MXenes for Sodium-Ion Batteries
Rashid Iqbal, Muhammad Qaisar Sultan, Ramyakrishna Pothu, Rajender Boddula
MXene is a new class of porous two-dimensional materials that have attracted enormous attention during the last decades due to their high redox activity controllable structures and tunable pore sizes. In this review, we report some recent advances in titanium carbide based MXene based electrode used without binder, conductive additive and current collector in the fabrication of next-generation batteries. This MXene electrode is proficient of redox reversible electrochemical storage of sodium ions and possesses good cycling stability with high rate charge-discharge ability. Meanwhile, Li metal is a scarce and expensive element in the earth crust and may not be able to resolve the energy requirement in the future, whereas Na metal could easily replace Li metal due to its readily availability. Finally, this review will focus on the research, which will open up new opportunities for developing self-standing binder and additive-free MXene electrodes for Na-ion batteries with energy density approaching those of Li-ion.
Keywords
MXene, Two-Dimensional Material, Non-Lithium-Ion Batteries, Sodium Ion Batteries
Published online 5/30/2019, 14 pages
Citation: Rashid Iqbal, Muhammad Qaisar Sultan, Ramyakrishna Pothu, Rajender Boddula, MXenes for Sodium-Ion Batteries, Materials Research Foundations, Vol. 51, pp 175-188, 2019
DOI: https://doi.org/10.21741/9781644900253-7
Part of the book on MXenes: Fundamentals and Applications
References
[1] B. Anasori, M.R. Lukatskaya, Y. Gogotsi, 2D metal carbides and nitrides (MXenes) for energy storage, Nat. Rev. Mater. 2 (2017) 16098. https://doi.org/10.1038/natrevmats.2016.98
[2] M. Naguib, V.N. Mochalin, M.W. Barsoum, Y. Gogotsi, 25th Anniversary Article: MXenes: A new family of two-dimensional materials, Adv. Mater. 26 (2014) 992-1005. https://doi.org/10.1002/adma.201304138
[3] X. Wang, S. Kajiyama, H. Iinuma, E. Hosono, S. Oro, I. Moriguchi, M. Okubo, A. Yamada, Pseudocapacitance of MXene nanosheets for high-power sodium-ion hybrid capacitors, Nat. Commun. 6 (2015) 6544. https://doi.org/10.1038/ncomms7544
[4] Y. Dall’Agnese, P.-L. Taberna, Y. Gogotsi, P. Simon, Two-dimensional vanadium carbide (MXene) as positive electrode for sodium-ion capacitors, J. Phys. Chem. Lett. 6 (2015) 2305-2309. https://doi.org/10.1021/acs.jpclett.5b00868
[5] M. Naguib, J. Halim, J. Lu, K.M. Cook, L. Hultman, Y. Gogotsi, M.W. Barsoum, New two-dimensional niobium and vanadium carbides as promising materials for Li-ion batteries, J. Am. Chem. Soc. 135 (2013) 15966-15969. https://doi.org/10.1021/ja405735d
[6] X. Xie, M.-Q. Zhao, B. Anasori, K. Maleski, C.E. Ren, J. Li, B.W. Byles, E. Pomerantseva, G. Wang, Y. Gogotsi, Porous heterostructured MXene/carbon nanotube composite paper with high volumetric capacity for sodium-based energy storage devices, Nano Energy 26 (2016) 513-523. https://doi.org/10.1016/j.nanoen.2016.06.005
[7] M. Naguib, O. Mashtalir, J. Carle, V. Presser, J. Lu, L. Hultman, Y. Gogotsi, M.W. Barsoum, Two-dimensional transition metal carbides, ACS Nano 6 (2012) 1322-1331. https://doi.org/10.1021/nn204153h
[8] X. Liang, A. Garsuch, L.F. Nazar, Sulfur cathodes based on conductive MXene nanosheets for high-performance lithium-sulfur batteries, Angew.Chem. Int. Ed. 54 (2015) 3907-3911. https://doi.org/10.1002/anie.201410174
[9] X. Liang, Y. Rangom, C.Y. Kwok, Q. Pang, L.F. Nazar, Interwoven MXene nanosheet/carbon nanotube composites as Li–S cathode hosts, Adv. Mater. 29 (2017) 1603040. https://doi.org/10.1002/adma.201603040
[10] X. Liang, A. Garsuch, L.F. Nazar, Sulfur cathodes based on conductive MXene nanosheets for high performance lithium-sulfur batteries, Angew.Chem. Int. Ed. 54 (2015) 3907-3911. https://doi.org/10.1002/anie.201410174
[11] M. Ghidiu, M.R. Lukatskaya, M.-Q. Zhao, Y. Gogotsi, M.W. Barsoum, Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance, Nature 516 (2014) 78. https://doi.org/10.1038/nature13970
