MXenes for Electrocatalysis

$20.00

Category: Tags: , , , ,

MXenes for Electrocatalysis

Wenyu Yuan, Laifei Cheng

Electrocatalysis is considered as one of the most promising approaches to overcome the global energy crisis and environmental challenges. The high-performance electrocatalytic system heavily relies on the design of catalysts. MXenes, a large family of novel 2D transition metal carbides (nitrides), which is obtained from selectively etching of MAX ceramics, are candidates for electrocatalysis. In this chapter, we will mainly introduce the advances of MXene-based electrocatalysts, and discuss the applications of MXenes in hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and N2 reduction reaction (NRR). Finally, the future outlook of MXenes in electrocatalysis will analyzed in-depth.

Keywords
MXene, Electrocatalysis, HER, OER, NRR

Published online 5/30/2019, 31 pages

Citation: Wenyu Yuan, Laifei Cheng, MXenes for Electrocatalysis, Materials Research Foundations, Vol. 51, pp 74-104, 2019

DOI: https://doi.org/10.21741/9781644900253-4

Part of the book on MXenes: Fundamentals and Applications

References
[1] H. Jin, C. Guo, X. Liu, J. Liu, A. Vasileff, Y. Jiao, Y. Zheng, S.-Z. Qiao, Emerging two-dimensional nanomaterials for electrocatalysis,Chem. Rev. 118 (2018) 6337-6408. https://doi.org/10.1021/acs.chemrev.7b00689
[2] C.C.L. McCrory, S. Jung, I.M. Ferrer, S.M. Chatman, J.C. Peters, T.F. Jaramillo, Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices, J. Am. Chem. Soc. 137 (2015) 4347-4357. https://doi.org/10.1021/ja510442p
[3] L. Zhang, Z.-J. Zhao, J. Gong, Nanostructured materials for heterogeneous electrocatalytic co2 reduction and their related reaction mechanisms, Angew. Chem. Int. Ed., 56 (2017) 11326-11353. https://doi.org/10.1002/anie.201612214
[4] I. Roger, M.A. Shipman, M.D. Symes, Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting, Nat. Rev. Chem. 1 (2017) 0003. https://doi.org/10.1038/s41570-016-0003
[5] Y. Xu, M. Kraft, R. Xu, Metal-free carbonaceous electrocatalysts and photocatalysts for water splitting, Chem. Soc. Rev. 45 (2016) 3039-3052. https://doi.org/10.1039/c5cs00729a
[6] B. Anasori, M.R. Lukatskaya, Y. Gogotsi, 2D metal carbides and nitrides (MXenes) for energy storage, Nat. Rev. Mater. 2 (2017) 16098. https://doi.org/10.1038/natrevmats.2016.98
[7] W. Yuan, L. Cheng, Y. An, S. Lv, H. Wu, X. Fan, Y. Zhang, X. Guo, J. Tang, Laminated hybrid junction of sulfur‐doped TiO2 and a carbon substrate derived from Ti3C2 MXenes: toward highly visible Light‐driven photocatalytic hydrogen evolution, Adv. Sci. 5 (2018) 1700870. https://doi.org/10.1002/advs.201700870
[8] M. Naguib, O. Mashtalir, J. Carle, V. Presser, J. Lu, L. Hultman, Y. Gogotsi, M.W. Barsoum, Two-dimensional transition metal carbides, ACS Nano 6 (2012) 1322-1331. https://doi.org/10.1021/nn204153h
[9] Y. Zhong, X. Xia, F. Shi, J. Zhan, J. Tu, H.J. Fan, Adv. Sci., 3 (2016) 1500286.
