Application of Ionic Liquids as a Green Material in Electrochemical Devices

$20.00

Application of Ionic Liquids as a Green Material in Electrochemical Devices

Alok Kumar Tripathi and Rajendra Kumar Singh

Ionic liquid (IL) as electrolyte is a key component in electrochemical energy storage devices because the properties of electrolytes mostly affect the energy capacity, power density, rate capability and performance of the device. Various exotic properties of ILs can be tuned by selecting appropriate cation-anion combinations which provide the possibilities of designing an ideal electrolyte for the energy storage device. The incorporation/ entrapment/ confinement/ immobilization/ hybridization of ILs on a solid support results in ionogel electrolytes, which also offer the emerging possibilities in energy storage devices as a solid electrolyte. This chapter introduces the use of ILs and ionogels as electrolyte in lithium battery and supercapacitor application. Besides, the basic idea and properties of ILs are also briefly introduced.

Keywords
Ionic Liquid, Ionogel, Supercapacitor, Lithium Ion Battery, Electrolyte

Published online 8/20/2019, 42 pages

Citation: Alok Kumar Tripathi and Rajendra Kumar Singh, Application of Ionic Liquids as a Green Material in Electrochemical Devices, Materials Research Foundations, Vol. 54, pp 106-147, 2019

DOI: https://doi.org/10.21741/9781644900314-6

Part of the book on Industrial Applications of Green Solvents

References
[1] M. Asif, T. Muneer, Energy supply, its demand and security issues for developed and emerging economies, Renew. Sustainable Energy Rev. 11 (2007) 1388-1413. https://doi.org/10.1016/j.rser.2005.12.004
[2] M. Hoogwijk, A. Faaij, R.V. Broek, G. Berndes, D. Gielen, D., W. Turkenburg, Exploration of the ranges of the global potential of biomass for energy, Biomass Bioenergy 25 (2003) 119-133. https://doi.org/10.1016/s0961-9534(02)00191-5
[3] N.H. Stern, The Economics of Climate Change: The Stern Review, Cambridge University Press, 2007.
[4] B. Scrosati, J. Hassoun, Y.K. Sun, Lithium-ion batteries. A look into the future, Energy Environ. Sci. 4 (2011) 3287-3295. https://doi.org/10.1039/c1ee01388b
[5] H. Chen, T.N. Cong, W. Yang, C. Tan, Y. Li, Y. Ding, Progress in electrical energy storage system: a critical review, Prog. Nat. Sci. 19 (2009) 291-312. https://doi.org/10.1016/j.pnsc.2008.07.014
[6] X. Luo, J. Wang, M. Dooner, J. Clarke, Overview of current development in electrical energy storage technologies and the application potential in power system operation, Appl. Energ. 137 (2015) 511-536. https://doi.org/10.1016/j.apenergy.2014.09.081
[7] A.R. Mainara, E. Iruina, L.C. Colmenaresa, A. Kvashaa, I. de Meatzaa, M. Bengoecheaa, O. Leoneta, I. Boyanoa, Z. Zhangc, J.A. Blazqueza, An overview of progress in electrolytes for secondary zinc-air batteries and other storage systems based on zinc, Journal of Energy Storage 15 (2018) 304-328. https://doi.org/10.1016/j.est.2017.12.004
[8] A. Vlad, N. Singh, C. Galande, P.M. Ajayan, Design considerations for unconventional electrochemical energy storage architectures, Adv. Energy Mater. 5 (2015) 1402115. https://doi.org/10.1002/aenm.201402115
[9] Q. Li, J. Chen, L. Fan, X. Kong, Y. Lu, Progress in electrolytes for rechargeable Li-based batteries and beyond, Green Energy & Environment 1 (2016) 18-42. https://doi.org/10.1016/j.gee.2016.04.006
[10] J. Lee, J. Kim, T.Y. Kim, M.S.A. Hossain, S. Kim, J.H. Kim, All-in-one energy harvesting and storage devices, J. Mater. Chem. A 4 (2016) 7983-7999. https://doi.org/10.1039/c6ta01229a
[11] C. Zhao, Q. Wang, Y. Lu, Y.S. Hu, B. Li, L. Chen, Review on anionic redox for high-capacity lithium- and sodium-ion batteries, J. Phys. D: Appl. Phys. 50 (2017) 183001. https://doi.org/10.1088/1361-6463/aa646d
[12] Y. Huang, C. Zhi, Functional flexible and wearable supercapacitors, J. Phys. D: Appl. Phys. 50 (2017) 273001.
[13] J. Libich, J. Maca, J. Vondrak, O. Cech, M. Sedlarikova, Supercapacitors: Properties and applications, Journal of Energy Storage 17 (2018) 224-227. https://doi.org/10.1016/j.est.2018.03.012
[14] K.R. Seddon, Ionic liquids-A taste of the future, Nat. Mater. 2 (2003) 363-365.
[15] H. Ohno, Electrochemical Aspects of Ionic Liquids, John Wiley, Hoboken, 2005.
[16] B. Kirchner, Ionic liquids from theoretical investigations, Ionic liquids. Springer, Berlin, Heidelberg, 213-262, 2008. https://doi.org/10.1007/128_2008_36
[17] T. Welton, Room-temperature ionic liquids. Solvents for synthesis and catalysis, Chem. Rev. 99 (1999) 2071-2083. https://doi.org/10.1021/cr980032t
[18] M. Freemantle, An introduction to ionic liquids, RSC Publishing, Cambridge, 2010.
[19] M. Armand, F. Endres, D.R. MacFarlane, H. Ohno, B. Scrosati, Ionic-liquid materials for the electrochemical challenges of the future, Nat. Mater. 8 (2009) 621-629. https://doi.org/10.1038/nmat2448
[20] J.L. Anderson, J. Ding, T. Welton, D.W. Armstrong, Characterizing ionic liquids on the basis of multiple solvation interactions, J. Am. Chem. Soc. 124 (2002) 14247-14254. https://doi.org/10.1021/ja028156h
[21] P. Wasserscheid, T. Welton, Ionic liquids in synthesis, New York, Wiley, 2003.
