MXenes for Biomedical Applications

$20.00

MXenes for Biomedical Applications

Arka Bagchi, Solanki Sarkar, Ipsita Hazra Chowdhury, Arunima Biswas, Sk Manirul Islam

MXenes has become an important family of 2-D layered materials having immense potential to be utilized in the fields of analytical chemistry, as a target for environmental monitoring and bio-medical applications. This chapter deals in detail with the diverse and far-reaching contribution of MXenes in biomedical sciences. Finally, a discussion is made on how these significant contributions of MXenes might have a long-term impact on biosensing and understanding disease biology. Lastly, the present lacuna in MXene research is also addressed and how future researches in this field might bring in high detection sensitivities.

Keywords
MXenes, Nanosheets, Biosensor, Imaging, Cytotoxicity, Therapeutics

Published online 5/30/2019, 15 pages

Citation: Arka Bagchi, Solanki Sarkar, Ipsita Hazra Chowdhury, Arunima Biswas, Sk Manirul Islam, MXenes for Biomedical Applications, Materials Research Foundations, Vol. 51, pp 189-203, 2019

DOI: https://doi.org/10.21741/9781644900253-8

Part of the book on MXenes: Fundamentals and Applications

References
[1] K. Huang, Z. Li, J. Lin, G. Han, P. Huang, Correction: Two-dimensional transition metal carbides and nitrides (MXenes) for biomedical applications, Chem. Soc. Rev. 47 (2018) 6889–6889. https://doi.org/10.1039/C8CS90090F
[2] A. Lipatov, M. Alhabeb, M.R. Lukatskaya, A. Boson, Y. Gogotsi, A. sinitskii, effect of synthesis on quality, electronic properties and environmental stability of individual monolayer Ti3C2 mxene flakes, Advanced Electronic Materials. 2 (2016) 1600255. https://doi.org/10.1002/aelm.201600255
[3] B. Anasori, C. Shi, E.J. Moon, Y. Xie, C.A. Voigt, P.R.C. Kent, S.J. May, S.J.L. Billinge, M.W. Barsoum, Y. Gogotsi, Control of electronic properties of 2D carbides (MXenes) by manipulating their transition metal layers, Nanoscale Horiz. 1 (2016) 227–234. https://doi.org/10.1039/C5NH00125K
[4] L. Feng, X.-H. Zha, K. Luo, Q. Huang, J. He, Y. Liu, W. Deng, S. Du, Structures and mechanical and electronic properties of the Ti2CO2 MXene Incorporated with neighboring elements (Sc, V, B and N), Journal of Elec Materi. 46 (2017) 2460–2466. https://doi.org/10.1007/s11664-017-5311-5
[5] X.-H. Zha, K. Luo, Q. Li, Q. Huang, J. He, X. Wen, S. Du, Role of the surface effect on the structural, electronic and mechanical properties of the carbide MXenes, EPL. 111 (2015) 26007. https://doi.org/10.1209/0295-5075/111/26007.
[6] K. Rasool, M. Helal, A. Ali, C.E. Ren, Y. Gogotsi, K.A. Mahmoud, Antibacterial activity of Ti3C2Tx MXene, ACS Nano. 10 (2016) 3674–3684. https://doi.org/10.1021/acsnano.6b00181
[7] G.R. Berdiyorov, Optical properties of functionalized Ti3C2T2 (T = F, O, OH) MXene: First-principles calculations, AIP Advances. 6 (2016) 055105. https://doi.org/10.1063/1.4948799
[8] D. Magne, V. Mauchamp, S. Célérier, P. Chartier, T. Cabioc’h, Spectroscopic evidence in the visible-ultraviolet energy range of surface functionalization sites in the multilayer ${\mathrm{Ti}}_{3}{\mathrm{C}}_{2}$ MXene, Phys. Rev. B. 91 (2015) 201409. https://doi.org/10.1103/PhysRevB.91.201409