[10] C. Hu, L. Dai, Carbon‐based metal‐free catalysts for electrocatalysis beyond the ORR, Angew. Chem. Int. Ed. 55 (2016) 11736-11758. https://doi.org/10.1002/anie.201509982
[11] M. Wang, Z. Wang, X. Gong, Z. Guo, The intensification technologies to water electrolysis for hydrogen production–a review, Renew. Sust. Energy Rev. 29 (2014) 573-588. https://doi.org/10.1016/j.rser.2013.08.090
[12] M. Zeng, Y. Li, Recent advances in heterogeneous electrocatalysts for the hydrogen evolution reaction, J. Mater. Chem. A 3 (2015) 14942-14962. https://doi.org/10.1039/c5ta02974k
[13] Y. Yan, B. Xia, Z. Xu, X. Wang, Recent development of molybdenum sulfides as advanced electrocatalysts for hydrogen evolution reaction, ACS Catal. 4 (2014) 1693-1705. https://doi.org/10.1021/cs500070x
[14] J. Duan, S. Chen, M. Jaroniec, S.Z. Qiao, Heteroatom-doped graphene-based materials for energy-relevant electrocatalytic processes, ACS Catal. 5 (2015) 5207-5234. https://doi.org/10.1021/acscatal.5b00991
[15] J. Greeley, T.F. Jaramillo, J. Bonde, I. Chorkendorff, J.K. Nørskov, Computational high-throughput screening of electrocatalytic materials for hydrogen evolution, Nat. Mater. 5 (2006) 909-913. https://doi.org/10.1038/nmat1752
[16] G. Zhao, K. Rui, S.X. Dou, W. Sun, Heterostructures for electrochemical hydrogen evolution reaction: a review, Adv. Funct. Mater. 28 (2018) 1803291. https://doi.org/10.1002/adfm.201803291
[17] Z.W. Seh, K.D. Fredrickson, B. Anasori, J. Kibsgaard, A.L. Strickler, M.R. Lukatskaya, Y. Gogotsi, T.F. Jaramillo, A. Vojvodic, Two-dimensional molybdenum carbide (MXene) as an efficient electrocatalyst for hydrogen evolution, ACS Energy Lett. 1 (2016) 589-594. https://doi.org/10.1021/acsenergylett.6b00247
[18] G. Gao, A.P. O’Mullane, A. Du, 2D MXenes: a new family of promising catalysts for the hydrogen evolution reaction, ACS Catal. 7 (2017) 494-500. https://doi.org/10.1021/acscatal.6b02754
[19] J. Ran, G. Gao, F.-T. Li, T.-Y. Ma, A. Du, S.-Z. Qiao, Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production, Nat. Commun. 8 (2017) 13907. https://doi.org/10.1038/ncomms13907
[20] C. Ling, L. Shi, Y. Ouyang, J. Wang, Searching for highly active catalysts for hydrogen evolution reaction based on O-terminated MXenes through a simple descriptor, Chem. Mater. 28 (2016) 9026-9032. https://doi.org/10.1021/acs.chemmater.6b03972
[21] X. Bai, C. Ling, L. Shi, Y. Ouyang, Q. Li, J. Wang, Insight into the catalytic activity of MXenes for hydrogen evolution reaction, Sci. Bulletin 63 (2018) 1397-1403. https://doi.org/10.1016/j.scib.2018.10.006
[22] A.D. Handoko, K.D. Fredrickson, B. Anasori, K.W. Convey, L.R. Johnson, Y. Gogotsi, A. Vojvodic, Z.W. Seh, Tuning the basal plane functionalization of two-dimensional metal carbides (MXenes) To control hydrogen evolution activity, ACS Appl. Energy Mater. 1 (2018) 173-180. https://doi.org/10.1021/acsaem.7b00054
