MXenes for Sensors

$20.00

MXenes for Sensors

Matheus Costa Cichero, João Henrique Zimnoch Dos Santos

MXenes are two-dimension materials based on transition metal carbides, nitrides or carbonitrides, which were first obtained from their precursor 3D bulk layered materials Ti3AlC2 MAX phase in 2011, resulting in Ti3C2. MXenes possess the metallic conductivity and hydrophilicity through the hydroxyl and oxygen surface terminations that results from the etching process, which in turn afford their use in different applications such as supercapacitors, batteries, microwave absorption, optical communication, catalysis and more. In this chapter some fundamentals are considered such as most employed synthetic route, as well as some of the post treatment commonly used. Recent examples of electronic and bioanalytical sensors are depicted, as well as instrumental techniques usually employed in their characterization.

Keywords
2D materials, MXenes, Sensors, Biosensors, Titanium Carbide

Published online 5/30/2019, 19 pages

Citation: Matheus Costa Cichero, João Henrique Zimnoch Dos Santos, MXenes for Sensors, Materials Research Foundations, Vol. 51, pp 1-19, 2019

DOI: https://doi.org/10.21741/9781644900253-1

Part of the book on MXenes: Fundamentals and Applications

References
[1] F. Wang, Z. Wang, Q. Wang, F. Wang, L. Yin, K. Xu, Y. Huang, J. He, Synthesis, properties and applications of 2D non-graphene materials, Nanotechnology. 26 (2015) 292001. https://doi.org/10.1088/0957-4484/26/29/292001
[2] D. Akinwande, C.J. Brennan, J.S. Bunch, P. Egberts, J.R. Felts, H. Gao, R. Huang, J.-S. Kim, T. Li, Y. Li, K.M. Liechti, N. Lu, H.S. Park, E.J. Reed, P. Wang, B.I. Yakobson, T. Zhang, Y.-W. Zhang, Y. Zhou, Y. Zhu, A review on mechanics and mechanical properties of 2D materials—Graphene and beyond, Extrem. Mech. Lett. 13 (2017) 42–77. https://doi.org/10.1016/j.eml.2017.01.008
[3] R. Mas-Ballesté, C. Gómez-Navarro, J. Gómez-Herrero, F. Zamora, 2D materials: to graphene and beyond, Nanoscale. 3 (2011) 20–30. https://doi.org/10.1039/C0NR00323A
[4] A.J. Mannix, B. Kiraly, M.C. Hersam, N.P. Guisinger, Synthesis and chemistry of elemental 2D materials, Nat. Rev. Chem. 1 (2017) 14. https://doi.org/10.1038/s41570-016-0014
[5] Y.L. and V.G. and C.J. and J.B. and A.L. and I.S. and A.P. and B.T. and P. Steyer, Advanced synthesis of highly crystallized hexagonal boron nitride by coupling polymer-derived ceramics and spark plasma sintering processes—influence of the crystallization promoter and sintering temperature, Nanotechnology. 30 (2019) 35604. https://stacks.iop.org/0957-4484/30/i=3/a=035604
[6] X.W. and M.H. and Z.W. and L. Xie, Growth of two-dimensional materials on hexagonal boron nitride ( h -BN), Nanotechnology. 30 (2019) 34003. https://stacks.iop.org/0957-4484/30/i=3/a=034003
[7] W. Zheng, Y. Jiang, X. Hu, H. Li, Z. Zeng, X. Wang, A. Pan, Light Emission properties of 2D transition metal dichalcogenides: Fundamentals and applications, Adv. Opt. Mater. 6 (2018) 1800420. https://doi.org/10.1002/adom.201800420
