A Newly Emerging MXene Nanomaterial for Environmental Applications

$20.00

A Newly Emerging MXene Nanomaterial for Environmental Applications

Sze-Mun Lam, Ming-Wei Kee, Kok-Ann Wong, Zeeshan Haider Jaffari, Huey-Yee Chai, Jin-Chung Sin

Escalating environmental issues have gathered prodigious scientific attention. Recently, two dimensional (2D) transition metal nitride/carbide composites have appeared as one of the most privileged nanomaterials applied in global environmental applications. Multilayered MXenes (Ti3C2Tx) were fabricated by exfoliating selective MAX phases. The description of the physiochemical properties of MXenes and their synthesis methods were detailed. This chapter also summarized the recent advancement of MXenes on environmental applications including adsorption, photocatalysis, antimicrobial and membrane processes. Finally, prospects together with challenges for MXenes possible environmental direction are summarized.

Keywords
MXene, Nanomaterial, Adsorption, Photocatalysis, Antimicrobial, Membrane

Published online 5/30/2019, 41 pages

Citation: Sze-Mun Lam, Ming-Wei Kee, Kok-Ann Wong, Zeeshan Haider Jaffari, Huey-Yee Chai, Jin-Chung Sin, A Newly Emerging MXene Nanomaterial for Environmental Applications, Materials Research Foundations, Vol. 51, pp 20-60, 2019

DOI: https://doi.org/10.21741/9781644900253-2

Part of the book on MXenes: Fundamentals and Applications

References
[1] M.W. Kee, J.W. Soo, S.M. Lam, J.C. Sin, A.R. Mohamed, Evaluation of photocatalytic fuel cell (PFC) for electricity production and simultaneous degradation of methyl green in synthetic and real greywater effluents, J. Environ. Manage. 228 (2018) 383-392. https://doi.org/10.1016/j.jenvman.2018.09.038
[2] K.A., Wong, S.M. Lam, J.C. Sin, Wet chemically synthesized ZnO structures for photodegradation of pre-treated palm oil mill effluent and antibacterial activity, Ceram. Int. 45 (2019) 1868-1880. https://doi.org/10.1016/j.ceramint.2018.10.078
[3] S.W., Nam, C. Jung, H. Li, M. Yu, J.R.V. Flora, I. K. Boateng, N. Her, K.D. Zoh, Y. Yoon, Adsorption characteristics of diclofenac and sulfamethoxazole to graphene oxide in aqueous solution, Chemosphere 136 (2015) 20-26. https://doi.org/10.1016/j.chemosphere.2015.03.061
[4] Y. Q., Zhu, C.B. Cao, A simple synthesis of two-dimensional ultrathin nickel cobaltite nanosheets for electrochemical lithium storage, Electrochim. Acta 176 (2015) 141-148. https://doi.org/10.1016/j.electacta.2015.06.130
[5] Y.Q., Zhu, C.B. Cao, S. Tao, W.S., Chu, Z.Y. Wu, Y.D. Li, Ultrathin nickel hydroxide and oxide nanosheets: Synthesis, characterization and excellent supercapacitor performances, Sci. Rep. 4 (2014) 5787. https://doi.org/10.1038/srep05787
[6] Y.Q., Zhu, C.B. Cao, J.T. Zhang, X.Y. Xu, Two-dimensional ultrathin ZnCo2O4 nanosheets: General formation and lithium storage application, J. Mater. Chem. A. 3 (2015) 9556-6564. https://doi.org/10.1039/c5ta00808e
[7] Y.Q., Zhu, H.Z. Guo, H.Z. Zhai, C.B. Cao, Microwave-assisted and gram-scale synthesis of ultrathin SnO2 nanosheets with enhanced lithium storage properties, ACS Appl. Mater. Interfaces 7 (2015) 2745-2753. https://doi.org/10.1021/am507826d
[8] Y.Q., Zhu, W.M., Sun, W.X., Chen, T. Cao, Y. Xiong, J. Luo, J.C. Dong, I.R. Zheng, J. Zhang, X.I. Wang, C. Chen, Q. Peng, Scale-up biomass pathway to cobalt single-site catalysts anchored on N-doped porous carbon nanobelt with ultrahigh surface area, Adv. Funct. Mater. 28 (2018) 1802167. https://doi.org/10.1002/adfm.201802167
[9] Q. Wang, X. F. Guo, L.C. Cai, Y. Cao, L. Gan, S. Liu, Z.X. Wang, H.T. Zhang, L.D. Li, TiO2-decorated graphenes as efficient photoswitches with high oxygen sensitivity, Chem. Sci. 2 (2011) 1860-1864. https://doi.org/10.1039/c1sc00344e
[10] Z. Bo, S. Mao, Z.J. Han, K.F. Cen, J.H. Chen, K. Ostrikov, Emerging energy and environmental applications of vertically-oriented graphenes, Chem. Soc. Rev. 44 (2015) 2108-2121. https://doi.org/10.1039/c4cs00352g
[11] P. Sun, R. Xue, W. Zhang, I. Zada, Q. Liu, J. Gu, H. Su, Z. Zhang, J. Zhang, D. Zhang, Photocatalyst of organic pollutants decomposition: TiO2/glass fiber cloth composites, Catal. Today 274 (2016) 2-7. https://doi.org/10.1016/j.cattod.2016.04.036