[9] A. Chandrasekaran, A. Mishra, A.K. Singh, Ferroelectricity, antiferroelectricity, and ultrathin 2D electron/hole gas in multifunctional monolayer MXene, Nano Lett. 17 (2017) 3290–3296. https://doi.org/10.1021/acs.nanolett.7b01035
[10] G. Liu, J. Zou, Q. Tang, X. Yang, Y. Zhang, Q. Zhang, W. Huang, P. Chen, J. Shao, X. Dong, Surface modified Ti3C2 MXene nanosheets for tumor targeting photothermal/photodynamic/chemo synergistic therapy, ACS Appl Mater Interfaces. 9 (2017) 40077–40086. https://doi.org/10.1021/acsami.7b13421
[11] S. Liu, T.H. Zeng, M. Hofmann, E. Burcombe, J. Wei, R. Jiang, J. Kong, Y. Chen, Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress, ACS Nano. 5 (2011) 6971–6980. https://doi.org/10.1021/nn202451x
[12] Y. Li, W. Zhang, J. Niu, Y. Chen, Mechanism of photogenerated reactive oxygen species and correlation with the antibacterial properties of engineered metal-oxide nanoparticles, ACS Nano. 6 (2012) 5164–5173. https://doi.org/10.1021/nn300934k
[13] V. Lakshmi Prasanna, R. Vijayaraghavan, Insight into the mechanism of antibacterial activity of ZnO: surface defects mediated reactive oxygen species even in the dark, Langmuir. 31 (2015) 9155–9162. https://doi.org/10.1021/acs.langmuir.5b02266
[14] Y.-W. Wang, A. Cao, Y. Jiang, X. Zhang, J.-H. Liu, Y. Liu, H. Wang, Superior antibacterial activity of zinc oxide/graphene oxide composites originating from high zinc concentration localized around bacteria, ACS Appl Mater Interfaces. 6 (2014) 2791–2798. https://doi.org/10.1021/am4053317
[15] W. Zhang, Y. Li, J. Niu, Y. Chen, Photogeneration of reactive oxygen species on uncoated silver, gold, nickel, and silicon nanoparticles and their antibacterial effects, Langmuir. 29 (2013) 4647–4651. https://doi.org/10.1021/la400500t
[16] O. Choi, Z. Hu, Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria, Environ. Sci. Technol. 42 (2008) 4583–4588.
[17] S. Chernousova, M. Epple, Silver as antibacterial agent: ion, nanoparticle, and metal, Angew. Chem. Int. Ed. Engl. 52 (2013) 1636–1653. https://doi.org/10.1002/anie.201205923
[18] E.A. Mayerberger, R.M. Street, R.M. McDaniel, M.W. Barsoum, C.L. Schauer, Antibacterial properties of electrospun Ti3C2Tz (MXene)/chitosan nanofibers, RSC Adv. 8 (2018) 35386–35394. https://doi.org/10.1039/C8RA06274A
[19] R. Niu, J. Qiao, H. Yu, J. Nie, D. Yang, Electrospun composite nanofibrous membrane as wound dressing with good adhesion, Front. Chem. China. 6 (2011) 221–226. https://doi.org/10.1007/s11458-011-0244-7
[20] Y.-C. Chung, C.-Y. Chen, Antibacterial characteristics and activity of acid-soluble chitosan, Bioresour. Technol. 99 (2008) 2806–2814. https://doi.org/10.1016/j.biortech.2007.06.044
[21] K. Rasool, K.A. Mahmoud, D.J. Johnson, M. Helal, G.R. Berdiyorov, Y. Gogotsi, Efficient antibacterial membrane based on two-dimensional Ti3C2Tx (MXene) Nanosheets, Scientific Reports. 7 (2017) 1598. https://doi.org/10.1038/s41598-017-01714-3
[22] Y. Ying, Y. Liu, X. Wang, Y. Mao, W. Cao, P. Hu, X. Peng, Two-dimensional titanium carbide for efficiently reductive removal of highly toxic chromium(VI) from water, ACS Appl. Mater. Interfaces. 7 (2015) 1795–1803. https://doi.org/10.1021/am5074722
