MXenes for Supercapacitors
Qixun Xia
As new members of the two-dimensional (2D) material family, MXene have attracted spectacular attentions due to their potentials for electronic, optoelectronic, catalyze, biological, gas sensing, and energy storage applications. In these applications, supercapacitor has been extensively studied, and other applications are also expanding. In this chapter, recent dramatic developments on MXene-based supercapacitor electrode materials, such as single/few-layered MXene, element doped MXenes, MXene-based composites, MXene quantum dots, are highlighted. Furhter, some important progress on microstructure, electrical properties and supercapacitor applications reviewed. Lastly, a brief outlook points out future development direction of MXene applications on supercapacitor devices.
Keywords
MXene, Supercapacitors, Composites, Electrochemical, Two-Dimensional
Published online 5/30/2019, 38 pages
Citation: Qixun Xia, MXenes for Supercapacitors, Materials Research Foundations, Vol. 51, pp 137-174, 2019
DOI: https://doi.org/10.21741/9781644900253-6
Part of the book on MXenes: Fundamentals and Applications
References
[1] S. Hosogai, H. Tsutsumi, Electrospun nickel oxide/polymer fibrous electrodes for electrochemical capacitors and effect of heat treatment process on their performance, J. Power Sources 194 (2009) 1213-1217. https://doi.org/10.1016/j.jpowsour.2009.06.044
[2] P. Simon, Y. Gogotsi, Materials for electrochemical capacitors, Nat. Mater. 7 (2008) 845-854.
[3] P.C. Gao, W.Y. Tsai, B. Daffos, P.L. Taberna, C.R. Perez, Y. Gogotsi, P. Simon, F. Favier, Graphene-like carbide derived carbon for high-power supercapacitors, Nano Energy 12 (2015) 197-206. https://doi.org/10.1016/j.nanoen.2014.12.017
[4] S.Y. Zhang, L. Ren, S.J. Peng, Zn2SiO4 urchin-like microspheres: controlled synthesis and application in lithium-ion batteries, Crystengcomm 16 (2014) 6195-6202. https://doi.org/10.1039/c4ce00479e
[5] K. Novoselov, A. Mishchenko, A. Carvalho, A.C. Neto, 2D materials and van der Waals heterostructures, Science 353 (2016) aac 9439. https://doi.org/10.1126/science.aac9439
[6] C. Liu, Z. Yu, D. Neff, A. Zhamu, B.Z. Jang, Graphene-based supercapacitor with an ultrahigh energy density, Nano Lett. 10 (2010) 4863-4868. https://doi.org/10.1021/nl102661q
[7] Y. Wang, Z.Q. Shi, Y. Huang, Y.F. Ma, C.Y. Wang, M.M. Chen, Y.S. Chen, Supercapacitor devices based on graphene materials, J. Phys. Chem. C 113 (2009) 13103-13107. https://doi.org/10.1021/jp902214f
[8] C.G. Liu, Z.N. Yu, D. Neff, A. Zhamu, B.Z. Jang, Graphene-based supercapacitor with an ultrahigh energy density, Nano Lett. 10 (2010) 4863-4868. https://doi.org/10.1021/nl102661q
[9] M. Ghidiu, M.R. Lukatskaya, M.-Q. Zhao, Y. Gogotsi, M.W. Barsoum, Conductive two-dimensional titanium carbide/clay/’with high volumetric capacitance, Nature 516 (2014) 78-81. https://doi.org/10.1038/nature13970
[10] M. Naguib, O. Mashtalir, J. Carle, V. Presser, J. Lu, L. Hultman, Y. Gogotsi, M.W. Barsoum, Two-dimensional transition metal carbides, ACS Nano 6 (2012) 1322-1331. https://doi.org/10.1021/nn204153h