[12] G. Song, Z. Chu, W. Jin, H. Sun, Enhanced performance of g-C3N4/TiO2 photocatalysts for degradation of organic pollutants under visible light, Chin. J. Chem. Eng. 23 (2015) 1326-1334. https://doi.org/10.1016/j.cjche.2015.05.003
[13] K. Natarajan, H.C. Bajaj, R.J. Tayade, Effective removal of organic pollutants using GeO2/TiO2 nanoparticle composites under direct sunlight, Mater. Chem. Front. 2 (2018) 741-751. https://doi.org/10.1039/c7qm00492c
[14] D. Rajamanickam, M. Shanthi, Photocatalytic degradation of an organic pollutant by zinc oxide – solar process, Arabian J. Chem. 9 (2016) S1858-S1868. https://doi.org/10.1016/j.arabjc.2012.05.006
[15] A. Gupta, J.R. Saurav, S. Bhattacharya, Solar light based degradation of organic pollutants using ZnO nanobrushes for water filtration, RSC Adv. 5 (2015) 71472-41481. https://doi.org/10.1039/c5ra10456d
[16] P. Bansal, P. Kaur, D. Sud, 2014, Heterostructured TiO2/ZnO–excellent nanophotocatalysts for degradation of organic contaminants in aqueous solution, Desalin. Water Treat. 52 (2014) 7004-7014. https://doi.org/10.1080/19443994.2013.822330
[17] M. Naguib, J. Halim, J. Lu, K.M. Cook, L. Hultman, Y. Gogotsi andM.W. Barsoum, New two-dimensional niobium and vanadium carbides as promising materials for Li-ion batteries, J. Am. Chem. Soc. 135 (2013) 15966-15969. https://doi.org/10.1021/ja405735d
[18] Y. Xie, M. Naguib, V.N. Mochalin, M.W. Barsoum, Y. Gogotsi, X. Yu, K.W. Nam, X.Q. Yang, A.I. Kolesnikov and P.R. Kent, Role of surface structure on Li-ion energy storage capacity of two-dimensional transition-metal carbides, J. Am. Chem. Soc. 136 (2014) 6385-6394. https://doi.org/10.1021/ja501520b
[19] Y. Dong, S.S.K. Mallineni, K. Maleski, H. Behlow, V.N. Mochalin, A.M. Rao, Y. Gogotsi and R. Podila, Metallic MXenes: A new family of materials for flexible triboelectric nanogenerators, Nano Energy 44 (2018) 103-110. https://doi.org/10.1016/j.nanoen.2017.11.044
[20] M. Ghidiu, M.R. Lukatskaya, M.Q. Zhao, Y. Gogotsi and M.W. Barsoum, Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance, Nature 516 (2014) 78. https://doi.org/10.1038/nature13970
[21] J. Come, M. Naguib, P. Rozier, M.W. Barsoum, Y. Gogotsi, P.L. Taberna, M. Morcrette and P. Simon, A non-aqueous asymmetric cell with a Ti2C-based two-dimensional negative electrode, J. Electrochem. Soc. 159 (2012) A1368-A1373. https://doi.org/10.1149/2.003208jes
[22] M.R. Lukatskaya, S. Kota, Z. Lin, M.Q. Zhao, N. Shpigel, M.D. Levi, J. Halim, P.L. Taberna, M.W. Barsoum, P. Simon and Y. Gogotsi, Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides, Nat. Energy 2 (2017) 17105. https://doi.org/10.1038/nenergy.2017.105
[23] C. Zhang, B. Anasori, A. Seral Ascaso, S.H. Park, N. McEvoy, A. Shmeliov, G.S. Duesberg, J.N. Coleman, Y. Gogotsi and V. Nicolosi, Transparent, flexible, and conductive 2D titanium carbide (MXene) films with high volumetric capacitance, Adv. Mater. 29 (2017) 1702678. https://doi.org/10.1002/adma.201702678
[24] E. Lee, A. VahidMohammadi, B.C. Prorok, Y.S. Yoon, M. Beidaghi and D.J. Kim, Room temperature gas sensing of two-dimensional titanium carbide (MXene), ACS Appl. Mater. Interfaces 9 (2017) 37184-37190. https://doi.org/10.1021/acsami.7b11055
[25] S.J. Kim, H.-J. Koh, C.E. Ren, O. Kwon, K. Maleski, S.-Y. Cho, B. Anasori, C.-K. Kim, Y.-K. Choi, J. Kim, Y. Gogotsi, H.-T. Jung, Metallic Ti3C2Tx MXene gas sensors with ultrahigh signal-to-noise ratio, ACS Nano. 12 (2018) 986–993. https://doi.org/10.1021/acsnano.7b07460
[26] Q. Peng, J. Guo, Q. Zhang, J. Xiang, B. Liu, A. Zhou, R. Liu, Y. Tian, Unique lead adsorption behavior of activated hydroxyl group in two-dimensional titanium carbide, J. Am. Chem. Soc. 136 (2014) 4113–4116. https://doi.org/10.1021/ja500506k
[27] J. Guo, Q. Peng, H. Fu, G. Zou, Q. Zhang, Heavy-metal adsorption behavior of two-dimensional alkalization-intercalated MXene by first-principles calculations, J. Phys. Chem. C. 119 (2015) 20923–20930. https://doi.org/10.1021/acs.jpcc.5b05426