[22] A.K. Tripathi, R.K. Singh, Development of ionic liquid and lithium salt immobilized MCM-41 quasi solid-liquid electrolytes for lithium batteries, Journal of Energy Storage 15 (2018) 283-291. https://doi.org/10.1016/j.est.2017.12.008
[23] M.P. Singh, R.K. Singh, S. Chandra, Ionic liquids confined in porous matrices: Physicochemical properties and applications, Prog. Mater. Sci. 64 (2014) 73-120. https://doi.org/10.1016/j.pmatsci.2014.03.001
[24] S. Zhang, J. Zhang, Y. Zhang, Y. Deng, Nanoconfined Ionic Liquids, Chem. Rev. 117 (2017) 6755-6833. https://doi.org/10.1021/acs.chemrev.6b00509
[25] J.Le Bideau, L. Viau, A. Vioux, Ionogels, ionic liquid based hybrid materials. Chem. Soc. Rev. 40 (2011) 907-925. https://doi.org/10.1039/c0cs00059k
[26] I. Osada, H. de Vries, B. Scrosati, S. Passerini S, Ionic-liquid-based polymer electrolytes for battery applications, Angew. Chem. Int. Ed. 55 (2016) 500-513. https://doi.org/10.1002/anie.201504971
[27] P.C. Marr, A.C. Marr, Ionic liquid gel materials: applications in green and sustainable chemistry, Green Chem. 18 (2016) 105-128. https://doi.org/10.1039/c5gc02277k
[28] D.R. MacFarlane, M. Forsyth, P.C. Howlett, M. Kar, S. Passerini, J.M. Pringle, H. Ohno, M. Watanabe, F. Yan, W. Zheng, S. Zhang, J. Zhang, Ionic liquids and their solid-state analogues as materials for energy generation and storage, Nat. Rev. Mater. 1 (2016) 15005. https://doi.org/10.1038/natrevmats.2015.5
[29] N. Chen, H. Zhang, L. Li, R. Chen, S. Guo, Ionogel electrolytes for high-performance lithium batteries: A Review, Adv. Energy Mater. 8 (2018) 1702675. https://doi.org/10.1002/aenm.201702675
[30] P. Walden, Molecular weights and electrical conductivity of several fused salts, Bull Acad. Imper. Sci. St. Petersburg 8 (1914) 405-422.
[31] J.S. Wilkes, M.J. Zaworotko, Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids, J. Chem. Soc., Chem. Commun. 13 (1992) 965-967. https://doi.org/10.1039/c39920000965
[32] R. Hayes, G.G. Warr, R. Atkin, Structure and nanostructure in ionic liquids, Chem. Rev. 115 (2015) 6357-6426. https://doi.org/10.1021/cr500411q
[33] R.D. Rogers, K.R. Seddon, Ionic liquids-Solvents of the future?, Science 302 (2003), 792-793.
[34] N.V. Plechkova, K.R. Seddon, Applications of ionic liquids in the chemical industry, Chem. Soc. Rev. 37 (2008) 123-150. https://doi.org/10.1039/b006677j
[35] A.K. Tripathi, Y.L. Verma, R.K. Singh, Thermal, electrical and structural studies on ionic liquid confined in ordered mesoporous MCM-41, J. Mater. Chem. A 3 (2015) 23809. https://doi.org/10.1039/c5ta05090a
[36] H.L. Ngo, K. LeCompte, L. Hargens, A.B. McEwen, Thermal properties of imidazolium ionic liquids, Thermochim. Acta, 357 (2000) 97-102. https://doi.org/10.1016/s0040-6031(00)00373-7
[37] H. Shirota, Jr. E.C. Castner, Why are viscosities lower for ionic liquids with -CH2Si(CH3)3 vs -CH2C(CH3)3 substitutions on the imidazolium cations?, J. Phys. Chem. B 109 (2005) 21576-21585. https://doi.org/10.1021/jp053930j
[38] J. Fuller, R.T. Carlin, R.A. Osteryoung, The room temperature ionic liquid 1-Ethyl-3-methylimidazolium tetrafluoroborate: electrochemical couples and physical properties, J. Electrochem. Soc. 144 (1997) 3881-3886. https://doi.org/10.1149/1.1838106
[39] A.B. McEwen, H.L. Ngo, K. LeCompte, J.L. Goldman, Electrochemical properties of imidazolium salt electrolytes for electrochemical capacitor applications, J. Electrochem. Soc. 146 (1999) 1687-1695. https://doi.org/10.1149/1.1391827
[40] K. Matsumoto, R. Hagiwara, R. Yoshida, Y. Ito, Z. Mazej, P. Benkic, B. Zemva, O. Tamada, H. Yoshino, S. Matsubara, Syntheses, structures and properties of 1-ethyl-3-methylimidazolium salts of fluoro complex anion, Dalton Trans., 1 (2004) 144-149. https://doi.org/10.1039/b310162b
[41] H. Ohno, M. Yoshizawa, Ion conductive characteristics of ionic liquids prepared by neutralization of alkylimidazoles, Solid State Ionics, 154 (2002) 303-309. https://doi.org/10.1016/s0167-2738(02)00526-x
[42] A.K. Tripathi, R.K. Singh, Immobilization induced molecular compression of ionic liquid in ordered mesoporous matrix, J. Phys. D: Appl. Phys. 51 (2018) 075301. https://doi.org/10.1088/1361-6463/aaa56c
[43] M. Ishikawa, T. Sugimoto, M. Kikuta, E. Ishiko, M. Kono, Pure ionic liquid electrolytes compatible with a graphitized carbon negative electrode in rechargeable lithium-ion batteries, J. Power Sources 162 (2006) 658-662. https://doi.org/10.1016/j.jpowsour.2006.02.077
[44] A.K. Tripathi, Y.L. Verma, Shalu, V.K. Singh, L. Balo, H. Gupta, S.K. Singh, R.K. Singh, Quasi solid-state electrolytes based on ionic liquid (IL) and ordered mesoporous matrix MCM-41 for supercapacitor application, J. Solid State Electrochem. 21 (2017) 3365-3371. https://doi.org/10.1007/s10008-017-3685-1
[45] J.G. Huddleston, A.E. Visser, W.M. Reichert, H.D. Willauer, G.A. Broker, R.D. Rogers, Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation, Green Chem. 3 (2001) 156-164. https://doi.org/10.1039/b103275p
[46] A. Noda, M. Watanabe, Electrochemical properties of room temperature molten salts with tetrafluoroborate anion, Electrochemical Society Proceedings Series, 1999 (1999) 202-208. https://doi.org/10.1149/199941.0202pv
[47] P. Bonhote, A.P. Dias, M. Armand, N. Papageorgiou, K. Kalyanasundaram, M. Gratzel, Hydrophobic, highly conductive ambient-temperature molten salts, Inorg. Chem. 35 (1996) 1168-1178. https://doi.org/10.1021/ic951325x
[48] K.R. Seddon, A. Stark, M.J. Torres, Influence of chloride, water, and organic solvents on the physical properties of ionic solids, Pure Appl. Chem. 72 (2000) 2275-2287. https://doi.org/10.1351/pac200072122275
[49] D. Zhao, Z. Fei, R. Scopelliti, P.J. Dyson, Synthesis and characterization of ionic liquids incorporating the nitrile functionality, Inorg. Chem., 43 (2004) 2197-2205. https://doi.org/10.1021/ic034801p
[50] A. Stoppa, O. Zech, W. Kunz, R. Buchner, The conductivity of imidazolium-based ionic liquids from (-35 to 195) CA Variation of cation’s alkyl chain, J. Chem. Eng. Data, 55 (2009) 1768-1773. https://doi.org/10.1021/je900789j
[51] C.P. Fredlake, J.M. Crosthwaite, D.G. Hert, S.N.V.K. Aki, J.F. Brennecke, Thermophysical properties of imidazolium-based ionic liquids, J. Chem. Eng. Data 49 (2004) 954-964. https://doi.org/10.1021/je034261a
[52] H.O. Bourbigou, L. Magna, Ionic liquids: perspectives for organic and catalytic reaction, J. Mol. Catal. A: Chem. 182 (2002) 419-437.