[8] J. Shi, M. Hong, Z. Zhang, Q. Ji, Y. Zhang, Physical properties and potential applications of two-dimensional metallic transition metal dichalcogenides, Coord. Chem. Rev. 376 (2018) 1–19. https://doi.org/10.1016/j.ccr.2018.07.019
[9] A.K. Singh, P. Kumar, D.J. Late, A. Kumar, S. Patel, J. Singh, 2D layered transition metal dichalcogenides (MoS2): Synthesis, applications and theoretical aspects, Appl. Mater. Today. 13 (2018) 242–270. https://doi.org/10.1016/j.apmt.2018.09.003
[10] S. Yang, W. Hu, X. Zhang, P. He, B. Pattengale, C. Liu, M. Cendejas, I. Hermans, X. Zhang, J. Zhang, J. Huang, 2D covalent organic frameworks as intrinsic photocatalysts for visible light-driven CO2 reduction, J. Am. Chem. Soc. 140 (2018) 14614–14618. https://doi.org/10.1021/jacs.8b09705
[11] R. Mercado, R.-S. Fu, A. V Yakutovich, L. Talirz, M. Haranczyk, B. Smit, In silico design of 2D and 3D covalent organic frameworks for methane storage applications, Chem. Mater. 30 (2018) 5069–5086. https://doi.org/10.1021/acs.chemmater.8b01425
[12] F.T. and E.P. and F.C. and F.C. and M.S.-R. and M.P. and S. Heun, Hybrid nanocomposites of 2D black phosphorus nanosheets encapsulated in PMMA polymer material: new platforms for advanced device fabrication, Nanotechnology. 29 (2018) 295601. https://stacks.iop.org/0957-4484/29/i=29/a=295601
[13] H. Huang, Q. Xiao, J. Wang, X.-F. Yu, H. Wang, H. Zhang, P.K. Chu, Black phosphorus: a two-dimensional reductant for in situ nanofabrication, Npj 2D Mater. Appl. 1 (2017) 20. https://doi.org/10.1038/s41699-017-0022-6
[14] Y. Yang, H. Hou, G. Zou, W. Shi, H. Shuai, J. Li, X. Ji, Electrochemical exfoliation of graphene-like two-dimensional nanomaterials, Nanoscale. 11 (2019) 16–33. https://doi.org/10.1039/C8NR08227H
[15] R. Wang, X.-G. Ren, Z. Yan, L.-J. Jiang, W.E.I. Sha, G.-C. Shan, Graphene based functional devices: A short review, Front. Phys. 14 (2018) 13603. https://doi.org/10.1007/s11467-018-0859-y
[16] H. Wang, T. Maiyalagan, X. Wang, Review on recent progress in nitrogen-doped graphene: Synthesis, characterization, and its potential applications, ACS Catal. 2 (2012) 781–794. https://doi.org/10.1021/cs200652y
[17] Y. Zhang, L. Zhang, C. Zhou, review of chemical vapor deposition of graphene and related applications, Acc. Chem. Res. 46 (2013) 2329–2339. https://doi.org/10.1021/ar300203n
[18] N.N. Rosli, M.A. Ibrahim, N. Ahmad Ludin, M.A. Mat Teridi, K. Sopian, A review of graphene based transparent conducting films for use in solar photovoltaic applications, Renew. Sustain. Energy Rev. 99 (2019) 83–99. https://doi.org/10.1016/j.rser.2018.09.011
[19] M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi, M.W. Barsoum, Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2, Adv. Mater. 23 (2011) 4248–4253. https://doi.org/10.1002/adma.201102306
[20] H. Wei, J. Dong, X. Fang, W. Zheng, Y. Sun, Y. Qian, Z. Jiang, Y. Huang, Ti3C2Tx MXene/polyaniline (PANI) sandwich intercalation structure composites constructed for microwave absorption, Compos. Sci. Technol. 169 (2019) 52–59. https://doi.org/10.1016/j.compscitech.2018.10.016
