Kwon, O. S.; Park, S. J.; Hong, J.-Y.; Han, A. R.; Lee, J. S.; Lee, J. S.; Oh, J. H.; Jang, J., Flexible FET-Type VEGF Aptasensor Based on Nitrogen-Doped Graphene Converted from Conducting Polymer. ACS Nano 2012, 6 (2), 1486-1493. https://doi.org/10.1021/nn204395n
[56] Xu, W.; Lee, T.-W., Recent progress in fabrication techniques of graphene nanoribbons. Materials Horizons 2016, 3 (3), 186-207. https://doi.org/10.1039/C5MH00288E
[57] Mao, S.; Cui, S.; Lu, G.; Yu, K.; Wen, Z.; Chen, J., Tuning gas-sensing properties of reduced graphene oxide using tin oxide nanocrystals. Journal of Materials Chemistry 2012, 22 (22), 11009-11013. https://doi.org/10.1039/c2jm30378g
[58] Wang, Z.; Eigler, S.; Halik, M., Scalable self-assembled reduced graphene oxide transistors on flexible substrate. Applied Physics Letters 2014, 104 (24). https://doi.org/10.1063/1.4884064
[59] Botcha, D. V.; Singh, G.; Narayanam, P. K.; Sutar, D. S.; Talwar, S. S.; Srinivasa, R. S.; Major, S. S., GO and RGO based FETs fabricated with Langmuir-Blodgett grown monolayers. AIP Conference Proceedings 2012, 1447 (1), 327-328. https://doi.org/10.1007/s12274-013-0376-9
[60] Kybert, N. J.; Han, G. H.; Lerner, M. B.; Dattoli, E. N.; Esfandiar, A.; Charlie Johnson, A. T., Scalable arrays of chemical vapor sensors based on DNA-decorated graphene. Nano Research 2014, 7 (1), 95-103. https://doi.org/10.1073/pnas.1105113108
[61] de Heer, W. A.; Berger, C.; Ruan, M.; Sprinkle, M.; Li, X.; Hu, Y.; Zhang, B.; Hankinson, J.; Conrad, E., Large area and structured epitaxial graphene produced by confinement controlled sublimation of silicon carbide. Proceedings of the National Academy of Sciences 2011, 108 (41), 16900-16905. https://doi.org/10.1073/pnas.1105113108
[62] Farmer, D. B.; Chiu, H.-Y.; Lin, Y.-M.; Jenkins, K. A.; Xia, F.; Avouris, P., Utilization of a Buffered Dielectric to Achieve High Field-Effect Carrier Mobility in Graphene Transistors. Nano Letters 2009, 9 (12), 4474-4478. https://doi.org/10.1021/nl902788u
[63] Faugeras, C.; Nerrière, A.; Potemski, M.; Mahmood, A.; Dujardin, E.; Berger, C.; de Heer, W. A., Few-layer graphene on SiC, pyrolitic graphite, and graphene: A Raman scattering study. Applied Physics Letters 2008, 92 (1), 011914. https://doi.org/10.1063/1.2828975
[64] Das, A.; Pisana, S.; Chakraborty, B.; Piscanec, S.; Saha, S. K.; Waghmare, U. V.; Novoselov, K. S.; Krishnamurthy, H. R.; Geim, A. K.; Ferrari, A. C.; Sood, A. K., Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nature Nanotechnology 2008, 3 (4), 210-5. https://doi.org/10.1038/nnano.2008.67
[65] Dong, X.; Shi, Y.; Huang, W.; Chen, P.; Li, L. J., Electrical detection of DNA hybridization with single-base specificity using transistors based on CVD-grown graphene sheets. Advanced materials (Deerfield Beach, Fla.) 2010, 22 (14), 1649-53. https://doi.org/10.1002/adma.200903645
[66] Johnson, D. W.; Dobson, B. P.; Coleman, K. S., A manufacturing perspective on graphene dispersions. Current Opinion in Colloid & Interface Science 2015, 20 (5), 367-382. https://doi.org/10.1016/j.cocis.2015.11.004