[11] M.W. Barsoum, The MN+ 1AXN phases: a new class of solids: thermodynamically stable nanolaminates, Prog. Solid State Chem. 28 (2000) 201-281. https://doi.org/10.1016/s0079-6786(00)00006-6
[12] X.F. Yu, J.B. Cheng, Z.B. Liu, Q.Z. Li, W.Z. Li, X. Yang, B. Xiao, Mg intercalation into Ti2C building block, Chem. Phys. Lett. 629 (2015) 36-39. https://doi.org/10.1016/j.cplett.2015.04.015
[13] M. Kurtoglu, M. Naguib, Y. Gogotsi, M.W. Barsoum, First principles study of two-dimensional early transition metal carbides, MRS Commun. 2 (2012) 133-137. https://doi.org/10.1557/mrc.2012.25
[14] M. Ghaffari, Y. Zhou, H. Xu, M. Lin, T.Y. Kim, R.S. Ruoff, Q. Zhang, High-volumetric performance aligned nano-porous microwave exfoliated graphite oxide‐based electrochemical capacitors, Adv. Mater. 25 (2013) 4879-4885. https://doi.org/10.1002/adma.201301243
[15] J. Yan, C.E. Ren, K. Maleski, C.B. Hatter, B. Anasori, P. Urbankowski, A. Sarycheva, Y. Gogotsi, Flexible MXene/graphene films for ultrafast supercapacitors with outstanding volumetric capacitance, Adv. Funct. Mater. 27 (2017) 1701264-1701274. https://doi.org/10.1002/adfm.201701264
[16] H. Li, Y. Hou, F. Wang, M.R. Lohe, X. Zhuang, L. Niu, X. Feng, Flexible all-solid-state supercapacitors with high volumetric capacitances boosted by solution processable MXene and electrochemically exfoliated graphene, Adv. Energy Mater. 7 (2017) 1601847-1601853. https://doi.org/10.1002/aenm.201601847
[17] Y.-Y. Peng, B. Akuzum, N. Kurra, M.-Q. Zhao, M. Alhabeb, B. Anasori, E.C. Kumbur, H.N. Alshareef, M.-D. Ger, Y. Gogotsi, All-MXene (2D titanium carbide) solid-state microsupercapacitors for on-chip energy storage, Energy Environ. Sci. 9 (2016) 2847-2854. https://doi.org/10.1039/c6ee01717g
[18] J.C. Lei, X. Zhang, Z. Zhou, Recent advances in MXene: Preparation, properties, and applications, Front Phys-Beijing 10 (2015) 276-286.
[19] Y.J. Zhang, L. Wang, N.N. Zhang, Z.J. Zhou, Adsorptive environmental applications of MXene nanomaterials: a review, RSC Adv. 8 (2018) 19895-19905. https://doi.org/10.1039/c8ra03077d
[20] M. Naguib, V.N. Mochalin, M.W. Barsoum, Y. Gogotsi, 25th Anniversary Article: MXenes: A new family of two-dimensional materials, Adv. Mater. 26 (2014) 992-1005. https://doi.org/10.1002/adma.201304138
[21] Q.K. Hu, D.D. Sun, Q.H. Wu, H.Y. Wang, L.B. Wang, B.Z. Liu, A.G. Zhou, J.L. He, MXene: A new family of promising hydrogen storage medium, J. Phys. Chem. A 117 (2013) 14253-14260. https://doi.org/10.1021/jp409585v
[22] M. Naguib, J. Come, B. Dyatkin, V. Presser, P.L. Taberna, P. Simon, M.W. Barsoum, Y. Gogotsi, MXene: a promising transition metal carbide anode for lithium-ion batteries, Electrochem. Commun. 16 (2012) 61-64. https://doi.org/10.1016/j.elecom.2012.01.002
[23] M. Khazaei, A. Ranjbar, M. Arai, T. Sasaki, S. Yunoki, Electronic properties and applications of MXenes: a theoretical review, J. Mater. Chem. C 5 (2017) 2488-2503. https://doi.org/10.1039/c7tc00140a
[24] M. Winter, R.J. Brodd, What are batteries, fuel cells, and supercapacitors? Chem. Rev. 105 (2005) 1021-1021. https://doi.org/10.1021/cr040110e
[25] M.S. Halper, J.C. Ellenbogen, Supercapacitors: A brief overview, MITRE Nanosystems Group, Virginia, (2006).
