Metal-Organic Frameworks as Host for Encapsulation of Enzymes
Bhagwati Sharma, Tridib K. Sarma
Enzymes are a class of highly selective and efficient natural catalysts. The use of enzymes for catalysis often requires them to be immobilized onto solid supports so that they can be efficiently recycled, the contamination due to presence of enzymes in the product can be minimized and their application in biomedicine can be explored. Various strategies for the use of metal-organic frameworks (MOFs) as host material for the encapsulation of enzymes have been discussed. Recent developments on the preparative strategies and applications of MOF encapsulated enzyme with special focus on catalysis are summarized in this chapter. The enhancement/retention of enzymatic activity of the composite material compared to free enzymes in denaturation conditions and advantages of encapsulation of the enzymes has been reviewed.
Keywords
Enzymes, Metal-Organic Frameworks, Encapsulation, Catalyst, Reusability
Published online 6/30/2019, 20 pages
Citation: Bhagwati Sharma, Tridib K. Sarma, Metal-Organic Frameworks as Host for Encapsulation of Enzymes, Materials Research Foundations, Vol. 53, pp 215-234, 2019
DOI: https://doi.org/10.21741/9781644900291-10
Part of the book on Metal-Organic Framework Composites
References
[1] S. J. Benkovic, S. Hammes-Schiffer, A Perspective on Enzyme Catalysis, Science 301 (2003) 1196-1202.
[2] U. T. Bornscheuer, G. W. Huisman, R. J. Kazlauskas, S. Lutz, J. C. Moore, K. Robins, Engineering the third wave of biocatalysis, Nature 485 (2012) 185-194. https://doi.org/10.1038/nature11117
[3] S. F. M. van Dongen, J. A. A. W. Elemans, A. E. Rowan, R. J. M. Nolte, Processive catalysis, Angew. Chem. Int. Ed. 53 (2014) 11420-11428. https://doi.org/10.1002/anie.201404848
[4] G. Hills, Industrial use of lipases to produce fatty acid esters, Eur. J. Lipid Sci. Technol. 105 (2003) 601–607. https://doi.org/10.1002/ejlt.200300853
[5] H. Griengl, H. Schwab, M. Fechter, The synthesis of chiral cyanohydrins by oxynitrilases, Trends Biotechnol. 18 (2000) 252–256. https://doi.org/10.1016/s0167-7799(00)01452-9
[6] R. DiCosimo, J. McAuliffe, A. J. Poulose, G. Bohlmann, Chem. Soc. Rev. 42 (2013) 6437–6474.
[7] Z. Zhou, M. Hartmann, Progress in enzyme immobilization in ordered mesoporous materials and related applications, Chem. Soc. Rev. 42 (2013) 3892–3912.
[8] Z. Zhou, M. Hartmann, Recent progress in biocatalysis with enzymes Immobilized on mesoporous hosts, Top. Catal. 55 (2012) 1081-1100. https://doi.org/10.1007/s11244-012-9905-0
[9] M. C. R. Franssen, P. Steunenberg, E. L. Scott, H. Zuilhof, J. P. M. Sanders, Immobilised enzymes in biorenewables production, Chem. Soc. Rev. 42 (2013) 6491–6533. https://doi.org/10.1039/c3cs00004d
[10] K. Hernandez, R. Fernandez-Lafuente, Control of protein immobilization: Coupling immobilization and site-directed mutagenesis to improve biocatalyst or biosensor performance, Enzyme Microb. Technol. 48 (2011) 107-122. https://doi.org/10.1016/j.enzmictec.2010.10.003