[21] A. Szuplewska, D. Kulpińska, A. Dybko, A.M. Jastrzębska, T. Wojciechowski, A. Rozmysłowska, M. Chudy, I. Grabowska-Jadach, W. Ziemkowska, Z. Brzózka, A. Olszyna, 2D Ti2C (MXene) as a novel highly efficient and selective agent for photothermal therapy, Mater. Sci. Eng. C. 98 (2019) 874–886. https://doi.org/10.1016/j.msec.2019.01.021
[22] S.A. Melchior, N. Palaniyandy, I. Sigalas, S.E. Iyuke, K.I. Ozoemena, Probing the electrochemistry of MXene (Ti2CTx)/electrolytic manganese dioxide (EMD) composites as anode materials for lithium-ion batteries, Electrochim. Acta. 297 (2019) 961–973. https://doi.org/10.1016/j.electacta.2018.12.013
[23] H. Pan, X. Huang, R. Zhang, D. Wang, Y. Chen, X. Duan, G. Wen, Titanium oxide- Ti3C2 hybrids as sulfur hosts in lithium-sulfur battery: Fast oxidation treatment and enhanced polysulfide adsorption ability, Chem. Eng. J. 358 (2019) 1253–1261. https://doi.org/10.1016/j.cej.2018.10.026
[24] Y. Zhang, R. Zhan, Q. Xu, H. Liu, M. Tao, Y. Luo, S. Bao, C. Li, M. Xu, Circuit board-like CoS/MXene composite with superior performance for sodium storage, Chem. Eng. J. 357 (2019) 220–225. https://doi.org/10.1016/j.cej.2018.09.142
[25] Y. Wang, J. Wang, G. Han, C. Du, Q. Deng, Y. Gao, G. Yin, Y. Song, Pt decorated Ti3C2 MXene for enhanced methanol oxidation reaction, Ceram. Int. 45 (2019) 2411–2417. https://doi.org/10.1016/j.ceramint.2018.10.160
[26] Q. Wu, S. Chen, Y. Wang, L. Wu, X. Jiang, F. Zhang, X. Jin, Q. Jiang, Z. Zheng, J. Li, M. Zhang, H. Zhang, MZI-based all-optical modulator using MXene Ti3C2Tx (T = F, O, or OH) deposited microfiber, Adv. Mater. Technol. 0 (2019) 1800532. https://doi.org/10.1002/admt.201800532
[27] A.S. Levitt, M. Alhabeb, C.B. Hatter, A. Sarycheva, G. Dion, Y. Gogotsi, Electrospun MXene/carbon nanofibers as supercapacitor electrodes, J. Mater. Chem. A. 7 (2019) 269–277. https://doi.org/10.1039/C8TA09810G
[28] S.B. Ambade, R.B. Ambade, W. Eom, S.H. Noh, S.H. Kim, T.H. Han, 2D Ti3C2 MXene/WO3 hybrid architectures for high-rate supercapacitors, Adv. Mater. Interfaces. 5 (2018) 1801361. https://doi.org/10.1002/admi.201801361
[29] A. Arabi Shamsabadi, M. Sharifian Gh., B. Anasori, M. Soroush, Antimicrobial mode-of-action of colloidal Ti3C2Tx MXene nanosheets, ACS Sustain. Chem. Eng. 6 (2018) 16586–16596. https://doi.org/10.1021/acssuschemeng.8b03823
[30] X. Li, C. Wang, Y. Cao, G. Wang, Functional MXene materials: Progress of their applications, Chem. – An Asian J. 13 (2018) 2742–2757. https://doi.org/10.1002/asia.201800543
[31] K. Hantanasirisakul, Y. Gogotsi, Electronic and optical properties of 2D transition metal carbides and nitrides (MXenes), Adv. Mater. 0 (2018) 1804779. https://doi.org/10.1002/adma.201804779
[32] B. Anasori, M.R. Lukatskaya, Y. Gogotsi, 2D metal carbides and nitrides (MXenes) for energy storage, Nat. Rev. Mater. 2 (2017) 16098. https://doi.org/10.1038/natrevmats.2016.98
[33] J. Zhu, E. Ha, G. Zhao, Y. Zhou, D. Huang, G. Yue, L. Hu, N. Sun, Y. Wang, L.Y.S. Lee, C. Xu, K.-Y. Wong, D. Astruc, P. Zhao, Recent advance in MXenes: A promising 2D material for catalysis, sensor and chemical adsorption, Coord. Chem. Rev. 352 (2017) 306–327. https://doi.org/10.1016/j.ccr.2017.09.012