[53] B. Wu, R.G. Reddy, R.D. Rogers, Novel ionic liquid thermal storage for solar thermal electric power system, solar energy, Washington DC, 2001.
[54] D. Zhao, Z. Fei, R. Scopelliti, P.J. Dyson, Synthesis and characterization of ionic liquids incorporating the nitrile functionality, Inorg. Chem. 43 (2004) 2197-2205. https://doi.org/10.1021/ic034801p
[55] J. Fuller, A.C. Breda, R.T. Carlin, Ionic liquid polymer gel electrolytes from hydrophilic and hydrophobic ionic liquids, J. Electroanal. Chem. 459 (1998) 29-34. https://doi.org/10.1016/s0022-0728(98)00285-x
[56] S. Carda-Broch, A. Berthod, D.W. Armstrong, Solvent properties of the 1-butyl-3-methylimidazolium hexafluorophosphate ionic liquid, Anal. Bioanal. Chem. 375 (2003) 191-199. https://doi.org/10.1007/s00216-002-1684-1
[57] S. Zhang, X. Lu, Q. Zhou, X. Li, X. Zhang, S. Li, Ionic liquids: Physicochemical properties, 1st Ed., Elsevier Science, 2009.
[58] P. Bonhote, A.P. Dias, M. Armand, N. Papageorgiou, K. Kalyanasundaram, M. Gratzel, Hydrophobic, highly conductive ambient-temperature molten salts, Inorg. Chem. 35 (1996) 1168-1178. https://doi.org/10.1021/ic951325x
[59] D.R. MacFarlane, J. Sun, J. Golding, P. Meakin, M. Forsyth, High conductivity molten salts based on the imide ion, Electrochim. Acta, 45 (2000) 1271-1278. https://doi.org/10.1016/s0013-4686(99)00331-x
[60] M. Baghdadi, F. Shemirani, Cold-induced aggregation microextraction: A novel sample preparation technique based on ionic liquids, Anal. Chimi. Acta 613 (2008) 56-63. https://doi.org/10.1016/j.aca.2008.02.057
[61] S.H. Lee, S.B. Lee, The hildebr and solubility parameters, cohesive energy densities and internal energies of 1-alkyl-3-methylimidazolium-based room temperature ionic liquids, Chem. Comm. 27 (2005) 3469-3471. https://doi.org/10.1039/b503740a
[62] H. Tokuda, K. Hayamizu, K. Ishii, M.A.B.H. Susan, M. Watanabe, Physicochemical properties and structures of room temperature ionic liquids. 2. variation of alkyl chain length in imidazolium cation, J. Phys. Chem. B, 109 (2005) 6103-6110. https://doi.org/10.1021/jp044626d
[63] A. Muhammad, M.I.A. Mutalib, C.D. Wilfred, T. Murugesan, A. Shafeeq, Thermophysical properties of 1-hexyl-3-methyl imidazolium based ionic liquids with tetrafluoroborate, hexafluorophosphate and bis(trifluoromethylsulfonyl)imide anions, J. Chem. Thermodynamics 40 (2008) 1433-1438. https://doi.org/10.1016/j.jct.2008.04.016
[64] S.V. Dzyuba, R.A. Bartsch, Influence of structural variations in 1-alkyl (aralkyl)-3-methylimidazolium hexafluorophosphates and bis(trifluoromethylsulfonyl)imides on physical properties of the ionic liquids, ChemPhysChem, 3 (2002) 161-166. https://doi.org/10.1002/1439-7641(20020215)3:2<161::aid-cphc161>3.0.co;2-3
[65] L.A. Blanchard, Z.Y. Gu, J.F. Brennecke, High-pressure phase behavior of ionic liquid/CO2 systems, J. Phys. Chem. B, 105 (2001) 2437-2444. https://doi.org/10.1021/jp003309d
[66] S. Chun, S.V. Dzyuba, R.A. Bartsch, Influence of structural variation in room-temperature ionic liquids on the selectivity and efficiency of competitive alkali metal salt extraction by a crown ether, Anal. Chem. 73 (2001) 3737-3741. https://doi.org/10.1021/ac010061v
[67] A. Eftekhari, Supercapacitors utilising ionic liquids, Energy Storage Materials 9 (2017) 47-69. https://doi.org/10.1016/j.ensm.2017.06.009
[68] M. Ue, M. Takeda, A. Toriumi, A. Kominato, R. Hagiwara, Y. Ito, Application of low-viscosity ionic liquid to the electrolyte of double-layer capacitors. J. Electrochem. Soc. 150 (2003) A499-A502. https://doi.org/10.1149/1.1559069
[69] A. Lewandowski, M. Galinski, Carbon-ionic liquid double-layer capacitors. J. Phys. Chem. Solids, 65 (2004) 281-286. https://doi.org/10.1016/j.jpcs.2003.09.009
[70] G. H. Sun, K. X. Li, C.G. Sun, Application of 1-ethyl-3-methylimidazolium thiocyanate to the electrolyte of electrochemical double layer capacitors, J. Power Sources 162 (2006) 1444-1450. https://doi.org/10.1016/j.jpowsour.2006.08.028
[71] N. Handa, T. Sugimoto, M. Yamagata, M. Kikuta, M. Kono, M. Ishikawa, A neat ionic liquid electrolyte based on FSI anion for electric double layer capacitor, J. Power Sources 185 (2008) 1585-1588. https://doi.org/10.1016/j.jpowsour.2008.08.086
[72] G.P. Pandey, S.A. Hashmi, Studies on electrical double layer capacitor with a low-viscosity ionic liquid 1-ethyl-3-methylimidazolium tetracyanoborate as electrolyte, Bull. Mater. Sci. 36 (2013) 729-733. https://doi.org/10.1007/s12034-013-0511-y
[73] K. Matsumoto, R. Hagiwara, Electrochemical properties of the ionic liquid 1-ethyl-3-methylimidazolium difluorophosphate as an electrolyte for electric double-layer capacitors, J. Electrochem. Soc. 157 (2010) A578-A581. https://doi.org/10.1149/1.3336831
[74] M. Shi, S. Kou, X. Yan, Engineering the electrochemical capacitive properties of graphene sheets in ionic-liquid electrolytes by correct selection of anions, ChemSusChem, 7 (2014) 3053-3062. https://doi.org/10.1002/cssc.201402275
[75] F.B. Sillars, S.I. Fletcher, M. Mirzaeiana, P.J. Hall, Variation of electrochemical capacitor performance with room temperature ionic liquid electrolyte viscosity and ion size, Physical Chemistry Chemical Physics 14 (2012) 6094-6100. https://doi.org/10.1039/c2cp40089h