[28] X. Guo, X. Zhang, S. Zhao, J. Xue, High adsorption capacity of heavy metals on two-dimensional MXenes: an ab initio study with molecular dynamics simulation, Phys. Chem. Chem. Phys. 18 (2016) 228–233. https://doi.org/10.1039/c5cp06078h
[29] J. Zhou, X. Zha, X. Zhou, F. Chen, G. Gao, S. Wang, C. Shen, T. Chen, C. Zhi, P. Eklund and S. Du, Synthesis and electrochemical properties of two-dimensional hafnium carbide, ACS Nano 11 (2017) 3841-3850. https://doi.org/10.1021/acsnano.7b00030
[30] B. Anasori, M.R. Lukatskaya and Y. Gogotsi, 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2 (2017) 16098. https://doi.org/10.1038/natrevmats.2016.98
[31] O. Mashtalir, K.M. Cook, V.N. Mochalin, M. Crowe, M.W. Barsoum, Y. Gogotsi, Dye adsorption and decomposition on two-dimensional titanium carbide in aqueous media, J. Mater. Chem. A 2 (2014) 14334-14338. https://doi.org/10.1039/c4ta02638a
[32] G.D. Zou, J.X. Guo, Q.M. Peng, A.G. Zhou, Q.R. Zhang, B.Z. Liu, Synthesis of urchin-like rutile titania carbon nanocomposites by iron-facilitated phase transformation of MXene for environmental remediation, J. Mater. Chem. A 4 (2016) 489-499. https://doi.org/10.1039/c5ta07343j
[33] R.L. Han, X.F. Ma, Y.L. Xie, D. Teng, S.H. Zhang, Preparation of a new 2D MXene/PES composite membrane with excellent hydrophilicity and high flux, RSC. Adv. 7 (2017) 56204-56210. https://doi.org/10.1039/c7ra10318b
[34] L. Ding, Y.Y. Wei, Y.J. Wang, H.B. Chen, J. Caro, H.H. Wang, A two-dimensional lamellar membrane: MXene nanosheet stacks, Angew. Chem. Int. Ed. 56 (2017) 1825-1829. https://doi.org/10.1002/anie.201609306
[35] M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi, W. Barsoum, Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2, Adv. Mater. 23 (2011) 4248 – 4253. https://doi.org/10.1002/adma.201102306
[36] J. Peng, X. Chen, W. Ong, X. Zhao, N. Li, Surface and heterointerface engineering of 2D MXenes and their nanocomposites: insights into electro- and photocatalysis, Chem. 5 (2019) 18 – 50. https://doi.org/10.1016/j.chempr.2018.08.037
[37] S. Chen, Y. Xiang, C. Peng, J. Jiang, W. Xu, R. Wu, Photo-responsive Azobenzene-MXene hybrid and its optical modulated electrochemical effects, J. Power Sources 414 (2019) 192 – 200. https://doi.org/10.1016/j.jpowsour.2019.01.009
[38] P. Liu, Z. Yao, V.M.H. Ng, J. Zhou, L.B. Kong, K. Yue, Facile synthesis of ultrasmall Fe3O4 nanoparticles on MXenes for high microwave absorption performance, Composites Part A 115 (2018) 371 – 382. https://doi.org/10.1016/j.compositesa.2018.10.014
[39] J. Zhu, E. Ha, G. Zhao, Y. Zhou, D. Huang, G. Yue, L. Hu, N. Sun, Y. Wang, L.Y.S. Lee, C. Xu, K. Wong, D. Astruc, P. Zhao, Recent advance in MXenes: a promising 2D material for catalysis, sensor and chemical adsorption, Coord. Chem. Rev. 352 (2017) 306 – 327. https://doi.org/10.1016/j.ccr.2017.09.012
[40] A. Sinha, Dhanjai, H. Zhao, Y. Huang, X. Lu, J. Chen, R. Jain, MXene: an emerging material for sensing and biosensing, Trends Anal. Chem. 105 (2018) 424 – 435. https://doi.org/10.1016/j.trac.2018.05.021
[41] M. Naguib, V.N. Mochalin, M.W. Barsoum, Y. Gogotsi, 25¬¬th anniversary article: MXenes: a new family of two-dimensional materials, Adv. Mater. 26 (2014) 992 – 1005. https://doi.org/10.1002/adma.201304138
[42] M. Naguib, O. Mashtalir, J. Carlet, V. Presser, J. Lu, L. Hultman, Y. Gogotsi, M.W. Barsoum, Two-dimensional transition metal carbides, ACS nano 6 (2012) 1322 – 1331. https://doi.org/10.1021/nn204153h
[43] B. Anasori, Y. Xie, M. Beidaghi, J. Lu, B.C. Hosler, L. Hultman, P.R.C. Kent, Y. Gogotsi, M.W. Barsoum, Two-dimensional, ordered, double transition metals carbides (MXenes), ACS nano 9 (2015) 9507 – 9516. https://doi.org/10.1021/acsnano.5b03591
[44] B. Anasori, C. Shi, E.J. Moon, Y. Xie, C.A. Voigt, P.R.C.Kent, S.J. May, S.J.L. Bilinge, M.W. Barsoum, Y. Gogotsi, Control of electronic properties of 2D carbides (MXenes) by manipulating their transition metal layers, Nanoscale Horiz. 1 (2016) 227 – 234. https://doi.org/10.1039/c5nh00125k
[45] Q. Tang, Z. Zhou, Graphene-analogous low-dimensional materials, Prog. Mater. Sci. 58 (2013) 1244 – 1315.