[23] Y.-W. Cheng, J.-H. Dai, Y.-M. Zhang, Y. Song, Two-dimensional, ordered, double transition metal carbides (MXenes): a new family of promising catalysts for the hydrogen evolution reaction, J. Phys. Chem. C 122 (2018) 28113-28122. https://doi.org/10.1021/acs.jpcc.8b08914
[24] C. Ling, L. Shi, Y. Ouyang, Q. Chen, J. Wang, Transition metal‐promoted V2CO2 (MXenes): anew and highly active catalyst for hydrogen evolution reaction, Adv. Sci. 3 (2016) 1600180. https://doi.org/10.1002/advs.201600180
[25] M.H. Tran, T. Schäfer, A. Shahraei, M. Dürrschnabel, L. Molina-Luna, U.I. Kramm, C.S. Birkel, Adding a new member to the MXene family: synthesis, structure, and electrocatalytic activity for the hydrogen evolution reaction of V4C3Tx, ACS Appl. Energy Mater. 1 (2018) 3908-3914. https://doi.org/10.1021/acsaem.8b00652
[26] B. Huang, N. Zhou, X. Chen, W.J. Ong, N. Li, Insights into the electrocatalytic hydrogen evolution reaction mechanism on two-dimensional transition-metal carbonitrides (MXene), Chem. Eur. J. 24 (2018) 18479-18486. https://doi.org/10.1002/chem.201804686
[27] Z. Guo, J. Zhou, Z. Sun, New two-dimensional transition metal borides for Li ion batteries and electrocatalysis, J. Mater. Chem. A 5 (2017) 23530-23535. https://doi.org/10.1039/c7ta08665b
[28] W. Yuan, L. Cheng, Y. An, H. Wu, N. Yao, X. Fan, X. Guo, MXene nanofibers as highly active catalysts for hydrogen evolution reaction, ACS Sus. Chem. Eng. 6 (2018) 8976-8982. https://doi.org/10.1021/acssuschemeng.8b01348
[29] X. Yang, N. Gao, S. Zhou, J.J.P.C.C.P. Zhao,MXene nanoribbons as electrocatalysts for the hydrogen evolution reaction with fast kinetics, Phys. Chem. Chem. Phys. 20 (2018) 19390-19397. https://doi.org/10.1039/c8cp02635a
[30] Y. Yoon, A.P. Tiwari, M. Lee, M. Choi, W. Song, J. Im, T. Zyung, H.-K. Jung, S.S. Lee, S. Jeon, K.-S. An, Enhanced electrocatalytic activity by chemical nitridation of two-dimensional titanium carbide MXene for hydrogen evolution, J. Mater. Chem. A 6 (2018) 20869-20877. https://doi.org/10.1039/c8ta08197b
[31] W. Yuan, L. Cheng, H. Wu, Y. Zhang, S. Lv, X. Guo, One-step synthesis of 2D-layered carbon wrapped transition metal nitrides from transition metal carbides (MXenes) for supercapacitors with ultrahigh cycling stability, Chem. Commun. 54 (2018) 2755-2758. https://doi.org/10.1039/c7cc09017j
[32] J. Jia, T. Xiong, L. Zhao, F. Wang, H. Liu, R. Hu, J. Zhou, W. Zhou, S. Chen, Ultrathin N-doped Mo2C nanosheets with exposed active sites as efficient electrocatalyst for hydrogen evolution reactions, ACS Nano 11 (2017) 12509-12518. https://doi.org/10.1021/acsnano.7b06607
[33] H. Ang, H.T. Tan, Z.M. Luo, Y. Zhang, Y.Y. Guo, G. Guo, H. Zhang, Q. Yan, Hydrophilic nitrogen and sulfur Co‐doped molybdenum carbide nanosheets for electrochemical hydrogen evolution, Small 11 (2015) 6278-6284. https://doi.org/10.1002/smll.201502106