[76] M. Lazzari, F. Soavi, M. Mastragostino, High voltage, asymmetric EDLCs based on xerogel carbon and hydrophobic IL electrolytes, J. Power Sources 178 (2008) 490-496. https://doi.org/10.1016/j.jpowsour.2007.12.029
[77] M. Lazzari, F. Soavi, M. Mastragostino, Dynamic pulse power and energy of ionic-liquid-based supercapacitor for HEV application, J. Electrochem. Soc. 156 (2009) A661-A666. https://doi.org/10.1149/1.3139046
[78] T. Sato, G. Masuda, K. Takagi, Electrochemical properties of novel ionic liquids for electric double layer capacitor applications, Electrochimica Acta 49 (2004) 3603-3611. https://doi.org/10.1016/j.electacta.2004.03.030
[79] C. Kong, W. Qian, C. Zheng, Y. Yu, C. Cui, F. Wei, Raising the performance of a 4 V supercapacitor based on an EMIBF4-single walled carbon nanotube nanofluid electrolyte, Chem. Commu. 49 (2013) 10727-10729. https://doi.org/10.1039/c3cc46188b
[80] Z. Lei, Z. Liu, H. Wang, X. Sun, L. Lub, X.S. Zhao, A high-energy-density supercapacitor with graphene-CMK-5 as the electrode and ionic liquid as the electrolyte, JMCA 1 (2013) 2313-2321. https://doi.org/10.1039/c2ta01040b
[81] B. Kirchner, F. Malberg, D.S. Firaha, O. Holloczki, Ion pairing in ionic liquids, J. Phys:Condens. Matter 27 (2015) 463002. https://doi.org/10.1088/0953-8984/27/46/463002
[82] K. Ma, J. Forsman, C.E. Woodward, Influence of ion pairing in ionic liquids on electrical double layer structures and surface force using classical density functional approach, J. Chem. Phys. 142 (2015) 174704. https://doi.org/10.1063/1.4919314
[83] M. Blesic, M.H. Marques, N.V. Plechkova, K.R. Seddon, L.P.N. Rebelo, A. Lopes, Self-aggregation of ionic liquids: micelle formation in aqueous solution, Green. Chem. 9 (2007) 481-490. https://doi.org/10.1039/b615406a
[84] A.C. Forse, J.M. Griffin, C. Merlet, P.M. Bayley, H. Wang, P. Simon, C.P. Grey, NMR study of ion dynamics and charge storage in ionic liquid supercapacitors, J. Am. Chem. Soc. 137 (2015) 7231-7242. https://doi.org/10.1021/jacs.5b03958
[85] A. Naji, P. Willmann, D. Billaud, Electrochemical intercalation of lithium into graphite: influence of the solvent composition and of the nature of the lithium salt, Carbon, 36 (1998) 1347-1352. https://doi.org/10.1016/s0008-6223(98)00119-5
[86] M. Wakihara, O. Yamamoto (Eds.) Lithium ion batteries, Wiley-VCH, 1998.
[87] H. Usui, Y. Yamamoto, K. Yoshiyama, T. Itoh, H. Sakaguchi, Application of electrolyte using novel ionic liquid to Si thick film anode of Li-ion battery, J. Power Sources, 196 (2011) 3911-3915. https://doi.org/10.1016/j.jpowsour.2010.12.027
[88] M. Shimizu, H. Usui, K. Matsumoto, T. Nokami, T. Itoh, H. Sakaguchi, Effect of cation structure of ionic liquids on anode properties of Si electrodes for LIB, J. Electrochem. Soc. 161 (2014) A1765-A1771. https://doi.org/10.1149/2.0021412jes
[89] F. Castiglione, E. Ragg, A. Mele, G.B. Appetecchi, M. Montanino, S. Passerini, Molecular environment and enhanced diffusivity of Li ions in lithium-salt doped ionic liquid electrolytes, J. Phys. Chem. Lett. 2 (2011) 153-157. https://doi.org/10.1021/jz101516c
[90] L.J. Hardwick, M. Holzapfel, A. Wokaun, P. Novak, Raman study of lithium coordination in EMI-TFSI additive systems as lithium-ion battery ionic liquid electrolytes, J. Raman Spectrosc. 38 (2007) 110-112. https://doi.org/10.1002/jrs.1632
[91] K. Ueno, R. Tatara, S. Tsuzuki, S. Saito, H. Doi, K. Yoshida, T. Mandai, M. Matsugami, Y. Umebayashi, K. Dokko, M. Watanabe, Li solvation in Glymee-Li salt solvate ionic liquids, Phys. Chem. Chem. Phys. 17 (2015) 8248-8257. https://doi.org/10.1039/c4cp05943c
[92] K.R.J. Lovelock, F.N. Cowling, A.W. Taylor, P. Licence, D.A. Walsh, Effect of viscosity on steady-state voltammetry and scanning electrochemical microscopy in room temperature ionic liquids, J. Phys. Chem. B 114 (2010) 4442-4450. https://doi.org/10.1021/jp912087n
[93] F. Wang, H. Wang, M. Yu, Y. Hsiao, Y. Tsai, Differential pulse effects of solid electrolyte interface formation for improving performance on high-power lithium ion battery, J. Power Sources, 196 (2011) 10395-10400. https://doi.org/10.1016/j.jpowsour.2011.08.045
[94] M. Nie, B.L. Lucht, Role of lithium salt on solid electrolyte interface (SEI) formation and structure in lithium ion batteries, J. Electrochem. Soc., 161 (2014) A1001-A1006. https://doi.org/10.1149/2.054406jes
[95] S. Xiong, K. Xie, E. Blomberg, P. Jacobsson, A. Matic, Analysis of the solid electrolyte interphase formed with an ionic liquid electrolyte for lithium sulfur batteries, J. Power Sources 252 (2014) 150-155. https://doi.org/10.1016/j.jpowsour.2013.11.119
[96] T. Sugimoto, Y. Atsumi, M. Kono, M. Kikuta, E. Ishiko, M. Yamagata, M. Ishikawa, Application of bis (fluorosulfonyl) imide-based ionic liquid electrolyte to silicon–nickel–carbon composite anode for lithium-ion batteries, J. Power Sources 195 (2010) 6153-6156. https://doi.org/10.1016/j.jpowsour.2010.01.011
[97] J.W. Song, C.C. Nguyen, S.W. Song, Stabilized cycling performance of silicon oxide anode in ionic liquid electrolyte for rechargeable lithium batteries. RSC Adv. 2 (2012), 2003-2009. https://doi.org/10.1039/c2ra01183b