[46] K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, A.K. Geim, Two-dimensional atomic crystals, Proc. Natl. Acad. Sci. 102 (2005) 10451 – 10453. https://doi.org/10.1073/pnas.0502848102
[47] S. Kumar, Y. Lei, N.H. Alshareef, M.A.Q. Lopez, K.N. Salama, Biofunctionalized two-dimensional Ti3C2 MXenes for ultrasensitive detection of cancer biomarker, Biosens. Bioelectron. 121 (2018) 243 – 249. https://doi.org/10.1016/j.bios.2018.08.076
[48] D. Wu, M. Wu, J. Yang, H. Zhang, K. Xie, C. Lin, A. Yu, J. Yu, L. Fu, Delaminated Ti3C2Tx (MXene) for electrochemical carbendazim sensing, Mater. Lett. 236 (2019) 412 – 415. https://doi.org/10.1016/j.matlet.2018.10.150
[49] Q. Shan, X. Mu, M. Alhabeb, C.E. Shuck, D. Pang, X. Zhao, X. Chu, Y. Wei, F. Du, G. Chen, Y. Gogotsi, Y. Gao, Y. Dall’Agnese, Two-dimensional vanadium carbide (V2C) MXene as electrode for supercapacitors with aqueous electrolytes, Electrochem. Commun. 96 (2018) 103 – 107. https://doi.org/10.1016/j.elecom.2018.10.012
[50] W. Zhi, S. Xiang, R. Bian, R. Lin, K. Wu, T. Wang, D. Cai, Study of MXene-filled polyurethane nanocomposites prepared via an emulsion method, Compos. Sci. Technol. 168 (2018) 404 – 411. https://doi.org/10.1016/j.compscitech.2018.10.026
[51] L. Yang, W. Zheng, P. Zhang, J. Chen, W.B. Tian, Y.M. Zhang, Z.M. Sun, MXene/CNTs films prepared by electrophoretic deposition for supercapacitor electrodes, J. Electroanal. Chem. 830 – 831 (2018) 1 – 6. https://doi.org/10.1016/j.jelechem.2018.10.024
[52] A.R. Wojciechowska, T. Wojciechowski, W. Ziemkowska, L. Chlubny, A. Olszyna, A.M. Jastrzebska, Surface interactions between 2D Ti3C2/Ti2C MXenes and lysozyme, Appl. Surf. Sci. 473 (2019) 409 – 418. https://doi.org/10.1016/j.apsusc.2018.12.081
[53] X. Zou, G. Li, Q. Wang, D. Tang, B. Wu, X. Wang, Energy storage properties of selectively functionalized Cr-group MXenes, Comput. Mater. Sci. 150 (2018) 236 – 243. https://doi.org/10.1016/j.commatsci.2018.04.014
[54] M. Magnuson, J. Halim, L. Naslund, Chemical bonding in carbide MXene nanosheets, J. Electron. Spectrosc. Relat. Phenom. 224 (2018) 27 – 32. https://doi.org/10.1016/j.elspec.2017.09.006
[55] C. Eames, M.S. Islam, Ion intercalation into two-dimensional transition-metal carbides: global screening for new high-capacity battery materials, J. Am. Chem. Soc. 136 (2014) 16270 – 16276. https://doi.org/10.1021/ja508154e
[56] G.R. Berdiyorov, K.A. Mahmoud, Effect of surface termination on ion intercalation selectivity of bilayer Ti3C2T2 (T = F, O and OH) MXene, Appl. Surf. Sci. 416 (2017) 725 – 730. https://doi.org/10.1016/j.apsusc.2017.04.195
[57] A.N. Enyashin, A.L. Ivanovskii, Structural, electronic properties and stability of MXenes Ti2C and Ti3C2 functionalized by methoxy groups, J. Phys. Chem. 117 (2013) 13637 – 13643. https://doi.org/10.1021/jp401820b
[58] J. Zhu, U. Schwingenschlogl, P and Si functionalized MXenes for metal-ion battery applications, 2D Mater. 4 (2017) 025073. https://doi.org/10.1088/2053-1583/aa69fe
[59] X. Gao, Y. Zhou, Y. Tan, Z. Cheng, B. Yang, Y. Ma, Z. Shen, J. Jia, Exploring adsorption behavior and oxidation mechanism of mercury on monolayer Ti2CO2 (MXenes) from first principles, Appl. Surf. Sci. 464 (2019) 53 – 60. https://doi.org/10.1016/j.apsusc.2018.09.071
[60] I.R. Shein, A.L. Ivanovskii, Graphene-like nanocarbides and nanonitrides of d metals (MXenes): synthesis, properties and simulation, Micro Nano Lett. 8 (2013) 59 – 62. https://doi.org/10.1049/mnl.2012.0797
[61] J. Guo, Y. Sun, B. Liu, Q. Zhang, Q. Peng, Two-dimensional scandium-based carbides (MXene): band gap modulation and optical properties, J. Alloys Compd. 712 (2017) 752 – 759. https://doi.org/10.1016/j.jallcom.2017.04.149
[62] M. Khazaei, A. Ranjbar, M. Ghorbani-Asl, M. Arai, T. Sasaki, Y. Liang, S. Yunoki, Nearly free electron states in MXenes, Phys. Rev. B 93 (2016) 205125-1 – 205125-10. https://doi.org/10.1103/physrevb.93.205125
[63] M. Khazaei, M. Arai, T. Sasaki, C. Chung, N.S. Venkataramanan, M. Estili, Y. Sakka, Y. Kawazoe, Novel electronic and magnetic properties of two-dimensional transition metal carbides and nitrides, Adv. Funct. Mater. 17 (2013) 2185 – 2192. https://doi.org/10.1002/adfm.201202502