[34] S. Zhou, X. Yang, W. Pei, N. Liu, J. Zhao, Heterostructures of MXenes and N-doped graphene as highly active bifunctional electrocatalysts, Nanoscale 10 (2018) 10876-10883. https://doi.org/10.1039/c8nr01090k
[35] D. Geng, X. Zhao, Z. Chen, W. Sun, W. Fu, J. Chen, W. Liu, W. Zhou, K.P. Loh, Direct synthesis of large‐area 2D Mo2C on in situ grown graphene, Adv. Mater. 29 (2017) 1700072. https://doi.org/10.1002/adma.201700072
[36] C.-F. Du, K.N. Dinh, Q. Liang, Y. Zheng, Y. Luo, J. Zhang, Q. Yan, Self‐assemble and in situ formation of Ni1−xFexPS3 nanomosaic‐decorated MXene hybrids for overall water splitting, Adv. Energy Mater. 8 (2018) 1801127. https://doi.org/10.1002/aenm.201801127
[37] J. Miao, Z. Lang, X. Zhang, W. Kong, O. Peng, Y. Yang, S. Wang, J. Cheng, T. He, A. Amini, Q. Wu, Z. Zheng, Z. Tang, C. Cheng, Polyoxometalate‐derived hexagonal molybdenum nitrides (MXenes) supported by boron, nitrogen codoped carbon nanotubes for efficient electrochemical hydrogen evolution from seawater, Adv. Funct. Mater. 29 (2019) 1805893. https://doi.org/10.1002/adfm.201805893
[38] N.H. Attanayake, S.C. Abeyweera, A.C. Thenuwara, B. Anasori, Y. Gogotsi, Y. Sun, D.R. Strongin, Vertically aligned MoS2 on Ti3C2 (MXene) as an improved HER catalyst, J. Mater. Chem. A 6 (2018) 16882-16889. https://doi.org/10.1039/c8ta05033c
[39] X. Wu, Z. Wang, M. Yu, L. Xiu, J. Qiu, Stabilizing the MXenes by carbon nanoplating for developing hierarchical nanohybrids with efficient lithium storage and hydrogen evolution capability, Adv. Mater. 29 (2017) 1607017. https://doi.org/10.1002/adma.201607017
[40] J. Liu, Y. Liu, D. Xu, Y. Zhu, W. Peng, Y. Li, F. Zhang, X. Fan, Hierarchical “nanoroll” like MoS2/Ti3C2Tx hybrid with high electrocatalytic hydrogen evolution activity, Appl. Catal. B Environ. 241 (2019) 89-94. https://doi.org/10.1016/j.apcatb.2018.08.083
[41] L. Xiu, Z. Wang, M. Yu, X. Wu, J. Qiu, Aggregation-resistant 3D MXene-based architecture as efficient bifunctional electrocatalyst for overall water splitting, ACS Nano 12 (2018) 8017-8028. https://doi.org/10.1021/acsnano.8b02849
[42] P. Li, J. Zhu, A.D. Handoko, R. Zhang, H. Wang, D. Legut, X. Wen, Z. Fu, Z.W. Seh, Q. Zhang, High-throughput theoretical optimization of the hydrogen evolution reaction on MXenes by transition metal modification, J. Mater. Chem. A 6 (2018) 4271-4278. https://doi.org/10.1039/c8ta00173a
[43] X. Zang, W. Chen, X. Zou, J.N. Hohman, L. Yang, B. Li, M. Wei, C. Zhu, J. Liang, M. Sanghadasa, J. Gu, L. Lin, Self‐Assembly of Large‐Area 2D Polycrystalline Transition Metal Carbides for Hydrogen Electrocatalysis, Adv. Mater. 30 (2018) 1805188. https://doi.org/10.1002/adma.201805188
[44] J. Zhang, Y. Zhao, X. Guo, C. Chen, C.-L. Dong, R.-S. Liu, C.-P. Han, Y. Li, Y. Gogotsi, G. Wang, Single platinum atoms immobilized on an MXene as an efficient catalyst for the hydrogen evolution reaction, Nat. Catal., 1 (2018) 985-992. https://doi.org/10.1038/s41929-018-0195-1