[12] M.R. Lukatskaya, O. Mashtalir, C.E. Ren, Y. Dall’Agnese, P. Rozier, P.L. Taberna, M. Naguib, P. Simon, M.W. Barsoum, Y. Gogotsi, Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide, Science 341 (2013) 1502-1505. https://doi.org/10.1126/science.1241488
[13] M.R. Lukatskaya, B. Dunn, Y. Gogotsi, Multidimensional materials and device architectures for future hybrid energy storage, Nat Commun. 7 (2016) 12647. https://doi.org/10.1038/ncomms12647
[14] C.E. Ren, M.Q. Zhao, T. Makaryan, J. Halim, M. Boota, S. Kota, B. Anasori, M.W. Barsoum, Y. Gogotsi, Porous Two-dimensional transition metal carbide (MXene) flakes for high performance Li ion storage, ChemElectroChem 3 (2016) 689-693. https://doi.org/10.1002/celc.201600059
[15] M.Q. Zhao, C.E. Ren, Z. Ling, M.R. Lukatskaya, C. Zhang, K.L. Van Aken, M.W. Barsoum, Y. Gogotsi, Flexible MXene/carbon nanotube composite paper with high volumetric capacitance, Adv. Mater. 27 (2015) 339-345. https://doi.org/10.1002/adma.201404140
[16] Y. Lu, L. Wang, J. Cheng, J.B. Goodenough, Prussian blue: a new framework of electrode materials for sodium batteries, Chem. Commun. 48 (2012) 6544-6546. https://doi.org/10.1039/c2cc31777j
[17] Z. Ling, C.E. Ren, M.-Q. Zhao, J. Yang, J.M. Giammarco, J. Qiu, M.W. Barsoum, Y. Gogotsi, Flexible and conductive MXene films and nanocomposites with high capacitance, PNAS 111 (2014) 16676-16681. https://doi.org/10.1073/pnas.1414215111
[18] M. Boota, B. Anasori, C. Voigt, M.Q. Zhao, M.W. Barsoum, Y. Gogotsi, Pseudocapacitive electrodes produced by oxidant free polymerization of pyrrole between the layers of 2D titanium carbide (MXene), Adv. Mater. 28 (2016) 1517-1522. https://doi.org/10.1002/adma.201504705
[19] M.-Q. Zhao, M. Torelli, C.E. Ren, M. Ghidiu, Z. Ling, B. Anasori, M.W. Barsoum, Y. Gogotsi, 2D titanium carbide and transition metal oxides hybrid electrodes for Li-ion storage, Nano Energy 30 (2016) 603-613. https://doi.org/10.1016/j.nanoen.2016.10.062
[20] J. Luo, W. Zhang, H. Yuan, C. Jin, L. Zhang, H. Huang, C. Liang, Y. Xia, J. Zhang, Y. Gan, Pillared structure design of MXene with ultralarge interlayer spacing for high-performance lithium-ion capacitors, ACS Nano 11 (2017) 2459-2469. https://doi.org/10.1021/acsnano.6b07668
[21] Y.-X. Yu, Prediction of mobility, enhanced storage capacity, and volume change during sodiation on interlayer-expanded functionalized Ti3C2 MXene anode materials for sodium-ion batteries, J. Phys. Chem. C 120 (2016) 5288-5296. https://doi.org/10.1021/acs.jpcc.5b10366
[22] V. Palomares, P. Serras, I. Villaluenga, K.B. Hueso, J. Carretero-González, T. Rojo, Na-ion batteries, recent advances and present challenges to become low-cost energy storage systems, Energy Environ. Sci. 5 (2012) 5884-5901. https://doi.org/10.1039/c2ee02781j
[23] M.D. Slater, D. Kim, E. Lee, C.S. Johnson, Sodium-ion batteries, Adv. Funct. Mater. 23 (2013) 947-958. https://doi.org/10.1002/adfm.201200691
[24] H.D. Yoo, I. Shterenberg, Y. Gofer, G. Gershinsky, N. Pour, D. Aurbach, Mg rechargeable batteries: an on-going challenge, Energy Environ. Sci. 6 (2013) 2265-2279. https://doi.org/10.1039/c3ee40871j
[25] D. Aurbach, Z. Lu, A. Schechter, Y. Gofer, H. Gizbar, R. Turgeman, Y. Cohen, M. Moshkovich, E. Levi, Prototype systems for rechargeable magnesium batteries, Nature 407 (2000) 724-727. https://doi.org/10.1038/35037553
[26] N. Amir, Y. Vestfrid, O. Chusid, Y. Gofer, D. Aurbach, Progress in nonaqueous magnesium electrochemistry, J Power Sour. 174 (2007) 1234-1240. https://doi.org/10.1016/j.jpowsour.2007.06.206
[27] R.E. Doe, R. Han, J. Hwang, A.J. Gmitter, I. Shterenberg, H.D. Yoo, N. Pour, D. Aurbach, Novel, electrolyte solutions comprising fully inorganic salts with high anodic stability for rechargeable magnesium batteries, Chem. Commun. 50 (2014) 243-245. https://doi.org/10.1039/c3cc47896c
[28] N. Jayaprakash, S.K. Das, L.A. Archer, The rechargeable aluminum-ion battery, Chem. Commun. 47 (2011) 12610-12612. https://doi.org/10.1039/c1cc15779e
[29] Q. Li, N.J. Bjerrum, Aluminum as anode for energy storage and conversion: a review, J. Power Sour. 110 (2002) 1-10.