[11] R. A. Sheldon, Cross-linked enzyme aggregates (CLEAs): stable and recyclable biocatalysts, Biochem. Soc. Trans. 35 (2007) 1583-1587. https://doi.org/10.1042/bst0351583
[12] N. R. Mohamad, N. H. C. Marzuki, N. A. Buang, F. Huyop, R. A. Wahab, An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes, Biotechnol. Biotechnol. Equip. 29 (2015) 29 205-220. https://doi.org/10.1080/13102818.2015.1008192
[13] S. Datta, L. R. Christena, Y. R. S. Rajaram, Enzyme immobilization: an overview on techniques and support materials, 3 Biotech 3 (2013) 1-9. https://doi.org/10.1007/s13205-012-0071-7
[14] H. Liang, S. Jiang, Q. Yuan, G. Li, F. Wang, Z. Zhang, J. Liu, Co-immobilization of multiple enzymes by metal coordinated nucleotide hydrogel nanofibers: improved stability and an enzyme cascade for glucose detection, Nanoscale 8 (2016) 6071-6078. https://doi.org/10.1039/c5nr08734a
[15] A. Küchler, J. N. Bleich, B. Sebastian, P. S. Dittrich, P. Walde, Stable and simple immobilization of proteinase K inside glass tubes and microfluidic channels, ACS Appl. Mater. Interfaces 7 (2015) 25970–25980. https://doi.org/10.1021/acsami.5b09301
[16] E. Magner, Immobilisation of enzymes on mesoporous silicate materials, Chem. Soc. Rev. 42 (2013) 6213–6222. https://doi.org/10.1039/c2cs35450k
[17] C. –K. Lee, A. –N. Au–Duong, Enzyme immobilization on nanoparticles: recent applications, in: H. N. Chang (Eds.), Emerging areas in bioengineering, Wiley-VCH, Weinheim, 2018, pp. 67-80. https://doi.org/10.1002/9783527803293.ch4
[18] I. V. Pavlidis, M. Patila, U. T. Bornscheuer, D. Gournis, H. Stamatis, Graphene-based nanobiocatalytic systems: recent advances and future prospects, Trends Biotechnol. 32 (2014) 312–320. https://doi.org/10.1016/j.tibtech.2014.04.004
[19] W. Feng, P. Ji, Enzymes immobilized on carbon nanotubes, Biotechnol. Adv. 29 (2011) 889–895.
[20] R. A. Sheldon, Enzyme immobilization: the quest for optimum performance, Adv. Synth. Catal. 349 (2007) 1289-1307. https://doi.org/10.1002/adsc.200700082
[21] K. Y. Lee, S. H. Yuk, Polymeric protein delivery systems, Prog. Polym. Sci. 32 (2007) 669-697.
[22] H.-C. Zhou, S. Kitagawa, Metal–organic frameworks (MOFs), Chem. Soc. Rev. 43 (2014) 5415-5418. https://doi.org/10.1039/c4cs90059f
[23] L. E. Kreno, K. Leong, O. K. Farha, M. Allendorf, R. P. Van Duyne, J. T. Hupp, Metal–organic framework materials as chemical sensors, Chem. Rev. 112 (2012) 1105-1125. https://doi.org/10.1021/cr200324t
[24] K. Sumida, D. L. Rogow, J. A. Mason, T. M. McDonald, E. D. Bloch, Z. R. Herm, T.-H. Bae, J. R. Long, Carbon dioxide capture in metal–organic frameworks, Chem. Rev. 112 (2012) 724-781. https://doi.org/10.1021/cr2003272
[25] P. Horcajada, R. Gref, T. Baati, P. K. Allan, G. Maurin, P. Couvreur, G. Fèrey, R. E. Morris, C. Serre, Metal–organic frameworks in biomedicine, Chem. Rev. 112, (2012) 1232-1268. https://doi.org/10.1021/cr200256v