[45] Y. Yuan, H. Li, L. Wang, L. Zhang, D. Shi, Y. Hong, J. Sun, Achieving highly efficient catalysts for hydrogen evolution reaction by electronic state modification of platinum on versatile Ti3C2Tx (MXene), ACS Sus. Chem. Eng. 7 (2019) 4266-4273. https://doi.org/10.1021/acssuschemeng.8b06045
[46] Y. Jiang, X. Wu, Y. Yan, S. Luo, X. Li, J. Huang, H. Zhang, D. Yang, Coupling PtNi ultrathin nanowires with mXenes for boosting electrocatalytic hydrogen evolution in both acidic and alkaline solutions,Small15 (2019) 1805474. https://doi.org/10.1002/smll.201805474
[47] M. Tahir, L. Pan, F. Idrees, X. Zhang, L. Wang, J.-J. Zou, Z.L. Wang, Electrocatalytic oxygen evolution reaction for energy conversion and storage: a comprehensive review, Nano Energy 37 (2017) 136-157. https://doi.org/10.1016/j.nanoen.2017.05.022
[48] F. Lu, M. Zhou, Y. Zhou, X. Zeng, First‐row transition metal based catalysts for the oxygen evolution reaction under alkaline conditions: basic principles and recent advances, Small 13 (2017) 1701931. https://doi.org/10.1002/smll.201701931
[49] N.T. Suen, S.F. Hung, Q. Quan, N. Zhang, Y.J. Xu, H.M. Chen, Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives, Chem. Soc. Rev. 46 (2017) 337-365. https://doi.org/10.1039/c6cs00328a
[50] T. Reier, H.N. Nong, D. Teschner, R. Schlögl, P. Strasser, Electrocatalytic oxygen evolution reaction in acidic environments – reaction mechanisms and catalysts, Adv. Energy Mater. 7 (2017) 1601275. https://doi.org/10.1002/aenm.201601275
[51] Z.W. Seh, J. Kibsgaard, C.F. Dickens, I. Chorkendorff, J.K. Norskov, T.F. Jaramillo, Combining theory and experiment in electrocatalysis: Insights into materials design, Science 355 (2017) eaad4998. https://doi.org/10.1126/science.aad4998
[52] Z.-F. Huang, J. Wang, Y. Peng, C.-Y. Jung, A. Fisher, X. Wang, Combining theory and experiment in electrocatalysis: Insights into materials design, Adv. Energy Mater. 7 (2017) 1700544.
[53] C.C.L. McCrory, S. Jung, J.C. Peters, T.F. Jaramillo, Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction, J. Am. Chem. Soc. 135 (2013) 16977-16987. https://doi.org/10.1021/ja407115p
[54] T. Reier, M. Oezaslan, P. Strasser, Electrocatalytic oxygen evolution reaction (OER) on Ru, Ir, and Pt catalysts: a comparative study of nanoparticles and bulk materials, ACS Catal. 2 (2012) 1765-1772. https://doi.org/10.1021/cs3003098
[55] L. Zhao, B. Dong, S. Li, L. Zhou, L. Lai, Z. Wang, S. Zhao, M. Han, K. Gao, M. Lu, X. Xie, B. Chen, Z. Liu, X. Wang, H. Zhang, H. Li, J. Liu, H. Zhang, X. Huang, W. Huang, Interdiffusion reaction-assisted hybridization of two-dimensional metal–organic frameworks and Ti3C2Tx nanosheets for electrocatalytic oxygen evolution, ACS Nano 11 (2017) 5800-5807. https://doi.org/10.1021/acsnano.7b01409