[23] E. Lee, A. Vahid Mohammadi, B.C. Prorok, Y.S. Yoon, M. Beidaghi, D.-J. Kim, Room temperature gas sensing of two-dimensional titanium carbide (MXene), ACS Appl Mater Interfaces. 9 (2017) 37184–37190. https://doi.org/10.1021/acsami.7b11055
[24] X. Yu, Y. Li, J. Cheng, Z. Liu, Q. Li, W. Li, X. Yang, B. Xiao, Monolayer Ti3CO2: A promising candidate for NH3 sensor or capturer with high sensitivity and selectivity, ACS Appl Mater Interfaces. 7 (2015) 13707–13713. https://doi.org/10.1021/acsami.5b03737
[25] A. Heller, B. Feldman, Electrochemical glucose sensors and their applications in diabetes management, Chemical Reviews. 108 (2008) 2482–2505. https://doi.org/10.1021/cr068069y
[26] R.B. Rakhi, P. Nayak, C. Xia, H.N. Alshareef, Novel amperometric glucose biosensor based on MXene nanocomposite, Scientific Reports. 6 (2016) 36422. https://doi.org/10.1038/srep36422
[27] C. Liu, Y. Sheng, Y. Sun, J. Feng, S. Wang, J. Zhang, J. Xu, D. Jiang, A glucose oxidase-coupled DNAzyme sensor for glucose detection in tears and saliva, BiosensBioelectron. 70 (2015) 455–461. https://doi.org/10.1016/j.bios.2015.03.070
[28] M. Baghayeri, Glucose sensing by a glassy carbon electrode modified with glucose oxidase and a magnetic polymeric nanocomposite, RSC Adv. 5 (2015) 18267–18274. https://doi.org/10.1039/C4RA15888A
[29] P. Nayak, P.N. Santhosh, S. Ramaprabhu, Synthesis of Au-MWCNT–graphene hybrid composite for the rapid detection of H2O2 and glucose, RSC Adv. 4 (2014) 41670–41677. https://doi.org/10.1039/C4RA05353B
[30] L. Zhou, X. Zhang, L. Ma, J. Gao, Y. Jiang, Acetylcholinesterase/chitosan-transition metal carbides nanocomposites-based biosensor for the organophosphate pesticides detection, Biochemical Engineering Journal. 128 (2017) 243–249. https://doi.org/10.1016/j.bej.2017.10.008
[31] H. Lin, X. Wang, L. Yu, Y. Chen, J. Shi, Two-dimensional ultrathin MXene ceramic nanosheets for photothermal conversion, Nano Lett. 17 (2017) 384–391. https://doi.org/10.1021/acs.nanolett.6b04339
[32] H. Lin, S. Gao, C. Dai, Y. Chen, J. Shi, A two-dimensional biodegradable niobium carbide (MXene) for photothermal tumor eradication in NIR-I and NIR-II biowindows, J. Am. Chem. Soc. 139 (2017) 16235–16247. https://doi.org/10.1021/jacs.7b07818
[33] C. Dai, H. Lin, G. Xu, Z. Liu, R. Wu, Y. Chen, Biocompatible 2D Titanium carbide (Mxenes) composite nanosheets for pH-responsive MRI-guided tumor hyperthermia, Chem. Mater. 29 (2017) 8637–8652. https://doi.org/10.1021/acs.chemmater.7b02441
[34] C. Dai, Y. Chen, X. Jing, L. Xiang, D. Yang, H. Lin, Z. Liu, X. Han, R. Wu, Two-dimensional tantalum carbide (MXenes) composite nanosheets for multiple imaging-guided photothermal tumor ablation, ACS Nano. 11 (2017) 12696–12712. https://doi.org/10.1021/acsnano.7b07241
[35] Q. Xue, H. Zhang, M. Zhu, Z. Pei, H. Li, Z. Wang, Y. Huang, Y. Huang, Q. Deng, J. Zhou, S. Du, Q. Huang, C. Zhi, Photoluminescent Ti3C2 MXene quantum dots for multicolor cellular imaging, Adv. Mater. Weinheim. 29 (2017). https://doi.org/10.1002/adma.201604847