[64] M. Khazaei, M. Arai, T. Sasaki, M. Estili, Y. Sakka, Two-dimensional molybdenum carbides: potential thermoelectric materials of the MXene family, Phys. Chem. Chem. Phys. 16 (2014) 7841 – 7849. https://doi.org/10.1039/c4cp00467a
[65] M. Han, X. Yin, H. Wu, Z. Hou, C. Song, X. Li, L. Zhang, L. Cheng, Ti3C2 MXenes with modified surface for high-performance electromagnetic absorption and shielding in the X-band, ACS Appl. Mater. Interfaces 8 (2016) 21011 – 21019. https://doi.org/10.1021/acsami.6b06455
[66] A. Shahzad, K. Rasool, W. Miran, M. Nawaz, J. Jang, K.A. Mahmoud, D.S. Lee, Mercuric ion capturing by recoverable titanium carbide magnetic nanocomposite, J. Hazard. Mater. 344 (2018) 811 – 818. https://doi.org/10.1016/j.jhazmat.2017.11.026
[67] M. Cao, Y. Cai, P. He, J. Shu, W. Cao, J. Yuan, 2D MXenes: electromagnetic property for microwave absorption and electromagnetic interference shielding, Chem. Eng. J. 359 (2019) 1265 – 1302. https://doi.org/10.1016/j.cej.2018.11.051
[68] H. Yang, J. Dai, X. Liu, Y. Lin, J. Wang, L. Wang, F. Wang, Layered PVB/Ba3Co2Fe24O41/Ti3C2 MXene composite: enhanced electromagnetic wave absorption properties with high impedance match in a wide frequency range, Mater. Chem. Phys. 200 (2017) 179 – 186. https://doi.org/10.1016/j.matchemphys.2017.05.057
[69] X. Su, J. Zhang, H. Mu, J. Zhao, Z. Wang, Z. Zhao, C. Han, Z. Ye, Effects of etching temperature and ball milling on the preparation and capacitance of Ti3C2 MXene, J. Alloys Compd. 752 (2018) 32 – 39. https://doi.org/10.1016/j.jallcom.2018.04.152
[70] R. Meshkian, Q. Tao, M. Dahlqvist, J. Lu, L. Hultman, J. Rosen, Theoretical stability and materials synthesis of a chemically ordered MAX phase, Mo2ScAlC2, and its two-dimensional derivate Mo2ScC2 MXene, Acta Mater. 125 (2017) 476 – 480. https://doi.org/10.1016/j.actamat.2016.12.008
[71] S. Zhao, X. Meng, K. Zhu, F. Du, G. Chen, Y. Wei, Y. Gogotsi, Y. Gao, Li-ion uptake and increase in interlayer spacing of Nb4C3 MXene, Energy Storage Mater. 8 (2017) 42 – 48. https://doi.org/10.1016/j.ensm.2017.03.012
[72] J. Zhou, S. Gao, Z. Guo, Z. Sun, Ti-enhanced exfoliation of V2AlC into V2C MXene for lithium-ion battery anodes, Ceram. Int. 43 (2017) 11450 – 11454. https://doi.org/10.1016/j.ceramint.2017.06.016
[73] W. Feng, H. Luo, Y. Wang, S. Zeng, Y. Tan, H. Zhang, S. Peng, Ultrasonic assisted etching and delaminating of Ti3C2 Mxene, Ceram. Int. 44 (2018) 7084 – 7087. https://doi.org/10.1016/j.ceramint.2018.01.147
[74] C. Peng, P. Wei, X. Chen, Y. Zhang, F. Zhu, Y. Cao, H. Wang, H. Yu, F. Peng, A hydrothermal etching route to synthesis of 2D MXene (Ti¬3C2, Nb2C): enhanced exfoliation and improved adsorption performance, Ceram. Int. 44 (2018) 18886 – 18893. https://doi.org/10.1016/j.ceramint.2018.07.124
[75] M. Ghidiu, M.R. Lukatskaya, M. Zhao, Y. Gogotsi, M.W. Barsoum, Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance, Nature 516 (2014) 78 – 82. https://doi.org/10.1038/nature13970
[76] F. Liu, A. Zhou, J. Chen, J. Jia, W. Zhou, L. Wang, Q. Hu, Preparation of Ti3C2 and Ti2C MXenes by fluoride salts etching and methane adsorptive properties, Appl. Surf. Sci. 416 (2017) 781 – 789. https://doi.org/10.1016/j.apsusc.2017.04.239
[77] Z. Xu, G. Liu, H. Ye, W. Jin, Z. Cui, Two-dimensional MXene incorporated chitosan mixed-matrix membranes for efficient solvent dehydration, J. Membr. Sci. 563 (2018) 625 – 632. https://doi.org/10.1016/j.memsci.2018.05.044
[78] L. Wang, H. Zhang, B. Wang, C. Shen, C. Zhang, Q. Hu, A. Zhou, B. Liu, Synthesis and electrochemical performance of Ti3C2Tx with hydrothermal process, Electron. Mater. Lett. 12 (2016) 702 – 710. https://doi.org/10.1007/s13391-016-6088-z
[79] X. Xie, Y. Xue, L. Li, S. Chen, Y. Nie, W. Ding, Z. Wei, Surface Al leached Ti3AlC2 as a substitute for carbon for use as a catalyst support in a harsh corrosive electrochemical system, Nanoscale 6 (2014) 11035 – 11040. https://doi.org/10.1039/c4nr02080d
[80] M. Naguib, R.R. Unocic, B.L. Armstrong, J. Nanda, Large-scale delamination of multi-layers transition metal carbides and carbonitrides “MXenes”, Dalton Trans. 44 (2015) 9353 – 9358. https://doi.org/10.1039/c5dt01247c
[81] K. Singh, S. Arora, Removal of synthetic textile dyes from wastewaters: A critical review on present treatment technologies, Crit. Rev. Environ. Sci. Technol. 41 (2011) 37–41.