[67] Hwang, M. T.; Landon, P. B.; Lee, J.; Choi, D.; Mo, A. H.; Glinsky, G.; Lal, R., Highly specific SNP detection using 2D graphene electronics and DNA strand displacement. Proceedings of the National Academy of Sciences 2016, 113 (26), 7088-7093. https://doi.org/10.1073/pnas.1603753113
[68] Saltzgaber, G.; Wojcik, P., M. ; Sharf, T.; Leyden, M., R.; Wardini, J., L.; Heist, C., A. ; Adenuga, A., A. ; Remcho, V., T.; Minot, E., D. , Scalable graphene field-effect sensors for specific protein detection. Nanotechnology 2013, 24 (35), 355502. https://doi.org/10.1088/0957-4484/24/35/355502
[69] Zheng, C.; Huang, L.; Zhang, H.; Sun, Z.; Zhang, Z.; Zhang, G.-J., Fabrication of Ultrasensitive Field-Effect Transistor DNA Biosensors by a Directional Transfer Technique Based on CVD-Grown Graphene. ACS Applied Materials & Interfaces 2015, 7 (31), 16953-16959. https://doi.org/10.1021/acsami.5b03941
[70] Mohanty, N.; Berry, V., Graphene-Based Single-Bacterium Resolution Biodevice and DNA Transistor: Interfacing Graphene Derivatives with Nanoscale and Microscale Biocomponents. Nano Letters 2008, 8 (12), 4469-4476. https://doi.org/10.1021/nl802412n
[71] Balakrishnan, S.; Downard, A. J.; Telfer, S. G., HKUST-1 growth on glassy carbon. Journal of Materials Chemistry 2011, 21 (48), 19207-19209. https://doi.org/10.1039/c1jm13912f
[72] Eissa, S.; Zourob, M., A graphene-based electrochemical competitive immunosensor for the sensitive detection of okadaic acid in shellfish. Nanoscale 2012, 4 (23), 7593-9. https://doi.org/10.1039/c2nr32146g
[73] Pinson, J.; Podvorica, F., Attachment of organic layers to conductive or semiconductive surfaces by reduction of diazonium salts. Chemical Society reviews 2005, 34 (5), 429-439. https://doi.org/10.1039/b406228k
[74] Lin, C.-T.; Loan, P. T. K.; Chen, T.-Y.; Liu, K.-K.; Chen, C.-H.; Wei, K.-H.; Li, L.-J., Label-Free Electrical Detection of DNA Hybridization on Graphene using Hall Effect Measurements: Revisiting the Sensing Mechanism. Advanced Functional Materials 2013, 23 (18), 2301-2307. https://doi.org/10.1002/adfm.201202672
[75] Dong, X.; Huang, W.; Chen, P., In Situ Synthesis of Reduced Graphene Oxide and Gold Nanocomposites for Nanoelectronics and Biosensing. Nanoscale Res Lett 2010, 6 (1), 60. https://doi.org/10.1007/s11671-010-9806-8
[76] Zhu, L.; Luo, L.; Wang, Z., DNA electrochemical biosensor based on thionine-graphene nanocomposite. Biosensors & bioelectronics 2012, 35 (1), 507-11. https://doi.org/10.1016/j.bios.2012.03.026
[77] Cai, B.; Wang, S.; Huang, L.; Ning, Y.; Zhang, Z.; Zhang, G.-J., Ultrasensitive Label-Free Detection of PNA–DNA Hybridization by Reduced Graphene Oxide Field-Effect Transistor Biosensor. ACS Nano 2014, 8 (3), 2632-2638. https://doi.org/10.1021/nn4063424
[78] Ping, J.; Vishnubhotla, R.; Vrudhula, A.; Johnson, A. T. C., Scalable Production of High-Sensitivity, Label-Free DNA Biosensors Based on Back-Gated Graphene Field Effect Transistors. ACS Nano 2016, 10 (9), 8700-8704. https://doi.org/10.1021/acsnano.6b04110
[79] Stine, R.; Robinson, J. T.; Sheehan, P. E.; Tamanaha, C. R., Real-Time DNA Detection Using Reduced Graphene Oxide Field Effect Transistors. Advanced materials (Deerfield Beach, Fla.) 2010, 22 (46), 5297-5300. https://doi.org/10.1002/adma.201002121