[98] X. Cao, X. He, J. Wang, H. Liu, S. Röser, B.R. Rad, M. Evertz, B. Streipert, J. Li, R. Wagner, M. Winter, I.C. Laskovic, High Voltage LiNi0.5Mn1.5O4/Li4Ti5O12 Lithium Ion Cells at Elevated Temperatures: Carbonate- versus Ionic Liquid-Based Electrolytes, ACS Appl. Mater. Interfaces 8 (2016) 25971-25978. https://doi.org/10.1021/acsami.6b07687
[99] J.H. Shin, W.A. Henderson, S. Passerini, Ionic liquids to the rescue?. Overcoming the ionic conductivity limitations of polymer electrolytes, Electrochem. Commun. 5 (2003) 1016-1020. https://doi.org/10.1016/j.elecom.2003.09.017
[100] J.H. Shin, W.A. Henderson, S. Passerini, An elegant fix for polymer electrolytes, Electrochem. Solid State Lett. 8 (2005) A125-A127. https://doi.org/10.1149/1.1850387
[101] G.T. Kim, S. S. Jeong, M.Z. Xue, A. Balducci, M. Winter, S. Passerini, F. Alessandrini, G.B. Appetecchi, Development of ionic liquid-based lithium battery prototypes, J. Power Sources 199 (2012) 239-246. https://doi.org/10.1016/j.jpowsour.2011.10.036
[102] G.A. Elia, U. Ulissi, S. Jeong, S. Passerini, J. Hassoun, Exceptional long-life performance of lithium-ion batteries using ionic liquid-based electrolytes, Energy Environ. Sci. 9 (2016) 3210-3220. https://doi.org/10.1039/c6ee01295g
[103] S. Menne, T. Vogl, A. Balducci, Lithium coordination in protic ionic liquids, Physical Chemistry Chemical Physics 16 (2014) 5485-5489. https://doi.org/10.1039/c3cp55183k
[104] S. Wang, B. Hsia, C. Carraroa, R. Maboudian, High-performance all solid-state micro-supercapacitor based on patterned photoresist-derived porous carbon electrodes and an ionogel electrolyte, J. Mater. Chem. A, 2 (2014) 7997-8002. https://doi.org/10.1039/c4ta00570h
[105] H. Srour, L. Chancelier, E. Bolimowska, T. Gutel, S. Mailley, H. Rouault, C.C. Santini, Ionic liquid-based electrolytes for lithium-ion batteries: review of performances of various electrode systems, J. Appl. Electrochem. 46 (2016) 149-155. https://doi.org/10.1007/s10800-015-0905-1
[106] A. Balducci, S.S. Jeong, G.T. Kim, S. Passerini, M. Winter, M. Schmuck, G.B. Appetecchi, R. Marcilla, D. Mecerreyes, V. Barsukov, V. Khomenko, Development of safe, green and high performance ionic liquids-based batteries (ILLIBATT project), J. Power Sources 196 (2011) 9719-9730. https://doi.org/10.1016/j.jpowsour.2011.07.058
[107] P.G. Bruce, B. Scrosati, J.M. Tarascon, Nanomaterials for rechargeable lithium batteries, Angew. Chem. Int. Ed. 47 (2008) 2930-2946. https://doi.org/10.1002/anie.200702505
[108] N. Schweikert, A. Hofmann, M. Schulz, M. Scheuermann, S.T. Boles, T. Hanemann, H. Hahn, S.J. Indris, Suppressed lithium dendrite growth in lithium batteries using ionic liquid electrolytes: Investigation by electrochemical impedance spectroscopy, scanning electron microscopy, and in situ 7 Li nuclear magnetic resonance spectroscopy, J. Power Sources 228 (2013) 237-243. https://doi.org/10.1016/j.jpowsour.2012.11.124
[109] F. Endres, D.R. MacFarlane, A. Abbott, Electrodeposition from ionic liquids, Weinheim, Wiley-VCH Verlag, 2008.
[110] S. Dai, Y.H. Ju, H.J. Gao, J.S. Lin, S.J. Pennycook, C.E. Barnes, Preparation of silica aerogel using ionic liquids as solvents, Chem. Commun. 3 (2000) 243-244. https://doi.org/10.1039/a907147d
[111] S.K. Chaurasia, A.L. Saroj, Shalu, V.K. Singh, A.K. Tripathi, A.K. Gupta, Y.L. Verma, R.K. Singh, Studies on structural, thermal and AC conductivity scaling of PEO-LiPF6 polymer electrolyte with added ionic liquid [BMIMPF6], AIP Adv 5 (2015) 077178. https://doi.org/10.1063/1.4927768
[112] Y.L. Verma, A.K. Tripathi, Shalu, V.K. Singh, L. Balo, H. Gupta, S.K. Singh, R.K. Singh, Preparation and properties of titania based ionogels synthesized using ionic liquid 1-ethyl-3-methyl imidazolium thiocyanate, Mater. Sci. Eng., B 220 (2017) 37-43. https://doi.org/10.1016/j.mseb.2017.03.010
[113] M.P. Singh, R.K. Singh, S. Chandra, Thermal stability of ionic liquid in confined geometry, J. Phys. D: Appl. Phys. 43 (2010) 092001. https://doi.org/10.1088/0022-3727/43/9/092001
[114] A.K. Gupta, M.P. Singh, R.K. Singh, S. Chandra, Low density ionogels obtained by rapid gellification of tetraethyl orthosilane assisted by ionic liquids, Dalton Trans. 41 (2012) 6263. https://doi.org/10.1039/c2dt30318c
[115] S.K. Chaurasia, Shalu, A.K. Gupta,a, Y.L. Verma, V.K. Singh, A.K. Tripathi, A.L. Saroj, R.K. Singh, Role of ionic liquid [BMIMPF6] in modifying the crystallization kinetics behavior of the polymer electrolyte PEO-LiClO4, RSC Adv. 5 (2015) 8263. https://doi.org/10.1039/c4ra12951b
[116] A.K. Tripathi, R.K. Singh, Interface and core relaxation dynamics of IL molecules in nanopores of ordered mesoporous MCM-41: a dielectric spectroscopy study, RSC Adv. 6 (2016) 45147. https://doi.org/10.1039/c6ra04212k
[117] Y.L. Verma, A.K. Gupta, R.K. Singh, S. Chandra, Preparation and characterisation of ionic liquid confined hybrid porous silica derived from ultrasonic assisted non-hydrolytic sol-gel process, Microporous Mesoporous Mater. 195 (2014) 143-153. https://doi.org/10.1016/j.micromeso.2014.04.026
[118] V.K. Singh, S.K. Singh, H. Gupta, Shalu, L. Balo, A.K. Tripathi, Y.L. Verma, R.K. Singh, Electrochemical investigations of Na0.7CoO2 cathode with PEO-NaTFSI-BMIMTFSI electrolyte as promising material for Na-rechargeable battery, J Solid State Electrochem. 22 (2018) 1909. https://doi.org/10.1007/s10008-018-3891-5