[82] T. Ngulube, J. Ray, V. Masindi, A. Maity, An update on synthetic dyes adsorption onto clay based minerals : A state-of-art review, J. Environ. Manage. 191 (2017) 35–57. https://doi.org/10.1016/j.jenvman.2016.12.031
[83] A.K. Verma, R.R. Dash, P. Bhunia, A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters, J. Environ. Manage. 93 (2012) 154–168. https://doi.org/10.1016/j.jenvman.2011.09.012
[84] S. Chowdhury, R. Balasubramanian, Recent advances in the use of graphene-family nanoadsorbents for removal of toxic pollutants from wastewater, Adv. Colloid Interface Sci. 204 (2014) 35–56. https://doi.org/10.1016/j.cis.2013.12.005
[85] L. Wu, X. Lu, Z. Wu, Y. Dong, X. Wang, S. Zheng, J. Chen, 2D transition metal carbide MXene as a robust biosensing platform for enzyme immobilization and ultrasensitive detection of phenol, Biosens. Bioelectron. 107 (2018) 69–75 https://doi.org/10.1016/j.bios.2018.02.021.
[86] P. Gu, S. Zhang, Ch. Zhang, X. Wang, A. Khan, T. Wen, B. Hu, A. Alsaedi, T. Hayat, Two‐dimensional MAX‐derived titanate nanostructures for efficient removal of Pb(II), Dalt. Trans. 48 (2019) 2100–2107. https://doi.org/10.1039/c8dt04301a
[87] Y. Ying, Y. Liu, X. Wang, Y. Mao, W. Cao, P. Hu, X. Peng, Two-dimensional titanium carbide for efficiently reductive removal of highly toxic chromium (VI) from water, ACS Appl. Mater. Interfaces. 7 (2015) 1795–1803. https://doi.org/10.1021/am5074722
[88] X. Zhu, B. Liu, H. Hou, Z. Huang, K. Mohammed, L. Huang, X. Yuan, D. Guo, J. Hu, J. Yang, Alkaline intercalation of Ti3C2 MXene for simultaneous electrochemical detection of Cd (II), Pb (II), Cu (II) and Hg (II), Electrochim. Acta. 248 (2017) 46–57. https://doi.org/10.1016/j.electacta.2017.07.084
[89] Z. Wei, Z. Peigen, T. Wubian, Q. Xia, Z. Yamei, Alkali treated Ti3C2Tx MXenes and their dye adsorption performance, Mater. Chem. Phys. 206 (2018) 270–276. https://doi.org/10.1016/j.matchemphys.2017.12.034
[90] F. Meng, M. Seredych, C. Chen, V. Gura, S. Mikhalovsky, R. Susan, MXene sorbents for removal of urea from dialysate–a step towards the wearable artificial kidney, ACS Nano. 12 (2018) 10518–10528. https://doi.org/10.1021/acsnano.8b06494
[91] Y. Zhang, Z. Zhou, J. Lan, P. Zhang, Prediction of Ti3C2O2 MXene as an effective capturer of formaldehyde, Appl. Surf. Sci. 469 (2019) 770–774. https://doi.org/10.1016/j.apsusc.2018.11.018
[92] J. Guo, H. Fu, G. Zou, Q. Zhang, Z. Zhang, Theoretical interpretation on lead adsorption behavior of new two-dimensional transition metal carbides and nitrides, J. Alloys Compd. 684 (2016) 504–509. https://doi.org/10.1016/j.jallcom.2016.05.217
[93] A. Shahzad, K. Rasool, W. Miran, M. Nawaz, J. Jang, K. A. Mahmoud, D. Sung Lee, Two-dimensional Ti3C2Tx MXene nanosheets for efficient copper removal from water, ACS Sustain. Chem. Eng. 5 (2017) 11481–11488. https://doi.org/10.1021/acssuschemeng.7b02695
[94] A. Kayvani-Fard, G. Mckay, R. Chamoun, T. Rhadfi, H. Preud Homme, M.A. Atieh, Barium removal from synthetic natural and produced water using MXene as two dimensional (2-D) nanosheet adsorbent, Chem. Eng. J. 317 (2017) 331–342. https://doi.org/10.1016/j.cej.2017.02.090
[95] J. Yang, S.-Z. Zhang, T.-L. Ji, S.-H. Wei, Adsorption activities of O, OH, F and Au on two-dimensional Ti2C and Ti3C2 surfaces, Acta Physico-Chimica Sin. 31 (2015) 369–376.