[80] Chen, T.-Y.; Loan, P. T. K.; Hsu, C.-L.; Lee, Y.-H.; Tse-Wei Wang, J.; Wei, K.-H.; Lin, C.-T.; Li, L.-J., Label-free detection of DNA hybridization using transistors based on CVD grown graphene. Biosensors and Bioelectronics 2013, 41 (Supplement C), 103-109. https://doi.org/10.1016/j.bios.2012.07.059
[81] Xu, G.; Abbott, J.; Qin, L.; Yeung, K. Y. M.; Song, Y.; Yoon, H.; Kong, J.; Ham, D., Electrophoretic and field-effect graphene for all-electrical DNA array technology. Nature communications 2014, 5, 4866. https://doi.org/10.1038/ncomms5866
[82] Stern, E.; Wagner, R.; Sigworth, F. J.; Breaker, R.; Fahmy, T. M.; Reed, M. A., Importance of the Debye Screening Length on Nanowire Field Effect Transistor Sensors. Nano Letters 2007, 7 (11), 3405-3409. https://doi.org/10.1021/nl071792z
[83] Vacic, A.; Criscione, J. M.; Rajan, N. K.; Stern, E.; Fahmy, T. M.; Reed, M. A., Determination of Molecular Configuration by Debye Length Modulation. Journal of the American Chemical Society 2011, 133 (35), 13886-13889. https://doi.org/10.1021/ja205684a
[84] Shogo, O.; Yasuhide, O.; Kenzo, M.; Koichi, I.; Kazuhiko, M., Immunosensors Based on Graphene Field-Effect Transistors Fabricated Using Antigen-Binding Fragment. Japanese Journal of Applied Physics 2012, 51 (6S), 06FD08. https://doi.org/10.7567/JJAP.51.06FD08
[85] Matsumoto, K.; Maehashi, K.; Ohno, Y.; Inoue, K., Recent advances in functional graphene biosensors. Journal of Physics D: Applied Physics 2014, 47 (9), 094005. https://doi.org/10.1088/0022-3727/47/9/094005
[86] Kim, D.-J.; Sohn, I. Y.; Jung, J.-H.; Yoon, O. J.; Lee, N. E.; Park, J.-S., Reduced graphene oxide field-effect transistor for label-free femtomolar protein detection. Biosensors and Bioelectronics 2013, 41 (Supplement C), 621-626. https://doi.org/10.1016/j.bios.2012.09.040
[87] Lei, Y.-M.; Xiao, M.-M.; Li, Y.-T.; Xu, L.; Zhang, H.; Zhang, Z.-Y.; Zhang, G.-J., Detection of heart failure-related biomarker in whole blood with graphene field effect transistor biosensor. Biosensors and Bioelectronics 2017, 91 (Supplement C), 1-7. https://doi.org/10.1016/j.bios.2016.12.018
[88] Ohno, Y.; Maehashi, K.; Matsumoto, K., Label-Free Biosensors Based on Aptamer-Modified Graphene Field-Effect Transistors. Journal of the American Chemical Society 2010, 132 (51), 18012-18013. https://doi.org/10.1021/ja108127r
[89] Kim, D.-J.; Park, H.-C.; Sohn, I. Y.; Jung, J.-H.; Yoon, O. J.; Park, J.-S.; Yoon, M.-Y.; Lee, N.-E., Electrical Graphene Aptasensor for Ultra-Sensitive Detection of Anthrax Toxin with Amplified Signal Transduction. Small 2013, 9 (19), 3352-3360. https://doi.org/10.1002/smll.201203245
[90] Zhou, L.; Mao, H.; Wu, C.; Tang, L.; Wu, Z.; Sun, H.; Zhang, H.; Zhou, H.; Jia, C.; Jin, Q.; Chen, X.; Zhao, J., Label-free graphene biosensor targeting cancer molecules based on non-covalent modification. Biosensors and Bioelectronics 2017, 87 (Supplement C), 701-707. https://doi.org/10.1016/j.bios.2016.09.025
[91] Xiang, L.; Wang, Z.; Liu, Z.; Weigum, S. E.; Yu, Q.; Chen, M. Y., Inkjet-Printed Flexible Biosensor Based on Graphene Field Effect Transistor. IEEE Sensors Journal 2016, 16 (23), 8359 – 8364. https://doi.org/10.1109/JSEN.2016.2608719
