Two-Dimensional MXene as a Promising Material for Hydrogen Storage

$20.00

Two-Dimensional MXene as a Promising Material for Hydrogen Storage

Jin-Chung Sin, Jian-Ai Quek, Pei-Sian Ng, Sze-Mun Lam

Hydrogen is generally the cleanest, a sustainable and renewable energy source with a considerably reduced impact on the environment. The adoption of H2 energy has been expected to replace the depleting carbon-based fuels gradually. An appropriate hydrogen storage system which capability of charging and discharging large amounts of hydrogen with fast enough kinetics is required to meet the broad on-board applications. Transition metal carbides and nitrides (MXenes) are a new family of two-dimensional inorganic hybrid material with ultra-large interlayer spacing, excellent biocompatibility, environmental benignity, surface hydrophilic property, and good electric conductivity. Their prominent features of MXenes are attractive and ideal for hydrogen storage. This chapter provides a review dealing with the preparation and use of MXenes used in hydrogen storage as well as to reveal computational and theoretical studies on hydrogen storage.

Keywords
MXene, Hydrogen Storage, Computational, Theoretical, Two-Dimensional

Published online 5/30/2019, 13 pages

Citation: Jin-Chung Sin, Jian-Ai Quek, Pei-Sian Ng, Sze-Mun Lam, Two-Dimensional MXene as a Promising Material for Hydrogen Storage, Materials Research Foundations, Vol. 51, pp 61-73, 2019