[26] J. Fernández, T. Morishita, M. Toyoda, M. Inagaki, F. Stoeckli, T.A. Centeno, Performance of mesoporous carbons derived from poly (vinyl alcohol) in electrochemical capacitors, J. Power Sources 175 (2008) 675-679. https://doi.org/10.1016/j.jpowsour.2007.09.042
[27] Z. Li, J. Han, L. Fan, M. Wang, S. Tao, R. Guo, The anion exchange strategy towards mesoporous α-Ni(OH)2 nanowires with multinanocavities for high-performance supercapacitors, Chem. Commun. 51 (2015) 3053-3056. https://doi.org/10.1039/c4cc09225b
[28] L.Q. Mai, A. Minhas-Khan, X. Tian, K.M. Hercule, Y.-L. Zhao, X. Lin, X. Xu, Synergistic interaction between redox-active electrolyte and binder-free functionalized carbon for ultrahigh supercapacitor performance, Nat. Commun. 4 (2013) 2923-2930. https://doi.org/10.1038/ncomms3923
[29] A. Laheäär, P. Przygocki, Q. Abbas, F. Béguin, Appropriate methods for evaluating the efficiency and capacitive behavior of different types of supercapacitors, Electrochem. Commun. 60 (2015) 21-25. https://doi.org/10.1016/j.elecom.2015.07.022
[30] M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J.J. Niu, M. Heon, L. Hultman, Y. Gogotsi, M.W. Barsoum, Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2, Adv. Mater. 23 (2011) 4248-4253. https://doi.org/10.1002/adma.201102306
[31] J. Halim, S. Kota, M.R. Lukatskaya, M. Naguib, M.Q. Zhao, E.J. Moon, J. Pitock, J. Nanda, S.J. May, Y. Gogotsi, M.W. Barsoum, Synthesis and characterization of 2D molybdenum carbide (MXene), Adv. Funct. Mater. 26 (2016) 3118-3127. https://doi.org/10.1002/adfm.201505328
[32] Q.X. Xia, J.J. Fu, J.M. Yun, R.S. Mane, K.H. Kim, High volumetric energy density annealed-MXene-nickel oxide/MXene asymmetric supercapacitor, RSC Adv. 7 (2017) 11000-11011. https://doi.org/10.1039/c6ra27880a
[33] M. Naguib, J. Halim, J. Lu, K.M. Cook, L. Hultman, Y. Gogotsi, M.W. Barsoum, New two-dimensional niobium and vanadium carbides as promising materials for Li-ion batteries, J. Am. Chem. Soc. 135 (2013) 15966-15969. https://doi.org/10.1021/ja405735d
[34] B. Anasori, Y. Xie, M. Beidaghi, J. Lu, B.C. Hosler, L. Hultman, P.R.C. Kent, Y. Gogotsi, M.W. Barsoum, Two-dimensional, ordered, double transition metals carbides (MXenes), ACS Nano 9 (2015) 9507-9516. https://doi.org/10.1021/acsnano.5b03591
[35] Y. Xie, Y. Dall’Agnese, M. Naguib, Y. Gogotsi, M.W. Barsoum, H.L.L. Zhuang, P.R.C. Kent, Prediction and characterization of mxene nanosheet anodes for non-lithium-ion batteries, ACS Nano 8 (2014) 9606-9615. https://doi.org/10.1021/nn503921j
[36] D.Q. Er, J.W. Li, M. Naguib, Y. Gogotsi, V.B. Shenoy, Ti3C2 MXene as a high capacity electrode material for metal (Li, Na, K, Ca) ion batteries, ACS Appl. Mater. Interf. 6 (2014) 11173-11179. https://doi.org/10.1021/am501144q
[37] H.M. Jeong, J.W. Lee, W.H. Shin, Y.J. Choi, H.J. Shin, J.K. Kang, J.W. Choi, Nitrogen-doped graphene for high-performance ultracapacitors and the importance of nitrogen-doped sites at basal planes, Nano Lett. 11 (2011) 2472-2477. https://doi.org/10.1021/nl2009058
[38] Z.H. Wen, X.C. Wang, S. Mao, Z. Bo, H. Kim, S.M. Cui, G.H. Lu, X.L. Feng, J.H. Chen, Crumpled nitrogen-doped graphene nanosheets with ultrahigh pore volume for high-performance supercapacitor, Adv. Mater. 24 (2012) 5610-5616. https://doi.org/10.1002/adma.201201920