[92] Gao, N.; Gao, T.; Yang, X.; Dai, X.; Zhou, W.; Zhang, A.; Lieber, C. M., Specific detection of biomolecules in physiological solutions using graphene transistor biosensors. Proceedings of the National Academy of Sciences 2016, 113 (51), 14633-14638. https://doi.org/10.1073/pnas.1625010114
[93] Reiner-Rozman, C.; Larisika, M.; Nowak, C.; Knoll, W., Graphene-Based Liquid-Gated Field Effect Transistor for Biosensing: Theory and Experiments. Biosensors & bioelectronics 2015, 70, 21-27. https://doi.org/10.1016/j.bios.2015.03.013
[94] Mao, S.; Yu, K.; Lu, G.; Chen, J., Highly sensitive protein sensor based on thermally-reduced graphene oxide field-effect transistor. Nano Research 2011, 4 (10), 921. https://doi.org/10.1007/s12274-011-0148-3
[95] Ke, X.; Xenia, M.; Barbara, M. N.; Eugene, Z.; Mitra, D.; Michael, A. S., Graphene- and aptamer-based electrochemical biosensor. Nanotechnology 2014, 25 (20), 205501. https://doi.org/10.1088/0957-4484/25/20/205501
[96] Tuteja, S. K.; Priyanka; Bhalla, V.; Deep, A.; Paul, A. K.; Suri, C. R., Graphene-gated biochip for the detection of cardiac marker Troponin I. Analytica Chimica Acta 2014, 809 (Supplement C), 148-154. https://doi.org/10.1016/j.aca.2013.11.047
[97] Lerner, M. B.; Matsunaga, F.; Han, G. H.; Hong, S. J.; Xi, J.; Crook, A.; Perez-Aguilar, J. M.; Park, Y. W.; Saven, J. G.; Liu, R.; Johnson, A. T. C., Scalable Production of Highly Sensitive Nanosensors Based on Graphene Functionalized with a Designed G Protein-Coupled Receptor. Nano Letters 2014, 14 (5), 2709-2714. https://doi.org/10.1021/nl5006349
[98] Sudibya, H. G.; He, Q.; Zhang, H.; Chen, P., Electrical Detection of Metal Ions Using Field-Effect Transistors Based on Micropatterned Reduced Graphene Oxide Films. ACS Nano 2011, 5 (3), 1990-1994. https://doi.org/10.1021/nn103043v
[99] Basu, J.; Datta, S.; RoyChaudhuri, C., A graphene field effect capacitive Immunosensor for sub-femtomolar food toxin detection. Biosensors and Bioelectronics 2015, 68 (Supplement C), 544-549. https://doi.org/10.1016/j.bios.2015.01.046
[100] Xie, H.; Li, Y.-T.; Lei, Y.-M.; Liu, Y.-L.; Xiao, M.-M.; Gao, C.; Pang, D.-W.; Huang, W.-H.; Zhang, Z.-Y.; Zhang, G.-J., Real-Time Monitoring of Nitric Oxide at Single-Cell Level with Porphyrin-Functionalized Graphene Field-Effect Transistor Biosensor. Analytical Chemistry 2016, 88 (22), 11115-11122. https://doi.org/10.1021/acs.analchem.6b03208
[101] Mukherjee, S.; Meshik, X.; Choi, M.; Farid, S.; Datta, D.; Lan, Y.; Poduri, S.; Sarkar, K.; Baterdene, U.; Huang, C. E.; Wang, Y. Y.; Burke, P.; Dutta, M.; Stroscio, M. A., A Graphene and Aptamer Based Liquid Gated FET-Like Electrochemical Biosensor to Detect Adenosine Triphosphate. IEEE Trans Nanobioscience 2015, 14 (8), 967-72. https://doi.org/10.1109/TNB.2015.2501364
[102] Thi Thanh, C.; Van Chuc, N.; Hai Binh, N.; Hung Thang, B.; Thi Thu, V.; Ngoc Hong, P.; Bach Thang, P.; Le, H.; Maxime, B.; Matthieu, P.; Jean Louis, S.; Ngoc Minh, P.; Dai Lam, T., Fabrication of few-layer graphene film based field effect transistor and its application for trace-detection of herbicide atrazine. Advances in Natural Sciences: Nanoscience and Nanotechnology 2016, 7 (3), 035007.