[34] A. Sinha, Dhanjai, H. Zhao, Y. Huang, X. Lu, J. Chen, R. Jain, MXene: An emerging material for sensing and biosensing, TrAC Trends Anal. Chem. 105 (2018) 424–435. https://doi.org/10.1016/j.trac.2018.05.021
[35] C. Backes, T.M. Higgins, A. Kelly, C. Boland, A. Harvey, D. Hanlon, J.N. Coleman, Guidelines for exfoliation, characterization and processing of layered materials produced by liquid exfoliation, Chem. Mater. 29 (2017) 243–255. https://doi.org/10.1021/acs.chemmater.6b03335
[36] I.Y. Konyashin, PVD/CVD technology for coating cemented carbides, Surf. Coatings Technol. 71 (1995) 277–283. https://doi.org/10.1016/0257-8972(94)02325-K
[37] C. Xu, L. Wang, Z. Liu, L. Chen, J. Guo, N. Kang, X.-L. Ma, H.-M. Cheng, W. Ren, Large-area high-quality 2D ultrathin Mo2C superconducting crystals, Nat. Mater. 14 (2015) 1135. https://doi.org/10.1038/nmat4374
[38] A. Feng, Y. Yu, Y. Wang, F. Jiang, Y. Yu, L. Mi, L. Song, Two-dimensional MXene Ti3C2 produced by exfoliation of Ti3AlC2, Mater. Des. 114 (2017) 161–166. https://doi.org/10.1016/j.matdes.2016.10.053
[39] P. Srivastava, A. Mishra, H. Mizuseki, K.-R. Lee, A.K. Singh, mechanistic insight into the chemical exfoliation and functionalization of Ti3C2 MXene, ACS Appl. Mater. Interfaces. 8 (2016) 24256–24264. https://doi.org/10.1021/acsami.6b08413
[40] N.K. Chaudhari, H. Jin, B. Kim, D. San Baek, S.H. Joo, K. Lee, MXene: an emerging two-dimensional material for future energy conversion and storage applications, J. Mater. Chem. A. 5 (2017) 24564–24579. https://doi.org/10.1039/C7TA09094C
[41] J.L. Hart, K. Hantanasirisakul, A.C. Lang, B. Anasori, D. Pinto, Y. Pivak, J.T. van Omme, S.J. May, Y. Gogotsi, M.L. Taheri, Control of MXenes’ electronic properties through termination and intercalation, Nat. Commun. 10 (2019) 522. https://doi.org/10.1038/s41467-018-08169-8
[42] O. Mashtalir, M. Naguib, V.N. Mochalin, Y. Dall’Agnese, M. Heon, M.W. Barsoum, Y. Gogotsi, Intercalation and delamination of layered carbides and carbonitrides, Nat. Commun. 4 (2013) 1716. https://doi.org/10.1038/ncomms2664
[43] M. Alhabeb, K. Maleski, B. Anasori, P. Lelyukh, L. Clark, S. Sin, Y. Gogotsi, Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene), Chem. Mater. 29 (2017) 7633–7644. https://doi.org/10.1021/acs.chemmater.7b02847
[44] X. Yu, Y. Li, J. Cheng, Z. Liu, Q. Li, W. Li, X. Yang, B. Xiao, Monolayer Ti2CO2: A promising candidate for NH3 sensor or capturer with high sensitivity and selectivity, ACS Appl. Mater. Interfaces. 7 (2015) 13707–13713. https://doi.org/10.1021/acsami.5b03737
[45] B. Xiao, Y. Li, X. Yu, J. Cheng, MXenes: Reusable materials for NH3 sensor or capturer by controlling the charge injection, Sensors Actuators B Chem. 235 (2016) 103–109. https://doi.org/10.1016/j.snb.2016.05.062
[46] Y. Fang, X. Yang, T. Chen, G. Xu, M. Liu, J. Liu, Y. Xu, Two-dimensional titanium carbide (MXene)-based solid-state electrochemiluminescent sensor for label-free single-nucleotide mismatch discrimination in human urine, Sensors Actuators B Chem. 263 (2018) 400–407. https://doi.org/10.1016/j.snb.2018.02.102