[39] Y. Zhao, C.G. Hu, Y. Hu, H.H. Cheng, G.Q. Shi, L.T. Qu, A versatile, ultralight, nitrogen-doped graphene framework, Angew. Chem. Int. Edit. 51 (2012) 11371-11375. https://doi.org/10.1002/anie.201206554
[40] L. Hao, X.L. Li, L.J. Zhi, Carbonaceous electrode materials for supercapacitors, Adv. Mater. 25 (2013) 3899-3904. https://doi.org/10.1002/adma.201301204
[41] Y.Q. Zou, I.A. Kinloch, R.A.W. Dryfe, Nitrogen-doped and crumpled graphene sheets with improved supercapacitance, J. Mater. Chem. A 2 (2014) 19495-19499. https://doi.org/10.1039/c4ta04076g
[42] S. Livraghi, M.C. Paganini, E. Giamello, A. Selloni, C. Di Valentin, G. Pacchioni, Origin of photoactivity of nitrogen-doped titanium dioxide under visible light, J. Am. Chem. Soc. 128 (2006) 15666-15671. https://doi.org/10.1021/ja064164c
[43] R. Asahi, T. Morikawa, H. Irie, T. Ohwaki, Nitrogen-doped titanium dioxide as visible-light-sensitive photocatalyst: designs, developments, and prospects, Chem. Rev. 114 (2014) 9824-9852. https://doi.org/10.1021/cr5000738
[44] S. Sakthivel, H. Kisch, Photocatalytic and photoelectrochemical properties of nitrogen-doped titanium dioxide, Chemphyschem 4 (2003) 487-490. https://doi.org/10.1002/cphc.200200554
[45] Y.Y. Wen, T.E. Rufford, X.Z. Chen, N. Li, M.Q. Lyu, L.M. Dai, L.Z. Wang, Nitrogen-doped Ti3C2Tx MXene electrodes for high-performance supercapacitors, Nano Energy 38 (2017) 368-376. https://doi.org/10.1016/j.nanoen.2017.06.009
[46] W.Z. Bao, L. Liu, C.Y. Wang, S. Choi, D. Wang, G.X. Wang, Facile synthesis of crumpled nitrogen-doped mxene nanosheets as a new sulfur host for lithium-sulfur batteries, Adv. Energy Mater. 8 (2018) 1702485-1702496. https://doi.org/10.1002/aenm.201702485
[47] M.Q. Zhao, C.E. Ren, Z. Ling, M.R. Lukatskaya, C.F. Zhang, K.L. Van Aken, M.W. Barsoum, Y. Gogotsi, Flexible MXene/carbon nanotube composite paper with high volumetric capacitance, Adv. Mater. 27 (2015) 339-345. https://doi.org/10.1002/adma.201404140
[48] Z. Ling, C.E. Ren, M.Q. Zhao, J. Yang, J.M. Giammarco, J.S. Qiu, M.W. Barsoum, Y. Gogotsi, Flexible and conductive MXene films and nanocomposites with high capacitance, P. Natl. Acad. Sci. USA 111 (2014) 16676-16681. https://doi.org/10.1073/pnas.1414215111
[49] E.A. Mayerberger, O. Urbanek, R.M. McDaniel, R.M. Street, M.W. Barsoum, C.L. Schauer, Preparation and characterization of polymer-Ti3C2Tx (MXene) composite nanofibers produced via electrospinning, J. Appl. Polym. Sci. 134 (2017) 45295-45302. https://doi.org/10.1002/app.45295
[50] G.D. Zou, Z.W. Zhang, J.X. Guo, B.Z. Liu, Q.R. Zhang, C. Fernandez, Q.M. Peng, Synthesis of MXene/Ag composites for extraordinary long cycle lifetime lithium storage at high rates, ACS Appl. Mater. Inter. 8 (2016) 22280-22286. https://doi.org/10.1021/acsami.6b08089
[51] J.F. Zhu, Y. Tang, C.H. Yang, F. Wang, M.J. Cao, Composites of TiO2 nanoparticles deposited on Ti3C2 MXene nanosheets with enhanced electrochemical performance, J. Electrochem. Soc. 163 (2016) A785-A791. https://doi.org/10.1149/2.0981605jes
[52] B. Ahmed, D.H. Anjum, Y. Gogotsi, H.N. Alshareef, Atomic layer deposition of SnO2 on MXene for Li-ion battery anodes, Nano Energy 34 (2017) 249-256. https://doi.org/10.1016/j.nanoen.2017.02.043