[30] A. Eftekhari, Potassium secondary cell based on Prussian blue cathode, J. Power Sour. 126 (2004) 221-228. https://doi.org/10.1016/j.jpowsour.2003.08.007
[31] C.D. Wessells, R.A. Huggins, Y. Cui, Copper hexacyanoferrate battery electrodes with long cycle life and high power, Nat. Commun. 2 (2011) 550. https://doi.org/10.1038/ncomms1563
[32] G. Amatucci, F. Badway, A. Singhal, B. Beaudoin, G. Skandan, T. Bowmer, I. Plitz, N. Pereira, T. Chapman, R. Jaworski, Investigation of yttrium and polyvalent ion intercalation into nanocrystalline vanadium oxide, J. Electrochem. Soc. 148 (2001) A940-A950. https://doi.org/10.1149/1.1383777
[33] R.Y. Wang, C.D. Wessells, R.A. Huggins, Y. Cui, Highly reversible open framework nanoscale electrodes for divalent ion batteries, Nano Lett. 13 (2013) 5748-5752. https://doi.org/10.1021/nl403669a
[34] Y. Cao, L. Xiao, M.L. Sushko, W. Wang, B. Schwenzer, J. Xiao, Z. Nie, L.V. Saraf, Z. Yang, J. Liu, Sodium ion insertion in hollow carbon nanowires for battery applications, Nano Lett. 12 (2012) 3783-3787. https://doi.org/10.1021/nl3016957
[35] R. Alcántara, J.M. Jiménez-Mateos, P. Lavela, J.L. Tirado, Carbon black: a promising electrode material for sodium-ion batteries, Electrochem. Commun. 3 (2001) 639-642. https://doi.org/10.1016/s1388-2481(01)00244-2
[36] K. Tang, L. Fu, R.J. White, L. Yu, M.-M. Titirici, M. Antonietti, J. Maier, Hollow carbon nanospheres with superior rate capability for sodium-based batteries, Adv. Energy Mater. 2 (2012) 873-877. https://doi.org/10.1002/aenm.201100691
[37] A. Darwiche, C. Marino, M.T. Sougrati, B. Fraisse, L. Stievano, L. Monconduit, Better cycling performances of bulk Sb in Na-ion batteries compared to Li-ion systems: an unexpected electrochemical mechanism, J. Am. Chem. Soc. 134 (2012) 20805-20811. https://doi.org/10.1021/ja310347x
[38] Y. Zhu, X. Han, Y. Xu, Y. Liu, S. Zheng, K. Xu, L. Hu, C. Wang, Electrospun Sb/C fibers for a stable and fast sodium-ion battery anode, ACS Nano 7 (2013) 6378-6386. https://doi.org/10.1021/nn4025674
[39] J. Qian, Y. Xiong, Y. Cao, X. Ai, H. Yang, Synergistic Na-storage reactions in Sn4P3 as a high-capacity, cycle-stable anode of Na-ion batteries, Nano Lett. 14 (2014) 1865-1869. https://doi.org/10.1021/nl404637q
[40] Y. Shao, M. Gu, X. Li, Z. Nie, P. Zuo, G. Li, T. Liu, J. Xiao, Y. Cheng, C. Wang, J.-G. Zhang, J. Liu, Highly reversible Mg insertion in nanostructured Bi for Mg ion batteries, Nano Lett. 14 (2014) 255-260. https://doi.org/10.1021/nl403874y
[41] N. Singh, T.S. Arthur, C. Ling, M. Matsui, F. Mizuno, A high energy-density tin anode for rechargeable magnesium-ion batteries, Chem. Commun. 49 (2013) 149-151. https://doi.org/10.1039/c2cc34673g
[42] P. Ge, M. Fouletier, Electrochemical intercalation of sodium in graphite, Solid State Ionics 28-30 (1988) 1172-1175. https://doi.org/10.1016/0167-2738(88)90351-7