[96] M.A. Iqbal, S.I. Ali, A. Tariq, M.Z. Iqbal, S. Rizwan, Improved organic dye degradation using highly efficient MXene composites, Preprints. 1 (2018) 1–12. https://doi.org/10.20944/preprints201811.0386.v1
[97] Q. Zhang, J. Tengb, G. Zoua, Q. Peng, Q. Dub, T. Jiao, J. Xianga, Efficient phosphate sequestration for water purification by unique sandwichlike MXene/magnetic iron oxide nanocomposites, Nanoscale. 8 (2016) 7085–7093. https://doi.org/10.1039/c5nr09303a
[98] W. Mu, S. Du, Q. Yu, X. Li, H. Wei, Y. Yang, Improving barium ions adsorption on two-dimensional titanium carbide by surface modification, Dalt. Trans. 47 (2018) 8375–8381. https://doi.org/10.1039/c8dt00917a
[99] L. Wang, L. Yuan, K. Chen, Y. Zhang, Q. Deng, S. Du, Q. Huang, L. Zheng, J. Zhang, Z. Chai, M.W. Barsoum, X. Wang, W. Shi, Loading actinides in multilayered structures for nuclear waste treatment: the first case study of uranium capture with vanadium carbide MXene, ACS Appl. Mater. Interfaces. 8 (2016) 16396–16403. https://doi.org/10.1021/acsami.6b02989
[100] R.P. Pandey, K. Rasool, P.A. Rasheed, K.A. Mahmoud, Reductive sequestration of toxic bromate from drinking water using lamellar 2D Ti3C2TX (MXene), ACS Sustain. Chem. Eng. 6 (2018) 7910–7917. https://doi.org/10.1021/acssuschemeng.8b01147
[101] X. Yu, Y. Li, J. Cheng, Z. Liu, Q. Li, W. Li, X. Yang, B. Xiao, Monolayer Ti2CO2: A promising candidate for NH3 sensor or capturer with high sensitivity and selectivity, ACS Appl. Mater. Interfaces. 7 (2015) 13707–13713. https://doi.org/10.1021/acsami.5b03737
[102] A. Morales-Garcia, A. Fernandez-Fernandez, F. Vines, F. Illas, CO2 abatement using two-dimensional MXene carbides, J. Mater. Chem. A. (2018) 3381–3385. https://doi.org/10.1039/c7ta11379j
[103] S. Ma, D. Yuan, Z. Jiao, T. Wang, X. Dai, Monolayer Sc2CO2: A promising candidate as SO2 gas sensor or capturer, J. Phys. Chem. C. 121 (2017) 24077–24084. https://doi.org/10.1021/acs.jpcc.7b07921
[104] Y. Zhang, Z. Zhou, J. Lan, C. Ge, Z. Chai, Theoretical insights into the uranyl adsorption behavior on vanadium carbide MXene, Appl. Surf. Sci. 426 (2017) 572–578. https://doi.org/10.1016/j.apsusc.2017.07.227
[105] Y. Zhang, J. Lan, L. Wang, Q. Wu, C. Wang, T. Bo, Z. Chai, W. Shi, Adsorption of uranyl species on hydroxylated titanium carbide nanosheet : A first-principles study, J. Hazard. Mater. 308 (2016) 402–410. https://doi.org/10.1016/j.jhazmat.2016.01.053
[106] L. Wang, W. Tao, L. Yuan, Z. Liu, Q. Huang, Z. Chai, J.K. Gibson, W. Shi, Rational control of interlayer space inside two-dimensional titanium carbides for highly efficient uranium removal and imprisoning, ChemComm. 53 (2017) 12084–12087. https://doi.org/10.1039/c7cc06740b
[107] Q. Tang, Z. Zhou, P. Shen, Are MXenes promising anode materials for Li ion batteries? computational studies on electronic properties and Li storage capability of Ti3C2 and Ti3 C2X2 (X= F, OH) monolayer, J. Am. Chem. Soc. 134 (2012) 16909–16916. https://doi.org/10.1021/ja308463r
[108] S. Zhao, W. Kang, J. Xue, Role of strain and concentration on the Li adsorption and diffusion properties on Ti2C layer, J. Phys. Chem. C. 118 (2014) 14983–14990. https://doi.org/10.1021/jp504493a
[109] S.N. Ahmed, W. Haider, Heterogeneous photocatalysis and its potential applications in water and wastewater treatment: a review. Nanotechnol. 29 (2018) p.342001. https://doi.org/10.1088/1361-6528/aac6ea
[110] C.B. Ong, L.Y. Ng, A.W. Mohammed, A review of ZnO nanoparticles as solar photocatalysis: synthesis, mechanisms and applications, Renew. Sust. Energ. Rev. 81 (2018) 536–551.
[111] C. Zhang, V. Nicolosi, Graphene and MXene-based transparent conductive electrodes and supercapacitors. Energy Storage Mater. 16 (2019) 102-125. https://doi.org/10.1016/j.ensm.2018.05.003
[112]S. Kumar, Y. Lei, N.H. Alshareef, M.A. Quevedo-Lopez, K.N. Salama, Biofunctionalized two-dimensional Ti3C2 MXenes for ultrasensitive detection of cancer biomarker. Biosens. Bioelectron. 121 (2018) 243-249. https://doi.org/10.1016/j.bios.2018.08.076
[113] S. Sun, C. Liao, A.M. Hafez, H. Zhu, S. Wu, Two-dimensional MXenes for energy storage. Chem. Eng. J. 338 (2018) 27-45. https://doi.org/10.1016/j.cej.2017.12.155
[114] X. Bai, C. Ling, L. Shi, Y. Ouyang, Q. Li, J. Wang, Insight into the catalytic activity of MXenes for hydrogen evolution reaction. Sci. Bull. 63 (2018) 1397-1403. https://doi.org/10.1016/j.scib.2018.10.006