[53] I.L. Medintz, H.T. Uyeda, E.R. Goldman, H. Mattoussi, Quantum dot bioconjugates for imaging, labelling and sensing, Nat. Mater. 4 (2005) 435-446. https://doi.org/10.1038/nmat1390
[54] D.Y. Pan, J.C. Zhang, Z. Li, M.H. Wu, Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots, Adv. Mater. 22 (2010) 734-738. https://doi.org/10.1002/adma.200902825
[55] Q. Xue, H.J. Zhang, M.S. Zhu, Z.X. Pei, H.F. Li, Z.F. Wang, Y. Huang, Y. Huang, Q.H. Deng, J. Zhou, S.Y. Du, Q. Huang, C.Y. Zhi, Photoluminescent Ti3C2 MXene quantum dots for multicolor cellular imaging, Adv. Mater. 29 (2017) 1604847-1604853. https://doi.org/10.1002/adma.201604847
[56] X.H. Yu, X.K. Cai, H.D. Cui, S.W. Lee, X.F. Yu, B.L. Liu, Fluorine-free preparation of titanium carbide MXene quantum dots with high near-infrared photothermal performances for cancer therapy, Nanoscale 9 (2017) 17859-17864. https://doi.org/10.1039/c7nr05997c
[57] M. Khazaei, M. Arai, T. Sasaki, M. Estili, Y. Sakka, Two-dimensional molybdenum carbides: potential thermoelectric materials of the MXene family, Phys. Chem. Chem. Phys. 16 (2014) 7841-7849. https://doi.org/10.1039/c4cp00467a
[58] S. Wang, J.X. Li, Y.L. Du, C. Cui, First-principles study on structural, electronic and elastic properties of graphene-like hexagonal Ti2C monolayer, Comp. Mater. Sci. 83 (2014) 290-293. https://doi.org/10.1016/j.commatsci.2013.11.025
[59] H. Lashgari, M.R. Abolhassani, A. Boochani, S.M. Elahi, J. Khodadadi, Electronic and optical properties of 2D graphene-like compounds titanium carbides and nitrides: DFT calculations, Solid State Commun. 195 (2014) 61-69. https://doi.org/10.1016/j.ssc.2014.06.008
[60] M. Khazaei, M. Arai, T. Sasaki, M. Estili, Y. Sakka, The effect of the interlayer element on the exfoliation of layered Mo(2)AC (A = Al, Si, P, Ga, Ge, As or In) MAX phases into two-dimensional Mo2C nanosheets, Sci. Technol. Adv. Mater. 15 (2014) 014208-014215. https://doi.org/10.1088/1468-6996/15/1/014208
[61] X.Z. Chen, Z.Z. Kong, N. Li, X.J. Zhao, C.H. Sun, Proposing the prospects of Ti3CN transition metal carbides (MXenes) as anodes of Li-ion batteries: a DFT study, Phys. Chem. Chem. Phys. 18 (2016) 32937-32943. https://doi.org/10.1039/c6cp06018h
[62] Q.Q. Meng, J.L. Ma, Y.H. Zhang, Z. Li, C.Y. Zhi, A. Hu, J. Fan, The S-functionalized Ti3C2 Mxene as a high capacity electrode material for Na-ion batteries: a DFT study, Nanoscale 10 (2018) 3385-3392. https://doi.org/10.1039/c7nr07649e
[63] X. Liang, Y. Rangom, C.Y. Kwok, Q. Pang, L.F. Nazar, Interwoven mxene nanosheet/carbon-nanotube composites as Li-S cathode hosts, Adv. Mater. 29 (2017) 1603040-1603047. https://doi.org/10.1002/adma.201603040
[64] M. Kurtoglu, M. Naguib, Y. Gogotsi, M.W. Barsoum, First principles study of two-dimensional early transition metal carbides, MRS Commun. 2 (2012) 133-137. https://doi.org/10.1557/mrc.2012.25
[65] [64] M.R. Lukatskaya, O. Mashtalir, C.E. Ren, Y. Dall’Agnese, P. Rozier, P.L. Taberna, M. Naguib, P. Simon, M.W. Barsoum, Y. Gogotsi, Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide, Science 341 (2013) 1502-1505. https://doi.org/10.1126/science.1241488