[56] H. Zou, B. He, P. Kuang, J. Yu, K. Fan, Metal–organic framework-derived nickel–cobalt sulfide on ultrathin MXene nanosheets for electrocatalytic Oxygen evolution, ACS Appl. Mater. Interf. 10 (2018) 22311-22319. https://doi.org/10.1021/acsami.8b06272
[57] X.-D. Zhu, Y. Xie, Y.-T. Liu, Exploring the synergy of 2D MXene-supported black phosphorus quantum dots in hydrogen and oxygen evolution reactions, J. Mater. Chem. A 6 (2018) 21255-21260. https://doi.org/10.1039/c8ta08374f
[58] M. Yu, S. Zhou, Z. Wang, J. Zhao, J. Qiu, Boosting electrocatalytic oxygen evolution by synergistically coupling layered double hydroxide with MXene, Nano Energy 44 (2018) 181-190. https://doi.org/10.1016/j.nanoen.2017.12.003
[59] C. Wang, X.-D. Zhu, Y.-C. Mao, F. Wang, X.-T. Gao, S.-Y. Qiu, S.-R. Le, K.-N. Sun, MXene-supported Co3O4 quantum dots for superior lithium storage and oxygen evolution activities, Chem. Commun. 55 (2019) 1237-1240. https://doi.org/10.1039/c8cc09699f
[60] J. Liu, T. Chen, P. Juan, W. Peng, Y. Li, F. Zhang, X. Fan, Hierarchical cobalt borate/MXenes hybrid with extraordinary electrocatalytic performance in oxygen evolution reaction, ChemSusChem 11 (2018) 3758-3765. https://doi.org/10.1002/cssc.201802098
[61] Y. Tang, C. Yang, Y. Yang, X. Yin, W. Que, J. Zhu, Three dimensional hierarchical network structure of S-NiFe2O4 modified few-layer titanium carbides (MXene) flakes on nickel foam as a high efficient electrocatalyst for oxygen evolution, Electrochim. Acta 296 (2019) 762-770. https://doi.org/10.1016/j.electacta.2018.11.083
[62] N. Li, S. Wei, Y. Xu, J. Liu, J. Wu, G. Jia, X. Cui, Synergetic enhancement of oxygen evolution reaction by Ti3C2Tx nanosheets supported amorphous FeOOH quantum dots, Electrochim. Acta 290 (2018) 364-368. https://doi.org/10.1016/j.electacta.2018.09.098
[63] T.Y. Ma, J.L. Cao, M. Jaroniec, S.Z. Qiao, Interacting carbon nitride and titanium carbide nanosheets for high‐performance oxygen evolution, Angew. Chem. Int. Ed. 55 (2016) 1138-1142. https://doi.org/10.1002/anie.201509758
[64] M. Li, H. Huang, J. Low, C. Gao, R. Long, Y. Xiong, Recent progress on electrocatalyst and photocatalyst design for nitrogen reduction, Small Methods, (2019) 1800388. https://doi.org/10.1002/smtd.201800388
[65] A.R. Singh, B.A. Rohr, J.A. Schwalbe, M. Cargnello, K. Chan, T.F. Jaramillo, I. Chorkendorff, J.K. Nørskov, Electrochemical ammonia synthesis-the selectivity challenge, ACS Catal. 7 (2016) 706-709. https://doi.org/10.1021/acscatal.6b03035
[66] G.-F. Chen, S. Ren, L. Zhang, H. Cheng, Y. Luo, K. Zhu, L.-X. Ding, H. Wang, Advances in electrocatalytic N2 reduction—strategies to tackle the selectivity challenge, Small Methods, (2018) 1800337. https://doi.org/10.1002/smtd.201800337
[67] D. Bao, Q. Zhang, F.L. Meng, H.X. Zhong, M.M. Shi, Y. Zhang, J.M. Yan, Q. Jiang, X.B. Zhang, Electrochemical Reduction of N2 under Ambient Conditions for Artificial N2 Fixation and Renewable Energy Storage Using N2/NH3 Cycle, Adv. Mater. 29 (2017) 1604799. https://doi.org/10.1002/adma.201604799