[119] S.K. Singh, H. Gupta, L. Balo, Shalu, V.K. Singh, A.K. Tripathi, Y.L. Verma, R.K. Singh, Electrochemical characterization of ionic liquid based gel polymer electrolyte for lithium battery application, Ionics 24 (2018) 1895. https://doi.org/10.1007/s11581-018-2458-x
[120] J. Fuller, R.T. Carlin, Ionic liquid-polymer gel catalytic membrane, Chem. Commun. 15 (1997) 1345-1346. https://doi.org/10.1039/a702195j
[121] S.K. Chaurasia, R.K. Singh, S. Chandra, Structural and transport studies on polymeric membranes of PEO containing ionic liquid, EMIM-TY: Evidence of complexation, Solid State Ionics 183 (2011) 32-39. https://doi.org/10.1016/j.ssi.2010.12.008
[122] A.L. Saroj, R.K. Singh, Thermal, dielectric and conductivity studies on PVA/Ionic liquid [EMIM][EtSO4] based polymer electrolytes, J. Phys. Chem. Solids 73 (2012) 162-168. https://doi.org/10.1016/j.jpcs.2011.11.012
[123] P. Izak, S. Hovorka, T. Bartovsky, L. Bartovska, J.G. Crespo, Swelling of polymeric membranes in room temperature ionic liquids, J. Mem. Sci., 296 (2007) 131-138. https://doi.org/10.1016/j.memsci.2007.03.022
[124] M.A.B.H. Susan, T. Kaneko, A. Noda, M. Watanabe, Ion gels prepared by in situ radical polymerization of vinyl monomers in an ionic liquid and their characterization as polymer electrolytes, J Am. Chem. Soc. 127 (2005) 4976-4993. https://doi.org/10.1021/ja045155b
[125] P. Snedden, A.I. Cooper, K. Scott, N. Winterton, Cross-linked polymer-ionic liquid composite materials, Macromolecules, 36 (2003) 4549-4556. https://doi.org/10.1021/ma021710n
[126] E.S. Sterner, Z.P. Rosol, E.M. Gross, S.M. Gross, Thermal analysis and ionic conductivity of ionic liquid containing composites with different crosslinkers, J. Appl. Polym. Sci., 114 (2009) 2963-2970. https://doi.org/10.1002/app.30894
[127] J. Lu, F. Yan, J. Texter, Advanced applications of ionic liquids in polymer science, Prog. Polym. Sci. 34 (2009) 431-448. https://doi.org/10.1016/j.progpolymsci.2008.12.001
[128] Y.S. Ye, J. Rick, B.J. Hwang, Ionic liquid polymer electrolytes, J. Mater. Chem. A 1 (2013) 2719-2743. https://doi.org/10.1039/c2ta00126h
[129] M.P. Scott, M. Rahman, C.S. Brazel, Application of ionic liquids as low-volatility plasticizers for PMMA, Eur. Polym. J. 39 (2003) 1947-1953. https://doi.org/10.1016/s0014-3057(03)00129-0
[130] C.J. Brinker, G.W. Scherer, Sol-Gel Science: The physics and chemistry of sol gel processing, Academic Press, Boston, 1990.
[131] J. Lemus, J. Palomar, M.A. Gilarranz, J.J. Rodriguez, Characterization of supported ionic liquid phase (SILP) materials prepared from different supports, Adsorption 17 (2011) 561-571. https://doi.org/10.1007/s10450-011-9327-5
[132] P. Wang, S.M. Zakeeruddin, M. Gratzel, Solidifying liquid electrolytes with fluorine polymer and silica nanoparticles for quasi-solid dye-sensitized solar cells, J. Fluorine Chem. 125 (2004) 1241-1245. https://doi.org/10.1016/j.jfluchem.2004.05.010
[133] B. Lin, S. Cheng, L. Qiu, F. Yan, S. Shang, J. Lu, Protic ionic liquid-based hybrid proton-conducting membranes for anhydrous proton exchange membrane application, Chem. Mater. 22 (2010) 1807-1813. https://doi.org/10.1021/cm9033758
[134] M. Supova, G.S. Martynkova, K. Barabaszova, Effect of nanofillers dispersion in polymer matrices: A review, Sci. Adv. Mater. 3 (2011) 1-25. https://doi.org/10.1166/sam.2011.1136
[135] J.B. Ducros, N. Buchtova, A. Magrez, O. Chauveta, J.Le Bideau, Ionic and electronic conductivities in carbon nanotubes-ionogel solid device, J. Mater. Chem. 21 (2011) 2508-2511. https://doi.org/10.1039/c0jm02016h
[136] J.H. Lee, A.S. Lee, J.C. Lee, S.M. Hong, S.S. Hwang, C.M. Koo, Hybrid ionogel electrolytes for high temperature lithium batteries, J. Mater. Chem. A 3 (2015) 2226-2233. https://doi.org/10.1039/c4ta06062h
[137] X. Li, S. Li, Z. Zhang, J. Huang, Li Yang, S. Hiranob, High-performance polymeric ionic liquid-silica hybrid ionogel electrolytes for lithium metal batteries, J. Mater. Chem. A 4 (2016) 13822. https://doi.org/10.1039/c6ta04767j
[138] S. Khurana, A. Chandra, Ionic Liquid-Based Organic-Inorganic Hybrid Electrolytes: Impact of In Situ Obtained and Dispersed Silica, J. Polym. Sci., Part B: Polym. Phys. 56 (2018) 207-218. https://doi.org/10.1002/polb.24533
[139] P.F.R. Ortega, J.P.C. Trigueiro, G.G. Silva, R.L. Lavall, Improving supercapacitor capacitance by using a novel gel nanocomposite polymer electrolyte based on nanostructured SiO2, PVDF and imidazolium ionic liquid, Electrochim. Acta 188 (2016) 809-817. https://doi.org/10.1016/j.electacta.2015.12.056
[140] Y. Tominaga, S. Asai, M. Sumita, S. Panero, B. Scrosati. A novel composite polymer electrolyte: Effect of mesoporous SiO2 on ionic conduction in poly (ethylene oxide)-LiCF3SO3 complex, J. Power Sources 146 (2005) 402-406. https://doi.org/10.1016/j.jpowsour.2005.03.035
[141] A. Unemoto, T. Matsuo, H. Ogawa, Y. Gambe, I. Honma, Development of all-solid-state lithium battery using quasi-solidified tetraglymeelithium bis(trifluoromethanesulfonyl)amidee fumed silica nano-composites as electrolytes, J. Power Sources 244 (2013) 354-362. https://doi.org/10.1016/j.jpowsour.2013.01.010