[47] S. Chertopalov, V.N. Mochalin, Environment-sensitive photoresponse of spontaneously partially oxidized Ti3C2 MXene thin films, ACS Nano. 12 (2018) 6109–6116. https://doi.org/10.1021/acsnano.8b02379
[48] J. Zhao, Y. Zhang, Y. Huang, X. Zhao, Y. Shi, J. Qu, C. Yang, J. Xie, J. Wang, L. Li, Q. Yan, S. Hou, C. Lu, X. Xu, Y. Yao, Duplex printing of all-in-one integrated electronic devices for temperature monitoring, J. Mater. Chem. A. 7 (2019) 972–978. https://doi.org/10.1039/C8TA09783F
[49] H. Lin, Y. Chen, J. Shi, Insights into 2D MXenes for versatile biomedical applications: Current advances and challenges ahead, Adv. Sci. 5 (2018) 1800518. https://doi.org/10.1002/advs.201800518
[50] S.S. Shankar, R.M. Shereema, R.B. Rakhi, Electrochemical determination of adrenaline using MXene/graphite composite paste electrodes, ACS Appl. Mater. Interfaces. 10 (2018) 43343–43351. https://doi.org/10.1021/acsami.8b11741
[51] S.J. Kim, H.-J. Koh, C.E. Ren, O. Kwon, K. Maleski, S.-Y. Cho, B. Anasori, C.-K. Kim, Y.-K. Choi, J. Kim, Y. Gogotsi, H.-T. Jung, Metallic Ti3C2Tx MXene gas sensors with ultrahigh signal-to-noise ratio, ACS Nano. 12 (2018) 986–993. https://doi.org/10.1021/acsnano.7b07460
[52] Q. Zhang, F. Wang, H. Zhang, Y. Zhang, M. Liu, Y. Liu, Universal Ti3C2 MXenes based self-standard ratiometric fluorescence resonance energy transfer platform for highly sensitive detection of exosomes, Anal. Chem. 90 (2018) 12737–12744. https://doi.org/10.1021/acs.analchem.8b03083
[53] X. Peng, Y. Zhang, D. Lu, Y. Guo, S. Guo, Ultrathin Ti3C2 nanosheets based “off-on” fluorescent nanoprobe for rapid and sensitive detection of HPV infection, Sensors Actuators B Chem. 286 (2019) 222–229. https://doi.org/10.1016/j.snb.2019.01.158
[54] Y. Guo, M. Zhong, Z. Fang, P. Wan, G. Yu, A wearable transient pressure sensor made with MXene nanosheets for sensitive broad-range human–machine interfacing, Nano Lett. (2019). https://doi.org/10.1021/acs.nanolett.8b04514
[55] Y.-Z. Zhang, K.H. Lee, D.H. Anjum, R. Sougrat, Q. Jiang, H. Kim, H.N. Alshareef, MXenes stretch hydrogel sensor performance to new limits, Sci. Adv. 4 (2018) eaat0098. https://doi.org/10.1126/sciadv.aat0098
[56] X.-P. Li, Y. Li, X. Li, D. Song, P. Min, C. Hu, H.-B. Zhang, N. Koratkar, Z.-Z. Yu, Highly sensitive, reliable and flexible piezoresistive pressure sensors featuring polyurethane sponge coated with MXene sheets, J. Colloid Interface Sci. 542 (2019) 54–62. https://doi.org/10.1016/j.jcis.2019.01.123
[57] T. Li, L. Chen, X. Yang, X. Chen, Z. Zhang, T. Zhao, X. Li, J. Zhang, A flexible pressure sensor based on an MXene–textile network structure, J. Mater. Chem. C. 7 (2019) 1022–1027. https://doi.org/10.1039/C8TC04893B
[58] M. Mojtabavi, A. VahidMohammadi, W. Liang, M. Beidaghi, M. Wanunu, Single-molecule sensing using nanopores in two-dimensional transition metal carbide (MXene) membranes, ACS Nano. (2019). https://doi.org/10.1021/acsnano.8b08017
[59] M.A. Hope, A.C. Forse, K.J. Griffith, M.R. Lukatskaya, M. Ghidiu, Y. Gogotsi, C.P. Grey, NMR reveals the surface functionalisation of Ti3C2 MXene, Phys. Chem. Chem. Phys. 18 (2016) 5099–5102. https://doi.org/10.1039/C6CP00330C