[68] X. Li, T. Li, Y. Ma, Q. Wei, W. Qiu, H. Guo, X. Shi, P. Zhang, A.M. Asiri, L. Chen, B. Tang, X. Sun, Boosted electrocatalytic N2reduction to NH3by defect-rich MoS2nanoflower, Adv. Energy Mater. 8 (2018) 1801357. https://doi.org/10.1002/aenm.201801357
[69] N. Cao, G. Zheng, Aqueous electrocatalytic N2 reduction under ambient conditions, Nano Res. 11 (2018) 2992-3008. https://doi.org/10.1007/s12274-018-1987-y
[70] A.J. Medford, M.C. Hatzell, Photon-driven nitrogen fixation: Current progress, thermodynamic considerations, and future outlook, ACS Catal. 7 (2017) 2624-2643. https://doi.org/10.1021/acscatal.7b00439
[71] L.M. Azofra, N. Li, D.R. MacFarlane, C. Sun, Promising prospects for 2D d2–d4 M3C2 transition metal carbides (MXenes) in N2 capture and conversion into ammonia, Energy Environ. Sci. 9 (2016) 2545-2549. https://doi.org/10.1039/c6ee01800a
[72] C. Guo, J. Ran, A. Vasileff, S.-Z. Qiao, Rational design of electrocatalysts and photo (electro) catalysts for nitrogen reduction to ammonia (NH3) under ambient conditions, Energy Environ. Sci. 11 (2018) 45-56. https://doi.org/10.1039/c7ee02220d
[73] M. Shao, Y. Shao, W. Chen, K.L. Ao, R. Tong, Q. Zhu, I.N. Chan, W.F. Ip, X. Shi, H. Pan, Efficient nitrogen fixation to ammonia on MXenes, Phys. Chem. Chem. Phys. 20 (2018) 14504-14512. https://doi.org/10.1039/c8cp01396a
[74] Y. Gao, Y. Cao, H. Zhuo, X. Sun, Y. Gu, G. Zhuang, S. Deng, X. Zhong, Z. Wei, X. Li, J.-g. Wang, Mo2TiC2 MXene: A Promising Catalyst for Electrocatalytic Ammonia Synthesis, Catal. Today, (2019). https://doi.org/10.1016/j.cattod.2018.12.029
[75] Y. Luo, G.-F. Chen, L. Ding, X. Chen, L.-X. Ding, H. Wang, Efficient electrocatalytic N2 fixation with MXene under ambient conditions, Joule 3 (2019) 279-289. https://doi.org/10.1016/j.joule.2018.09.011
[76] Y. Fang, Z. Liu, J. Han, Z. Jin, Y. Han, F. Wang, Y. Niu, Y. Wu, Y. Xu, High-performance electrocatalytic conversion of N2 to NH3 using oxygen-vacancy-rich TiO2 in situ grown on Ti3C2Tx MXene, Adv. Energy Mater.9 (2019) 1803406. https://doi.org/10.1002/aenm.201803406
[77] W. Yuan, Y. Zhang, L. Cheng, H. Wu, L. Zheng, D. Zhao, The applications of carbon nanotubes and graphene in advanced rechargeable lithium batteries, J. Mater. Chem. A 4 (2016) 8932-8951. https://doi.org/10.1039/c6ta01546h
[78] A.D. Handoko, K.H. Khoo, T.L. Tan, H. Jin, Z.W. Seh, Establishing new scaling relations on two-dimensional MXenes for CO2 electroreduction, J. Mater. Chem. A 6 (2018) 21885-21890. https://doi.org/10.1039/c8ta06567e
[79] Z. Li, Z. Zhuang, F. Lv, H. Zhu, L. Zhou, M. Luo, J. Zhu, Z. Lang, S. Feng, W. Chen, L. Mai, S. Guo, The marriage of the FeN4 moiety and MXene boosts oxygen reduction catalysis: Fe3d electron delocalization matters, Adv. Mater. 30 (2018) 1803220. https://doi.org/10.1002/adma.201803220