[142] X. Li, Z. Zhang, L. Yang, K. Tachibana, S. Hirano, TiO2-based ionogel electrolytes for lithium metal batteries, J. Power Sources 293 (2015) 831-834. https://doi.org/10.1016/j.jpowsour.2015.06.033
[143] G. Tan, F. Wu, C. Zhan, J. Wang, D. Mu, J. Lu, K. Amine, Solid-state Li-ion batteries using fast, stable, glassy nanocomposite electrolytes for good safety and long cycle-life, Nano Lett. 16 (2016) 1960-1968. https://doi.org/10.1021/acs.nanolett.5b05234
[144] L. Negre, B. Daffos, P.L. Taberna, P. Simon, Solvent-free electrolytes for electrical double layer capacitors, J. Electrochem. Soc. 162 (2015) A5037-A5040. https://doi.org/10.1149/2.0061505jes
[145] L. Negre, B. Daffos, V. Turq, P.L. Taberna, P. Simon, Ionogel-based solid-state supercapacitor operating over a wide range of temperature, Electrochim. Acta 206 (2016) 490-495. https://doi.org/10.1016/j.electacta.2016.02.013
[146] C. Zhong, Y. Deng, W. Hu, J. Qiao, L. Zhang, J. Zhang, A review of electrolyte materials and compositions for electrochemical supercapacitors, Chem. Soc. Rev. 44 (2015) 7484-7539. https://doi.org/10.1039/c5cs00303b
[147] A.K. Tripathi, R.K. Singh, Lithium salt assisted enhanced performance of supercapacitor based on quasi solid-state electrolyte, J. Saudi Chem. Soc. 22 (2018) 838-845. https://doi.org/10.1016/j.jscs.2018.01.006
[148] L. Sun, X. Zhang, W. Wang, J. Chen, Carbon nanotube-ionic liquid composite gel based high-performance bioanode for glucose/O2 biofuel cells, Anal. Methods 7 (2015) 5060-5066. https://doi.org/10.1039/c5ay00863h
[149] Y. Liu, M. Wang, J. Li, Z. Li, P. He, H. Liu, J. Li, Highly active horseradish peroxidase immobilized in 1-butyl-3-methylimidazolium tetrafluoroborate room-temperature ionic liquid based sol-gel host materials, Chem. Comm. 13 (2005) 1778-1780. https://doi.org/10.1039/b417680d
[150] T. Selvam, A. Machoke, W. Schwieger, Supported ionic liquids on non-porous and porous inorganic materials-A topical review, Appl. Catal. A 445 (2012) 92-101. https://doi.org/10.1016/j.apcata.2012.08.007
[151] X. Wang, J. Hao, Recent advances in ionic liquid-based electrochemical biosensors, Sci. Bull. 16 (2016) 1281-1295. https://doi.org/10.1007/s11434-016-1151-6
[152] O. Fontaine, A. Touidjine, M. Marechal, C. Bonhomme, F. Ribot, B. Geffroy, B. Jousselme, C. Sanchez, C. Laberty-Robert, A one-pot route to prepare class II hybrid ionogel electrolytes, New J. Chem. 38 (2014) 2008-2015. https://doi.org/10.1039/c3nj01272g
[153] J. Zhang, W. Zhang, J. Guo, C. Yuan, F. Yan, Ultrahigh ionic liquid content supramolecular ionogels for quasi-solid -state dye sensitized solar cells, Electrochim. Acta 165 (2015) 98-104. https://doi.org/10.1016/j.electacta.2015.02.244
[154] Q. Li, J. Chen, L. Fan, X. Kong, Y. Lu, Progress in electrolytes for rechargeable Li-based batteries and beyond, Green Energy and Environment 1 (2016) 18-42. https://doi.org/10.1016/j.gee.2016.04.006
[155] M.A. Neouze, J.Le Bideau, P. Gaveau, S. Bellayer, A. Vioux, Ionogels, new materials arising from the confinement of ionic liquids within silica-derived networks, Chem. Mater. 18 (2006) 3931-3936. https://doi.org/10.1021/cm060656c
[156] S.A.M. Noor, P.M. Bayley, M. Forsyth, D.R. MacFarlane, Ionogels based on ionic liquids as potential highly conductive solid state electrolytes, Electrochim. Acta 91 (2013) 219-226. https://doi.org/10.1016/j.electacta.2012.11.113
[157] A. Wu, F. Lu, P. Sun, X. Qiao, X. Gao, L. Zheng, Low-Molecular-Weight Supramolecular Ionogel Based on Host-Guest Interaction, Langmuir 33 (2017) 13982-13989. https://doi.org/10.1021/acs.langmuir.7b03504
[158] M. Li, W. Zhu, P. Zhang, Y. Chao, Q. He, B. Yang, H. Li, A. Borisevich, S. Dai, Graphene-analogues boron nitride nanosheets confining ionic liquids: a high-performance quasi liquid solid electrolyte, Small 12 (2016) 3535-3542. https://doi.org/10.1002/smll.201600358
[159] F. Wu, N. Chen, R. Chen, Q. Zhu, J. Qian, L. Li, “Liquid-in-solid” and “solid-in-liquid” electrolytes with high rate capacity and long cycling life for lithium-ion batteries, Chem. Mater. 28 (2016) 848-856. https://doi.org/10.1021/acs.chemmater.5b04278
[160] F. Wu, N. Chen, R. Chen, Q. Zhu, G. Tan, L. Li, Self-regulative nanogelator solid electrolyte: a new option to improve the safety of lithium battery, Adv. Sci. 3 (2016) 1500306. https://doi.org/10.1002/advs.201500306
[161] X. Li, Z. Zhang, L. Yang, K. Tachibana, S. Hirano, TiO2-based ionogel electrolytes for lithium metal batteries, J. Power Sources 293 (2015) 831-834. https://doi.org/10.1016/j.jpowsour.2015.06.033
[162] J.K. Kim, J. Scheers, T.J. Park, Y. Kim, Superior ion-conducting hybrid solid electrolyte for all-solid-state batteries, ChemSusChem 8 (2015) 636. https://doi.org/10.1002/cssc.201402969
[163] X. Li, Z. Zhang, K. Yin, L. Yang, K. Tachibana, S. Hirano, Mesoporous silica/ionic liquid quasi-solid-state electrolytes and their application in lithium metal batteries, J. Power Sources 278 (2015) 128-132. https://doi.org/10.1016/j.jpowsour.2014.12.053
[164] Y. Lu, S.K. Das, S.S. Moganty, L.A. Archer, Ionic-liquid-nanoparticle hybrid electrolytes and their application in secondary lithium-metal batteries, Adv. Mater. 24 (2012) 4430-4435. https://doi.org/10.1002/adma.201201953