[43] J.B. Goodenough, Y. Kim, Challenges for rechargeable Li batteries, Chem. Mater. 22 (2010) 587-603. https://doi.org/10.1021/cm901452z
[44] H. Pan, Y.-S. Hu, L. Chen, Room-temperature stationary sodium-ion batteries for large-scale electric energy storage, EnergyEnviron. Sci. 6 (2013) 2338-2360. https://doi.org/10.1039/c3ee40847g
[45] A. Eftekhari, Potassium secondary cell based on Prussian blue cathode, J. Power Sour. 126 (2004) 221-228. https://doi.org/10.1016/j.jpowsour.2003.08.007
[46] D.P. DiVincenzo, E.J. Mele, Cohesion and structure in stage-1 graphite intercalation compounds, Phys.. Rev. B 32 (1985) 2538-2553. https://doi.org/10.1103/physrevb.32.2538
[47] D. Er, J. Li, M. Naguib, Y. Gogotsi, V.B. Shenoy, Ti3C2 MXene as a high capacity electrode material for metal (Li, Na, K, Ca) ion batteries, ACS Appl.Mater.Interfaces 6 (2014) 11173-11179. https://doi.org/10.1021/am501144q
[48] O. Mashtalir, M. Naguib, V.N. Mochalin, Y. Dall’Agnese, M. Heon, M.W. Barsoum, Y. Gogotsi, Intercalation and delamination of layered carbides and carbonitrides, Nat.Commun. 4 (2013) 1716. https://doi.org/10.1038/ncomms2664
[49] G. Mills, H. Jónsson, G.K. Schenter, Reversible work transition state theory: application to dissociative adsorption of hydrogen, Surf. Sci. 324 (1995) 305-337. https://doi.org/10.1016/0039-6028(94)00731-4
[50] Q. Tang, Z. Zhou, P. Shen, Are MXenes promising anode materials for Li-ion batteries? Computational studies on electronic properties and Li storage capability of Ti3C2 and Ti3C2X2 (X= F, OH) monolayer, J. Am. Chem. Soc. 134 (2012) 16909-16916. https://doi.org/10.1021/ja308463r
[51] M.Q. Zhao, X. Xie, C.E. Ren, T. Makaryan, B. Anasori, G. Wang, Y. Gogotsi, Hollow MXene spheres and 3D macroporous MXene frameworks for Na ion storage, Adv.Mater. 29 (2017) 1702410. https://doi.org/10.1002/adma.201702410
[52] Y. Xie, M. Naguib, V.N. Mochalin, M.W. Barsoum, Y. Gogotsi, X. Yu, K.-W. Nam, X.-Q. Yang, A.I. Kolesnikov, P.R. Kent, Role of surface structure on Li-ion energy storage capacity of two-dimensional transition-metal carbides, J. Am. Chem. Soc. 136 (2014) 6385-6394. https://doi.org/10.1021/ja501520b
[53] Y. Xie, Y. Dall’Agnese, M. Naguib, Y. Gogotsi, M.W. Barsoum, H.L. Zhuang, P.R. Kent, Prediction and characterization of MXene nanosheet anodes for non-lithium-ion batteries, ACS Nano 8 (2014) 9606-9615. https://doi.org/10.1021/nn503921j
[54] J. Come, M. Naguib, P. Rozier, M.W. Barsoum, Y. Gogotsi, P.-L. Taberna, M. Morcrette, P. Simon, A non-aqueous asymmetric cell with a Ti2C-based two-dimensional negative electrode, J. Electrochem. Soc. 159 (2012) A1368-A1373. https://doi.org/10.1149/2.003208jes
[55] Q. Peng, J. Guo, Q. Zhang, J. Xiang, B. Liu, A. Zhou, R. Liu, Y. Tian, Unique lead adsorption behavior of activated hydroxyl group in two-dimensional titanium carbide, J. Am. Chem. Soc. 136 (2014) 4113-4116. https://doi.org/10.1021/ja500506k