[26] T. Zhang, W. Lin, Metal–organic frameworks for artificial photosynthesis and photocatalysis, Chem. Soc. Rev. 43 (2014) 5982-5993. https://doi.org/10.1039/c4cs00103f
[27] S. Yuan, L. Feng, K.Wang, J. Pang,M. Bosch, C. Lollar, Y. Sun, J. Qin, X. Yang, P. Zhang, Q. Wang, L. Zou, Y. Zhang, L. Zhang, Y. Fang, J. Li, H. –C. Zhou, Adv. Mater. 30 (2018) 1704303. https://doi.org/10.1002/adma.201704303
[28] J. Mehta, N. Bhardwaj, S. K. Bhardwaj, K.-H. Kim, A. Deep, Recent advances in enzyme immobilization techniques: metal-organic frameworks as novel substrates, Coord. Chem. Rev. 322 (2016) 30–40. https://doi.org/10.1016/j.ccr.2016.05.007
[29] X. Lian, Y. Fang, E. Joseph, Q. Wang, J. Li, S. Banerjee, C. Lollar, X. Wang, H. –C. Zhou, Enzyme–MOF (metal–organic framework) composites, Chem. Soc. Rev. 46 (2017) 3386-3401. https://doi.org/10.1039/c7cs00058h
[30] M. B. Majewski, A. J. Howarth, P. Li, M. R. Wasielewski, J. T. Hupp, O. K. Farha, Enzyme encapsulation in metal–organic frameworks for applications in catalysis, CrystEngComm, 19 (2017) 4082-4091. https://doi.org/10.1039/c7ce00022g
[31] E. Gkaniatsou, C. Sicard, R. Ricoux, J. –P. Mahy, N. Steunou, C. Serre, Metal–organic frameworks: a novel host platform for enzymatic catalysis and detection, Mater. Horiz. 4 (2017) 55-63. https://doi.org/10.1039/c6mh00312e
[32] F. Lyu, Y. Zhang, R. N. Zare, J. Ge, Z. Liu, One-pot synthesis of protein-embedded metal–organic frameworks with enhanced biological activities, Nano Lett. 14 (2014) 5761–5765. https://doi.org/10.1021/nl5026419
[33] F. –S. Liao, W. –S. Lo, Y. –S. Hsu, C. –C. Wu, S. –C. Wang, F. –K. Shieh, J. V. Morabito, L. –Y. Chou, K. C. –W. Wu, C. –K. Tsung, Shielding against unfolding by embedding enzymes in metal−organic Frameworks via a de Novo approach, J. Am. Chem. Soc. 139 (2017) 6530-6533. https://doi.org/10.1021/jacs.7b01794
[34] K. Liang, R. Ricco, C. M. Doherty, M. J. Styles, S. Bell, N. Kirby, S. Mudie, D. Haylock, A. J. Hill, C. J. Doonan, P. Falcaro, Biomimetic mineralization of metal-organic frameworks as protective coatings for biomacromolecules, Nat. Commun. 6 (2015) 7240. https://doi.org/10.1038/ncomms8240
[35] O. B. Jùnior, A. Bedran-Russo, J. B. S. Flor, A. F. S. Borges, V. F. Ximenes, R. C. G. Frem, P. N. Lisboa-Filho, Encapsulation of collagenase within biomimetically mineralized metal–organic frameworks: designing biocomposites to prevent collagen degradation, New. J. Chem. 43 (2019), 1017-1024. https://doi.org/10.1039/c8nj05246h
[36] J. Cui, Y. Feng, T. Lin, Z. Tan, C. Zhong, S. Jia, Mesoporous metal–organic framework with well-defined cruciate flower-like morphology for enzyme immobilization, ACS Appl. Mater. Interfaces, 9 (2017) 10587-10594. https://doi.org/10.1021/acsami.7b00512
[37] X. Wu, C. Yang, J. Ge, Z. Liu, Polydopamine tethered enzyme/metal-organic framework composites with high stability and reusability, Nanoscale 7 (2015) 18883-18886. https://doi.org/10.1039/c5nr05190h