DOI: https://doi.org/10.21741/9781644900253-3

Part of the book on MXenes: Fundamentals and Applications

References
[1] L. Zhou, Progress and problems in hydrogen storage methods, Renew. Sust. Energ. Rev. 9 (2005) 395–408. https://doi.org/10.1016/j.apsusc.2018.04.052[2] D. Pukazhselvan, N. Nasani, T. Yang, D. Ramasamy, A. Shaula, D.P. Fagg, Chemically transformed additive phases in Mg2TiO4 and MgTiO3 loaded hydrogen storage system MgH2, Appl. Surf. Sci. 472 (2019) 99–104. https://doi.org/10.1016/j.apsusc.2018.04.052
[3] E. Ianni, M.V. Sofianos, M.R. Rowles, D.A. Sheppard, T.D. Humphries, C.E. Buckley, Synthesis of NaAlH4/Al composites and their applications in hydrogen storage, Int. J. Hydrog. Energy 43 (2018) 17309–17317. https://doi.org/10.1016/j.ijhydene.2018.07.072
[4] K.K. Gangu, S. Maddila, S.B. Mukkamala, S.B. Jonnalagadda, Characteristics of MOF, MWCNT and graphene containing materials for hydrogen storage: A review, J. Energy Chem. 30 (2019) 132–144. https://doi.org/10.1016/j.jechem.2018.04.012
[5] Y.T. Liu, X.D. Zhu, L. Pan, Hybrid architectures based on 2D MXenes and low-dimensional inorganic nanostructures: methods, synergies, and energy-related applications, Small 14 (2018) 1803632. https://doi.org/10.1002/smll.201803632
[6] J. Pang, R.G. Mendes, A. Bachmatiuk, L. Zhao, H.Q. Ta, T. Gemming, H. Liu, Z. Liu, M.H. Rummeli, Applications of 2D MXenes in energy conversion and storage systems, Chem. Soc. Rev. 48 (2019) 72–133. https://doi.org/10.1039/c8cs00324f
[7] N. Zhang, Y.H. Zhang, Y.J. Xu, Recent progress on graphene-based photocatalysts: current status and future perspectives, Nanoscale 4 (2012) 5792–5813. https://doi.org/10.1039/c2nr31480k
[8] M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi, M.W. Barsoum, Two‐dimensional nanocrystals produced by exfoliation of Ti3AlC2, Adv. Mater. 23 (2011) 4248–4253. https://doi.org/10.1002/adma.201102306
[9] F. Wang, C. Yang, M. Duan, Y. Tang, J. Zhu, TiO2 nanoparticle modified organ-like Ti3C2 MXene nanocomposite encapsulating hemoglobin for a mediator-free biosensor with excellent performances, Biosens. Bioelectron. 74 (2015) 1022–1028. https://doi.org/10.1016/j.bios.2015.08.004
[10] H. Liu, C. Duan, C. Yang, W. Shen, F. Wang, Z. Zhu, A novel nitrite biosensor based on the direct electrochemistry of hemoglobin immobilized on MXene-Ti3C2, Sens. Actuators, B 218 (2015) 60–66. https://doi.org/10.1016/j.snb.2015.04.090
[11] X.Q. Li, C.Y. Wang, Y. Cao, G.X. Wang, Functional MXenes materials: progress of their applications, Chem. Asian J. 13 (2018) 2742–2757.
[12] J. Li, X.T. Yuan, C. Lin, Y.Q. Yang, L. Xu, X. Du, J.L. Xie, J.H. Lin, J.L. Sun, Achieving high pseudocapacitance of 2D titanium carbide (MXene) by cation intercalation and surface modification, Adv. Energy Mater. 7 (2017) 1602725. https://doi.org/10.1002/aenm.201602725
[13] P. Persson, Exploring and tailoring structural properties of the two-dimensional family of Mxenes, European Microscopy Congress 2016: Proceedings,2016, pp.437-438. https://doi.org/10.1002/9783527808465.emc2016.6942
[14] J. Lei, X. Zhang, Z. Zhou, Recent advances in MXene: Preparation, properties, and applications, Front. Phys. 10 (2015) 276–286.
[15] A. Enyashin, A. Ivanovskii, Structural and electronic properties and stability of MXenes Ti2C and Ti3C2 functionalized by methoxy groups, J. Phys. Chem. C 117 (2013) 13637–13643. https://doi.org/10.1021/jp401820b
[16] G. Chen, Y. Zhang, H. Cheng, Y. Zhu, L. Li, H. Lin, Effects of two-dimension MXene Ti3C2 on hydrogen storage performances of MgH2-LiAlH4 composite, Chem. Phys.522 (2019) 178-187. https://doi.org/10.1016/j.chemphys.2019.03.001
[17] M. Wu, B.X. Wang, Q.K. Hu, L.B. Wang, A.G. Zhou, The synthesis process and thermal stability of V2C MXene, Materials 11 (2018) 2112. https://doi.org/10.3390/ma11112112
[18] M. Alhabeb, K. Maleski, B. Anasori, P. Lelyukh, L. Clark, S. Sin, Y. Gogotsi, Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene), Chem. Mater. 29 (2017) 7633–7644. https://doi.org/10.1021/acs.chemmater.7b02847