[66] M.M. Hu, Z.J. Li, H. Zhang, T. Hu, C. Zhang, Z. Wu, X.H. Wang, Self-assembled Ti3C2Tx MXene film with high gravimetric capacitance, Chem. Commun. 51 (2015) 13531-13533. https://doi.org/10.1039/c5cc04722f
[67] K. Fic, G. Lota, M. Meller, E. Frackowiak, Novel insight into neutral medium as electrolyte for high-voltage supercapacitors, Energy Environ. Sci. 5 (2012) 5842-5850. https://doi.org/10.1039/c1ee02262h
[68] J.K. Kim, E. Lee, H. Kim, C. Johnson, J. Cho, Y. Kim, Rechargeable seawater battery and its electrochemical mechanism, Chemelectrochem 2 (2015) 328-332. https://doi.org/10.1002/celc.201402344
[69] Q.X. Xia, N.M. Shinde, T.F. Zhang, J.M. Yun, A.G. Zhou, R.S. Mane, S. Mathur, K.H. Kim, Seawater electrolyte-mediated high volumetric MXene-based electrochemical symmetric supercapacitors, Dalton T. 47 (2018) 8676-8682. https://doi.org/10.1039/c8dt01375f
[70] X. Guo, X. Xie, S. Choi, Y. Zhao, H. Liu, C. Wang, S. Chang, G. Wang, Sb2O3/MXene (Ti3C2Tx) hybrid anode materials with enhanced performance for sodium-ion batteries, J. Mater. Chem. A 5 (2017) 12445-12452. https://doi.org/10.1039/c7ta02689g
[71] B.H. Dang, M. Rahman, D. MacElroy, D.P. Dowling, Evaluation of microwave plasma oxidation treatments for the fabrication of photoactive un-doped and carbon-doped TiO2 coatings, Surf. Coat. Tech. 206 (2012) 4113-4118. https://doi.org/10.1016/j.surfcoat.2012.04.003
[72] M. Hassan, R. Rawat, P. Lee, S. Hassan, A. Qayyum, R. Ahmad, G. Murtaza, M. Zakaullah, Synthesis of nanocrystalline multiphase titanium oxycarbide (TiCxOy) thin films by UNU/ICTP and NX2 plasma focus devices, Appl. Phys. A 90 (2008) 669-677. https://doi.org/10.1007/s00339-007-4335-8
[73] J. Halim, K.M. Cook, M. Naguib, P. Eklund, Y. Gogotsi, J. Rosen, M.W. Barsoum, X-ray photoelectron spectroscopy of select multi-layered transition metal carbides (MXenes), Appl. Surf. Sci. 362 (2016) 406-417. https://doi.org/10.1016/j.apsusc.2015.11.089
[74] W.S. Epling, G.B. Hoflund, J.F. Weaver, S. Tsubota, M. Haruta, Surface characterization study of Au/α-Fe2O3 and Au/Co3O4 low-temperature CO oxidation catalysts, J. Phys. Chem. 100 (1996) 9929-9934. https://doi.org/10.1021/jp960593t
[75] G. Liu, C. Han, M. Pelaez, D. Zhu, S. Liao, V. Likodimos, N. Ioannidis, A.G. Kontos, P. Falaras, P.S. Dunlop, Synthesis, characterization and photocatalytic evaluation of visible light activated C-doped TiO2 nanoparticles, Nanotechnology 23 (2012) 294003-294013. https://doi.org/10.1088/0957-4484/23/29/294003
[76] G. Wang, Z. Ma, G. Zhang, C. Li, G. Shao, Cerium-doped porous K-birnessite manganese oxides microspheres as pseudocapacitor electrode material with improved electrochemical capacitance, Electrochim Acta 182 (2015) 1070-1077. https://doi.org/10.1016/j.electacta.2015.10.028
[77] M.F. El-Kady, R.B. Kaner, Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage, Nat. Commun. 4 (2013) 1475-1484. https://doi.org/10.1038/ncomms2446
[78] W. Gao, N. Singh, L. Song, Z. Liu, A.L.M. Reddy, L. Ci, R. Vajtai, Q. Zhang, B. Wei, P.M. Ajayan, Direct laser writing of micro-supercapacitors on hydrated graphite oxide films, Nat. Nanotechnol. 6 (2011) 496-500. https://doi.org/10.1038/nnano.2011.110