[36] Z. Wang, J. Xuan, Z. Zhao, Q. Li, F. Geng, Versatile cutting method for producing fluorescent ultrasmall Mxene sheets, ACS Nano. 11 (2017) 11559–11565. https://doi.org/10.1021/acsnano.7b06476
[37] B. Xu, M. Zhu, W. Zhang, X. Zhen, Z. Pei, Q. Xue, C. Zhi, P. Shi, Ultrathin MXene-micropattern-based field-effect transistor for probing neural activity, Adv. Mater. Weinheim. 28 (2016) 3333–3339. https://doi.org/10.1002/adma.201504657
[38] D. Ni, W. Bu, E.B. Ehlerding, W. Cai, J. Shi, Engineering of inorganic nanoparticles as magnetic resonance imaging contrast agents, ChemSoc Rev. 46 (2017) 7438–7468. https://doi.org/10.1039/c7cs00316a
[39] L. Mei, Z. Zhang, L. Zhao, L. Huang, X.L. Yang, J. Tang, S.S. Feng, Pharmaceutical nanotechnology for oral delivery of anticancer drugs., Adv Drug Deliv Rev. 65 (2013) 880–890. https://doi.org/10.1016/j.addr.2012.11.005
[40] Y. Chen, H. Chen, J. Shi, In vivo bio-safety evaluations and diagnostic/therapeutic applications of chemically designed mesoporous silica nanoparticles, Adv. Mater. Weinheim. 25 (2013) 3144–3176. https://doi.org/10.1002/adma.201205292
[41] W. Yin, L. Yan, J. Yu, G. Tian, L. Zhou, X. Zheng, X. Zhang, Y. Yong, J. Li, Z. Gu, Y. Zhao, High-throughput synthesis of single-layer MoS2 nanosheets as a near-infrared photothermal-triggered drug delivery for effective cancer therapy, ACS Nano. 8 (2014) 6922–6933. https://doi.org/10.1021/nn501647j
[42] Q. Weng, B. Wang, X. Wang, N. Hanagata, X. Li, D. Liu, X. Wang, X. Jiang, Y. Bando, D. Golberg, Highly water-soluble, porous, and biocompatible boron nitrides for anticancer drug delivery, ACS Nano. 8 (2014) 6123–6130. https://doi.org/10.1021/nn5014808
[43] X. Han, J. Huang, H. Lin, Z. Wang, P. Li, Y. Chen, 2D Ultrathin MXene-based drug-delivery nanoplatform for synergistic photothermal ablation and chemotherapy of cancer, AdvHealthc Mater. 7 (2018) e1701394. https://doi.org/10.1002/adhm.201701394
[44] Z. Liu, H. Lin, M. Zhao, C. Dai, S. Zhang, W. Peng, Y. Chen, 2D Superparamagnetic tantalum carbide composite mxenes for efficient breast-cancer theranostics, Theranostics. 8 (2018) 1648–1664. https://doi.org/10.7150/thno.23369
[45] Y. Hu, S. Mignani, J.-P. Majoral, M. Shen, X. Shi, Construction of iron oxide nanoparticle-based hybrid platforms for tumor imaging and therapy, Chem. Soc. Rev. 47 (2018) 1874–1900. https://doi.org/10.1039/C7CS00657H
[46] X. Yu, X. Cai, H. Cui, S.-W. Lee, X.-F. Yu, B. Liu, Fluorine-free preparation of titanium carbide MXene quantum dots with high near-infrared photothermal performances for cancer therapy, Nanoscale. 9 (2017) 17859–17864. https://doi.org/10.1039/c7nr05997c
[47] L. Zong, H. Wu, H. Lin, Y. Chen, A polyoxometalate-functionalized two-dimensional titanium carbide composite MXene for effective cancer theranostics, Nano Res. 11 (2018) 4149–4168. https://doi.org/10.1007/s12274-018-2002-3
[48] H. Lin, Y. Chen, J. Shi, Insights into 2D MXenes for versatile biomedical applications: current advances and challenges ahead, AdvSci (Weinh). 5 (2018). https://doi.org/10.1002/advs.201800518
[49] G.K. Nasrallah, M. Al-Asmakh, K. Rasool, K.A. Mahmoud, Ecotoxicological assessment of Ti3C2Tx (MXene) using a zebrafish embryo model, Environ. Sci.: Nano. 5 (2018) 1002–1011. https://doi.org/10.1039/C7EN01239J