[38] X. Wu, J. Ge, C. Yang, M. Hou, Z. Liu, Facile synthesis of multiple enzyme-containing metal–organic frameworks in a biomolecule friendly environment, Chem. Commun. 51 (2015) 13408-13411. https://doi.org/10.1039/c5cc05136c
[39] V. Lykourinou, Y. Chen, X. S. Wang, L. Meng, T. Hoang, L. J. Ming, R. L. Musselman, S. Ma, Immobilization of MP-11 into a mesoporous metal–organic framework, MP-11@mesoMOF: A new platform for enzymatic catalysis, J. Am. Chem. Soc. 133 (2011) 10382-10385. https://doi.org/10.1021/ja2038003
[40] Y. Chen, V. Lykourinou, T. Hoang, L. J. Ming, S. Ma, Size-selective biocatalysis of myoglobin immobilized into a mesoporous metal-organic framework with hierarchical pore sizes, Inorg. Chem. 51 (2012) 9156-9158. https://doi.org/10.1021/ic301280n
[41] Y. Chen, V. Lykourinou, C. Vetromile, T. Hoang, L. J. Ming, R. W. Larsen, S. Ma, How can proteins enter the interior of a MOF? Investigation of cytochrome c translocation into a MOF consisting of mesoporous cages with microporous windows, J. Am. Chem. Soc. 134 (2012) 13188-13191. https://doi.org/10.1021/ja305144x
[42] D. Feng, T.-F. Liu, J. Su, M. Bosch, Z. Wei, W. Wan, D. Yuan, Y. P. Chen, X. Wang, K. Wang, X. Lian, Z. Y. Gu, J. Park, X. Zou, H.-C. Zhou, Stable metal-organic frameworks containing single-molecule traps for enzyme encapsulation, Nat. Commun. 6 (2015) 5979. https://doi.org/10.1038/ncomms6979
[43] E. Gkaniatsou, C. Sicard, R. Ricoux, L. Benahmed, F. Bourdreux, Q. Zhang, C. Serre, J. –P. Mahy, N. Steunou, Enzyme encapsulation in mesoporous metal-organic frameworks for selective biodegradation of harmful dye molecules, Angew. Chem. Int. Ed. 57 (2018) 16141-16146. https://doi.org/10.1002/anie.201811327
[44] X. Lian, Y.-P. Chen, T.-F. Liu and H.-C. Zhou, Coupling two enzymes into a tandem nanoreactor utilizing a hierarchically structured MOF, Chem. Sci. 7 (2016) 6969-6973. https://doi.org/10.1039/c6sc01438k
[45] T. J. Pisklak, M. Macías, D. H. Coutinho, R. S. Huang, K. J. Balkus, Hybrid materials for immobilization of MP-11 catalyst, Top. Catal. 38 (2006) 269–278. https://doi.org/10.1007/s11244-006-0025-6
[46] H. Deng, S. Grunder, K. E. Cordova, C. Valente, H. Furukawa, M. Hmadeh, F. Gandara, A. C. Whalley, Z. Liu, S. Asahina, H. Kazumori, M. O’Keeffe, O. Terasaki, J. F. Stoddart, O. M. Yaghi, Large-pore apertures in a series of metal-organic frameworks, Science 336 (2012) 1018–1023. https://doi.org/10.1126/science.1220131
[47] P. Li, J. A. Modica, A. J. Howarth, E. L. Vargas, P. Z. Moghadam, R. Q. Snurr, M. Mrksich, J. T. Hupp and O. K. Farha, Toward design rules for enzyme immobilization in hierarchical mesoporous metal-organic frameworks, Chem 1 (2016) 154–169. https://doi.org/10.1016/j.chempr.2016.05.001
[48] H. He, H. Han, H. Shi, Y. Tian, F. Sun, Y. Song, Q. Li, G. Zhu, Construction of thermophilic lipase-embedded metal–organic frameworks via biomimetic mineralization: A biocatalyst for ester hydrolysis and kinetic resolution, ACS Appl. Mater. Interfaces 8 (2016) 24517-24524. https://doi.org/10.1021/acsami.6b05538