[79] C. Ogata, R. Kurogi, K. Awaya, K. Hatakeyama, T. Taniguchi, M. Koinuma, Y. Matsumoto, All-graphene oxide flexible solid-state supercapacitors with enhanced electrochemical performance, ACS Appl. Mater. Interf. 9 (2017) 26151-26160. https://doi.org/10.1021/acsami.7b04180
[80] D. Yu, K. Goh, Q. Zhang, L. Wei, H. Wang, W. Jiang, Y. Chen, Controlled functionalization of carbonaceous fibers for asymmetric solid-state micro-supercapacitors with high volumetric energy density, Adv. Mater. 26 (2014) 6790-6797. https://doi.org/10.1002/adma.201403061
[81] A.N. Enyashin, A.L. Ivanovskii, Two-dimensional titanium carbonitrides and their hydroxylated derivatives: Structural, electronic propertis and stability of MXenes Ti3C2-xNx(OH)2 from DFTB calculations, J. Solid State. Chem. 207 (2013) 42-48. https://doi.org/10.1016/j.jssc.2013.09.010
[82] Z.F. Lin, D. Barbara, P.L. Taberna, K.L. Van Aken, B. Anasori, Y. Gogotsi, P. Simon, Capacitance of Ti3C2Tx MXene in ionic liquid electrolyte, J. Power Sources 326 (2016) 575-579. https://doi.org/10.1016/j.jpowsour.2016.04.035
[83] Q. Tang, Z. Zhou, P.W. Shen, Are MXenes promising anode materials for Li ion batteries? computational studies on electronic properties and Li storage capability of Ti3C2 and Ti3C2X2 (X = F, OH) monolayer, J. Am. Chem. Soc. 134 (2012) 16909-16916. https://doi.org/10.1021/ja308463r
[84] R.B. Rakhi, B. Ahmed, M.N. Hedhili, D.H. Anjum, H.N. Alshareef, Effect of postetch annealing gas composition on the structural and electrochemical properties of Ti2CTx MXene electrodes for supercapacitor applications, Chem. Mater. 27 (2015) 5314-5323. https://doi.org/10.1021/acs.chemmater.5b01623
[85] M. Ghidiu, M.R. Lukatskaya, M.Q. Zhao, Y. Gogotsi, M.W. Barsoum, Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance, Nature 516 (2014) 78-U171. https://doi.org/10.1038/nature13970
[86] Y. Dall’Agnese, P.L. Taberna, Y. Gogotsi, P. Simon, Two-dimensional vanadium carbide (MXene) as positive electrode for sodium-ion capacitors, J. Phys. Chem. Lett. 6 (2015) 2305-2309. https://doi.org/10.1021/acs.jpclett.5b00868
[87] A. VahidMohammadi, A. Hadjikhani, S. Shahbazmohamadi, M. Beidaghi, Two-dimensional vanadium carbide (MXene) as a high-capacity cathode material for rechargeable aluminum batteries, ACS Nano 11 (2017) 11135-11144. https://doi.org/10.1021/acsnano.7b05350
[88] Q.M. Shan, X.P. Mu, M. Alhabeb, C.E. Shuck, D. Pang, X. Zhao, X.F. Chu, Y. Wei, F. Du, G. Chen, Y. Gogotsi, Y. Gao, Y. Dall’Agnese, Two-dimensional vanadium carbide (V2C) MXene as electrode for supercapacitors with aqueous electrolytes, Electrochem. Commun. 96 (2018) 103-107. https://doi.org/10.1016/j.elecom.2018.10.012
[89] C.H. Yang, W.X. Que, X.T. Yin, Y.P. Tian, Y.W. Yang, M.D. Que, Improved capacitance of nitrogen-doped delaminated two-dimensional titanium carbide by urea-assisted synthesis, Electrochim. Acta 225 (2017) 416-424. https://doi.org/10.1016/j.electacta.2016.12.173
[90] Y.P. Tian, C.H. Yang, W.X. Que, X.B. Liu, X.T. Yin, L.B. Kong, Flexible and free-standing 2D titanium carbide film decorated with manganese oxide nanoparticles as a high volumetric capacity electrode for supercapacitor, J. Power Sources 359 (2017) 332-339. https://doi.org/10.1016/j.jpowsour.2017.05.081