[103] Viswanathan, S.; Narayanan, T. N.; Aran, K.; Fink, K. D.; Paredes, J.; Ajayan, P. M.; Filipek, S.; Miszta, P.; Tekin, H. C.; Inci, F.; Demirci, U.; Li, P.; Bolotin, K. I.; Liepmann, D.; Renugopalakrishanan, V., Graphene–protein field effect biosensors: glucose sensing. Materials Today 2015, 18 (9), 513-522. https://doi.org/10.1016/j.mattod.2015.04.003
[104] Huang, Y.; Dong, X.; Shi, Y.; Li, C. M.; Li, L.-J.; Chen, P., Nanoelectronic biosensors based on CVD grown graphene. Nanoscale 2010, 2 (8), 1485-1488. https://doi.org/10.1039/c0nr00142b
[105] Zhang, M.; Liao, C.; Mak, C. H.; You, P.; Mak, C. L.; Yan, F., Highly sensitive glucose sensors based on enzyme-modified whole-graphene solution-gated transistors. Scientific Reports 2015, 5, 8311.
[106] Park, J. W.; Lee, C.; Jang, J., High-performance field-effect transistor-type glucose biosensor based on nanohybrids of carboxylated polypyrrole nanotube wrapped graphene sheet transducer. Sensors and Actuators B: Chemical 2015, 208 (Supplement C), 532-537. https://doi.org/10.1016/j.snb.2014.11.085
[107] Mak, C. H.; Liao, C.; Fu, Y.; Zhang, M.; Tang, C. Y.; Tsang, Y. H.; Chan, H. L. W.; Yan, F., Highly-sensitive epinephrine sensors based on organic electrochemical transistors with carbon nanomaterial modified gate electrodes. Journal of Materials Chemistry C 2015, 3 (25), 6532-6538. https://doi.org/10.1039/C5TC01100K
[108] Zhang, M.; Liao, C.; Yao, Y.; Liu, Z.; Gong, F.; Yan, F., High-Performance Dopamine Sensors Based on Whole-Graphene Solution-Gated Transistors. Advanced Functional Materials 2014, 24 (7), 978-985.
[109] Benno, M. B.; Martin, L.; Simon, D.; Andrea Bonaccini, C.; Karolina, S.; Lionel, R.; Gaëlle, L.; Jose, A. G., Flexible graphene transistors for recording cell action potentials. 2D Materials 2016, 3 (2), 025007. https://doi.org/10.1088/2053-1583/3/2/025007
[110] Cohen-Karni, T.; Qing, Q.; Li, Q.; Fang, Y.; Lieber, C. M., Graphene and Nanowire Transistors for Cellular Interfaces and Electrical Recording. Nano Letters 2010, 10 (3), 1098-1102. https://doi.org/10.1021/nl1002608
[111] Huang, Y.; Dong, X.; Liu, Y.; Li, L.-J.; Chen, P., Graphene-based biosensors for detection of bacteria and their metabolic activities. Journal of Materials Chemistry 2011, 21 (33), 12358-12362. https://doi.org/10.1039/c1jm11436k
[112] Akbari, E.; Buntat, Z.; Kiani, M. J.; Enzevaee, A.; Khaledian, M., Analytical model of graphene-based biosensors for bacteria detection. International Journal of Environmental Analytical Chemistry 2015, 95 (9), 847-854. https://doi.org/10.1080/03067319.2015.1058930