[165] S. Ito, A. Unemoto, H. Ogawa, T. Tomai, I. Honma, Application of quasi-solid-state silica nanoparticles-ionic liquid composite electrolytes to all-solid-state lithium secondary battery, J. Power Sources 208 (2012) 271-275. https://doi.org/10.1016/j.jpowsour.2012.02.049
[166] F. Wu, G. Tan, R. Chen, L. Li, J. Xiang, Y. Zheng, Novel solid‐state Li/LiFePO4 battery configuration with a ternary nanocomposite electrolyte for practical applications, Adv. Mater. 23 (2011) 5081-5085. https://doi.org/10.1002/adma.201103161
[167] S.K. Singh, Shalu, L. Balo, H. Gupta, V.K. Singh, A.K. Tripathi, Y.L. Verma, R.K. Singh, Improved electrochemical performance of EMIMFSI ionic liquid based gel polymer electrolyte with temperature for rechargeable lithium battery, Energy 150 (2018) 890-900. https://doi.org/10.1016/j.energy.2018.03.024
[168] H. Gupta, Shalu, L. Balo, V.K. Singh, S.K. Singh, A.K. Tripathi, Y.L. Verma, R.K. Singh, Effect of temperature on electrochemical performance of ionic liquid based polymer electrolyte with Li/LiFePO4 electrodes, Solid State Ionics 309 (2017) 192-199. https://doi.org/10.1016/j.ssi.2017.07.019
[169] H. Gupta, S. Kataria, L. Balo, V.K. Singh, S.K. Singh, A.K. Tripathi, Y.L. Verma, R.K. Singh, Electrochemical study of ionic liquid based polymer electrolyte with graphene oxide coated LiFePO4 cathode for Li battery, Solid State Ionics 320 (2018) 186-192. https://doi.org/10.1016/j.ssi.2018.03.008
[170] C. Zhong, Y. Deng, W. Hu, J. Qiao, L. Zhang, J. Zhang, A review of electrolyte materials and compositions for electrochemical supercapacitors, Chem. Soc. Rev. 44 (2015) 7484-7539. https://doi.org/10.1039/c5cs00303b
[171] M.F. El-Kady, R.B. Kaner, Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage, Nature Commun. 4 (2013) 1475. https://doi.org/10.1038/ncomms2446
[172] M. Brachet, T. Brousse, J.Le Bideau, All solid-state symmetrical activated carbon electrochemical double layer capacitors designed with ionogel electrolyte, ECS Electrochem. Lett. 3 (2014) A112-A115. https://doi.org/10.1149/2.0051411eel
[173] D. Membreno, L. Smith, K.S. Shin, C.O. Chui, B. Dunn, A high-energy-density quasi-solid-state carbon nanotube electrochemical double-layer capacitor with ionogel electrolyte, Transl. Mater. Res. 2 (2015) 015001. https://doi.org/10.1088/2053-1613/2/1/015001
[174] M. Brachet, D. Gaboriau, P. Gentile, S. Fantini, G. Bidan, S. Sadki, T. Broussea, J.Le Bideau, Solder-reflow resistant solid-state micro supercapacitors based on ionogels, J. Mater. Chem. A 4 (2016) 1835-11843. https://doi.org/10.1039/c6ta03142k
[175] S. Wang, B. Hsia, J.P. Alper, C. Carraro, Z. Wang, R. Maboudian, Comparative studies on electrochemical cycling behavior of two different silica-based ionogels, J. Power Sources 301 (2016) 299-305. https://doi.org/10.1016/j.jpowsour.2015.09.121
[176] G. Leung, L. Smith, J. Lau, B. Dunn, C. Chui, On, Carbon-ionogel supercapacitors for integrated microelectronics, Nanotechnology 27 (2016) 035204. https://doi.org/10.1088/0957-4484/27/3/035204
[177] X. Liu, B. Wang, Z. Jin, H. Wang, Q. Wang, Elastic ionogels with freeze-aligned pores exhibit enhanced electrochemical performances as anisotropic electrolytes of all-solid-state supercapacitors, J. Mater. Chem. A 3 (2015) 15408-15412. https://doi.org/10.1039/c5ta03184b
[178] V. Chaudoy, F.T. Van, M. Deschamps, F. Ghamouss, Ionic liquids in a poly ethylene oxide cross-linked gel polymer as an electrolyte for electrical double layer capacitor, J. Power Sources 342 (2017) 872-878. https://doi.org/10.1016/j.jpowsour.2016.12.097
[179] D. Kim, P.K. Kannan, C.H. Chung, High-Performance Flexible Supercapacitors based on ionogel electrolyte with an enhanced ionic conductivity, Chemistry Select 3 (2018) 2190-2195. https://doi.org/10.1002/slct.201702711
[180] C.W. Liew, K.H. Arifin, J. Kawamura, Y. Iwai, S. Ramesh, A.K. Arof, Effect of halide anions in ionic liquid added poly (vinyl alcohol)-based ion conductors for electrical double layer capacitors, J. Non-Cryst. Sol. 458 (2017) 97-106. https://doi.org/10.1016/j.jnoncrysol.2016.12.022
[181] M. Suleman, Y. Kumar, S.A. Hashmi, Flexible electric double-layer capacitors fabricated with micro-/mesoporous carbon electrodes and plastic crystal incorporated gel polymer electrolytes containing room temperature ionic liquids, J. Solid State Electrochem. 19 (2015) 1347-1357. https://doi.org/10.1007/s10008-014-2731-5
[182] G.P. Pandey, T. Liu, C. Hancock, Y. Li, X.S. Sun, J. Li, Thermostable gel polymer electrolyte based on succinonitrile and ionic liquid for high-performance solid-state supercapacitors, J. Power Sources 328 (2016) 510-519. https://doi.org/10.1016/j.jpowsour.2016.08.032
[183] P. Tamilarasan, S. Ramaprabhu, Stretchable supercapacitors based on highly stretchable ionic liquid incorporated polymer electrolyte, Mater. Chem. Phys. 148 (2014) 48-56. https://doi.org/10.1016/j.matchemphys.2014.07.010
[184] G.P. Pandey, S.A. Hashmi, Solid-state supercapacitors with ionic liquid based gel polymer electrolyte: Effect of lithium salt addition, J. Power Sources 243 (2013) 211-218. https://doi.org/10.1016/j.jpowsour.2013.05.183