[19] O. Mashtalir, M. Naguib, V.N. Mochalin, Y.D. Agnese, M. Heon, M.W. Barsoum, Y. Gogotsi, Intercalation and delamination of layered carbides and carbonitrides, Nat. Commun. 4 (2013) 1716. https://doi.org/10.1038/ncomms2664
[20] F. Chang, C.S. Li, J. Yang, H. Tang, M.Q. Xue, Synthesis of a new graphene-like transition metal carbide by de-intercalating Ti3AlC2, Mater. Lett. 109 (2013) 295–298. https://doi.org/10.1016/j.matlet.2013.07.102
[21] M. Naguib, J. Halim, J. Lu, K.M. Cook, L. Hultman, Y. Gogotsi, M.W. Barsoum, New two-dimensional niobium and vanadium carbides as promising materials for Li-ion batteries, J. Am. Chem. Soc. 135 (2013) 15966–15969. https://doi.org/10.1021/ja405735d
[22] M. Naguib, O. Mashtalir, J. Carle, V. Presser, J. Lu, L. Hultman, Y. Gogotsi, M.W. Barsoum, Two-dimensional transition metal carbides, ACS Nano 6 (2012) 1322–1331. https://doi.org/10.1021/nn204153h
[23] J. Halim, M.R. Lukatskaya, K.M. Cook, J. Lu, C.R. Smith, L.A. Naslund, S.J. May, L. Hultman, Y. Gogotsi, P. Eklund, M.W. Barsoum, Transparent conductive two-dimensional titanium carbide epitaxial thin films, Chem. Mater. 26 (2014) 2374–2381. https://doi.org/10.1021/cm500641a
[24] Q. Hu, D. Sun, Q. Wu, H. Wang, L. Wang, B. Liu, A. Zhou, J. He, MXene: A new family of promising hydrogen storage medium, J. Phys. Chem. A 117 (2013) 14253–14260. https://doi.org/10.1021/jp409585v
[25] A. Yadav, A. Dashora, N. Patel, A. Miotello, M. Press, D. Kothari, Study of 2D MXene Cr2C material for hydrogen storage using density functional theory, Appl. Surf. Sci. 389 (2016) 88–95. https://doi.org/10.1016/j.apsusc.2016.07.083
[26] T.K.A. Hoang, D.M. Antonelli, Exploiting the Kubas interaction in the design of hydrogen storage materials, Adv. Mater. 21 (2009) 1787−1800. https://doi.org/10.1002/adma.200802832
[27] S.I. Orimo, Y. Nakamori, J.R. Eliseo, A. Züttel, C.M. Jensen, Complex hydrides for hydrogen storage, Chem. Rev. 107 (2007) 4111−4132. https://doi.org/10.1021/cr0501846
[28] J.L. Rowsell, O.M. Yaghi, Strategies for hydrogen storage in metal-organic frameworks, Angew. Chem. Int. Ed. 44 (2005) 4670−4679. https://doi.org/10.1002/anie.200462786
[29] Q.K. Hu, H.Y. Wang, Q.H. Wu, X.T. Ye, A.G. Zhou, D.D. Sun, L.B. Wang, B.Z. Liu, J.L. He, Two-dimensional Sc2C: A reversible and high-capacity hydrogen storage material predicted by first-principles calculations,Int. J. Hydrog. Energy 39 (2014) 10606–10612. https://doi.org/10.1016/j.ijhydene.2014.05.037
[30] M. Khazaei, A. Ranjbar, M. Arai, T. Sasaki, S. Yunoki, Electronic properties and applications of MXenes: a theoretical review, J. Mater. Chem. C 5 (2017) 2488–2503. https://doi.org/10.1039/c7tc00140a
[31] T.J. Giese, D.M. York, Density-functional expansion methods: Evaluation of LDA, GGA, and meta-GGA functionals and different integral approximations, J. Chem. Phys. 133 (2010) 244107. https://doi.org/10.1063/1.3515479
[32] G.P. Gao, A.P. O’Mullane, A.J. Du, 2D MXenes: A New Family of Promising Catalysts for the Hydrogen Evolution Reaction, ACS Catal. 7 (2017) 494–500. https://doi.org/10.1021/acscatal.6b02754
[33] N.K. Chaudhari, H. Jin, B.Y. Kim, D.S. Baek, S.H. Joo, K.Y. Lee, MXene: an emerging two-dimensional material for future energy conversion and storage applications, J. Mater. Chem. A 5 (2017) 24564-24579. https://doi.org/10.1039/c7ta09094c
[34] S.J. Sun, C. Liao, A.M. Hafez, H.L. Zhu, S.P. Wu, Two-dimensional MXenes for energy storage, Chem. Eng. J. 338 (2018) 27–45. https://doi.org/10.1016/j.cej.2017.12.155
[35] R.Y. Wu, H.F. Du, Z.Y. Wang, M.X. Gao, H.G. Pan, Y.F. Liu, Remarkably improved hydrogen storage properties of NaAlH4 doped with 2D titanium carbide, J. Power Sources 327 (2016) 519–525. https://doi.org/10.1016/j.jpowsour.2016.07.095
[36] X.H. Wu, Z.Y. Wang, M.Z. Yu, L.Y. Xiu, J.S. Qiu, Stabilizing the MXenes by carbon nanoplating for developing hierarchical nanohybrids with efficient lithium storage and hydrogen evolution capability, Adv. Mater. 29 (2017) 1607017. https://doi.org/10.1002/adma.201607017