[115] H. Zhang, M. Li, J. Cao, Q. Tang, P. Kang, C. Zhu, M. Ma, 2D A-Fe2O3 doped Ti3C2 MXene composite with enhanced visible light photocatalytic activity for degradation of Rhodamine B. Ceram. Int. 44 (2018) 19958-19962. https://doi.org/10.1016/j.ceramint.2018.07.262
[116] Y. Gao, L. Wang, A. Zhou, Z. Li, J. Chen, H. Bala, Q. Hu, X. Cao, Hydrothermal synthesis of TiO2/Ti3C2 nanocomposites with enhanced photocatalytic activity. Mater. Lett. 150 (2015) 62-64. https://doi.org/10.1016/j.matlet.2015.02.135
[117] Y. Lu, M. Yao, A. Zhou, Q. Hu, L. Wang, Preparation and photocatalytic performance of Ti3C2/TiO2/CuO ternary nanocomposites. J. Nanomater. 2017 (2017) 1-5. https://doi.org/10.1155/2017/1978764
[118] W. Hu, C. Peng, W. Luo, M. Lv, X. Li, D. Li, Q. Huang, C. Fan, Graphene-based antibacterial paper. ACS Nano. 4 (2010) 4317-4323. https://doi.org/10.1021/nn101097v
[119] S. Liu, T.H. Zeng, M. Hofmann, E. Burcombe, J. Wei, R. Jiang, J. Kong, Y. Chen, Antibacterial activity of graphite, graphite oxidem graphene oxide, and reduced graphene oxide: membrane and oxidative stress. ACS Nano. 5 (2011) 6971-6980. https://doi.org/10.1021/nn202451x
[120] X. Yang, J. Li, T. Liang, C. Ma, Y. Zhang, H. Chen, N. Hanagata, H. Su, M. Xu, Antibacterial activity of two-dimensional MoS2 sheets. Nanoscale 6 (2014) 10126-10133. https://doi.org/10.1039/c4nr01965b
[121] F. Alimohammadi, M. Sharifian Gh, N.H. Attanayake, A.C. Thenuwara, Y. Gogotsi, B. Anasori, D.R. Strongin, Antimicrobial Properties of 2D MnO2 and MoS2 Nanomaterials Vertically Aligned on Graphene Materials and Ti3C2 MXene, Langmuir 34 (2018) 7192-7200. https://doi.org/10.1021/acs.langmuir.8b00262
[122] B.M. Jun, S. Kim, J. Heo, C.M. Park, N. Her, M. Jang, Y. Huang, J. Han, Y. Yoon, Review of MXenes as new nanomaterials for energy storage/delivery and selected environmental applications. Nano Res. (2018) 1-17. https://doi.org/10.1007/s12274-018-2225-3
[123] K. Rasool, M. Helal, A. Ali, C.E. Ren, Y. Gogotsi, K.A. Mahmoud, Antibacterial activity of Ti3C2Tx MXene. ACS Nano. 10 (2016) 3674-3684. https://doi.org/10.1021/acsnano.6b00181
[124] A. Arabi Shamsabadi, M. Sharifian Gh, B. Anasori, M. Soroush,Antimicrobial mode-of-action of colloidal Ti3C2Tx MXene nanosheets. ACS Sustain. Chem. Eng. 6(2018)16586-16596. https://doi.org/10.1021/acssuschemeng.8b03823
[125] E.A. Mayerberger, R.M. Street, R.M. McDaniel, M.W. Barsoum, C.L. Schauer, Antibacterial properties of electrospun Ti3C2Tz (MXene)/chitosan nanofibers. RSC Adv. 8(2018)35386-35394. https://doi.org/10.1039/c8ra06274a
[126] H. Lin, Y. Chen, J. Shi, Insights into 2D MXenes for versatile biomedical applications: current advances and challenges ahead. Adv. Sci. 5(2018), p.1800518. https://doi.org/10.1002/advs.201800518
[127] B. Wu, Membrane-based technology in greywater reclamation: a review. Sci. Total. Environ. 656 (2019) 184-200. https://doi.org/10.1016/j.scitotenv.2018.11.347
[128] E. Yang, K.J. Chae, M.J. Choi, Z. He, I.S. Kim, Critical review of bioelectrochemical systems integrated with membrane-based technologies for desalination, energy self-sufficiency, and high-efficiency water and wastewater treatment. Desalination 452 (2019) 40-67. https://doi.org/10.1016/j.desal.2018.11.007
[129] K.H. Chu, Y. Huang, M. Yu, J. Heo, J.R.V. Flora, A. Jang, M. Jang, C. Jung, C.M. Park, D.H. Kim, Y. Yoon, Evaluation of graphene oxidecoated ultrafiltration membranes for humid acid removal at different pH and conductivity conditions. Sep. Purif. Technol. 181 (2017) 139-147. https://doi.org/10.1016/j.seppur.2017.03.026
[130] J. Ma, X. Guo, Y. Ying, D. Liu, C. Zhong, Composite ultrafiltration membrane tailored by MOF@GO with highly improved water purification performance. Chem. Eng. J. 313 (2017) 890-898. https://doi.org/10.1016/j.cej.2016.10.127
[131] G. Liu, J. Shen, Q. Liu, G. Liu, J. Xiong, J. Yang, W. Jin, Ultrathin two-dimensional MXene membrane for pervaporation desalination. J. Membrane Sci. 548 (2018) 548-558. https://doi.org/10.1016/j.memsci.2017.11.065
[132] R. Han, Y. Xie, X. Ma, Crosslinked P84 copolyimide/MXene mixed matrix membrane with excellent solvent resistance and permselectivity. Chin. J. Chem. Eng. (2018). https://doi.org/10.1016/j.cjche.2018.10.005
[133] R.P. Pandey, K. Rasool, V.E. Madhavan, B. Aissa, Y. Gogotsi, K.A. Mahmoud, Ultrahigh-flux and fouling-resistant membranes based on layered silver/MXene (Ti3C2Tx) nanosheets. J. Mater. Chem A. 6 (2018) 3522-3533. https://doi.org/10.1039/c7ta10888e