[91] Y. Wang, H. Dou, J. Wang, B. Ding, Y.L. Xu, Z. Chang, X.D. Hao, Three-dimensional porous MXene/layered double hydroxide composite for high performance supercapacitors, J. Power Sources 327 (2016) 221-228. https://doi.org/10.1016/j.jpowsour.2016.07.062
[92] R.Z. Zhao, M.Q. Wang, D.Y. Zhao, H. Li, C.X. Wang, L.W. Yin, Molecular-level heterostructures assembled from titanium carbide MXene and Ni-Co-Al layered double-hydroxide nanosheets for all-solid-state flexible asymmetric high-energy supercapacitors, ACS Energy Lett. 3 (2018) 132-140. https://doi.org/10.1021/acsenergylett.7b01063
[93] D. Qu, L. Wang, D. Zheng, L. Xiao, B. Deng, D. Qu, An asymmetric supercapacitor with highly dispersed nano-Bi2O3 and active carbon electrodes, J. Power Sources 269 (2014) 129-135. https://doi.org/10.1016/j.jpowsour.2014.06.084
[94] J. Li, Q. Wu, G. Zan, A high-performance supercapacitor with well-dispersed Bi2O3 nanospheres and active-carbon electrodes, Eur. J. Inorg. Chem. 2015 (2015) 5751-5756. https://doi.org/10.1002/ejic.201500904
[95] Q.X. Xia, N.M. Shinde, J.M. Yun, T. Zhang, R.S. Mane, S. Mathur, K.H. Kim, Bismuth oxychloride/MXene symmetric supercapacitor with high volumetric energy density, Electrochim. Acta 271 (2018) 351-360. https://doi.org/10.1016/j.electacta.2018.03.168
[96] Z. Ling, C.E. Ren, M.-Q. Zhao, J. Yang, J.M. Giammarco, J. Qiu, M.W. Barsoum, Y. Gogotsi, Flexible and conductive MXene films and nanocomposites with high capacitance, P. Natl A. Sci. 111 (2014) 16676-16681. https://doi.org/10.1073/pnas.1414215111
[97] T.K. Zhao, J.K. Zhang, Z. Du, Y.H. Liu, G.L. Zhou, J.T. Wang, Dopamine-derived N-doped carbon decorated titanium carbide composite for enhanced supercapacitive performance, Electrochim. Acta 254 (2017) 308-319. https://doi.org/10.1016/j.electacta.2017.09.144
[98] R. Rakhi, B. Ahmed, M.N. Hedhili, D.H. Anjum, H.N. Alshareef, Effect of postetch annealing gas composition on the structural and electrochemical properties of Ti2CTx MXene electrodes for supercapacitor applications, Chem. Mater. 27 (2015) 5314-5323. https://doi.org/10.1021/acs.chemmater.5b01623
[99] R.B. Rakhi, B. Ahmed, D. Anjum, H.N. Alshareef, Direct chemical synthesis of MnO2 nanowhiskers on transition-metal carbide surfaces for supercapacitor applications, ACS Appl. Mater. Interf. 8 (2016) 18806-18814. https://doi.org/10.1021/acsami.6b04481
[100] A. Jagadale, V. Kumbhar, D. Dhawale, C. Lokhande, Performance evaluation of symmetric supercapacitor based on cobalt hydroxide [Co(OH)2] thin film electrodes, Electrochim. Acta 98 (2013) 32-38. https://doi.org/10.1016/j.electacta.2013.02.094
[101] Y. He, W. Chen, X. Li, Z. Zhang, J. Fu, C. Zhao, E. Xie, Freestanding three-dimensional graphene/MnO2 composite networks as ultralight and flexible supercapacitor electrodes, ACS Nano 7 (2012) 174-182. https://doi.org/10.1021/nn304833s
[102] A. Chu, P. Braatz, Comparison of commercial supercapacitors and high-power lithium-ion batteries for power-assist applications in hybrid electric vehicles: I. Initial characterization, J. Power Sources 112 (2002) 236-246. https://doi.org/10.1016/s0378-7753(02)00364-6
[103] B. Anasori, M.R. Lukatskaya, Y. Gogotsi, 2D metal carbides and nitrides (MXenes) for energy storage, Nat. Rev. Mater. 2 (2017) 16098-16115. https://doi.org/10.1038/natrevmats.2016.98