Polymer-based Nanocomposites for Direct Alcohol Fuel Cells
S. Ghosh, R.N. Basu
Direct alcohol fuel cells (DAFCs) have been widely considered as an energy conversion device used in portable electronic devices and stationary power systems. The fabrication of inexpensive, high performance and durable electrocatalysts is the major challenge in DAFCs application. Particularly, platinum and other low-cost metal such as palladium and transition metal-based polymer nanocomposites are known as efficient electrocatalysts for electrooxidation of alcohol. The chapter describes some of the recent developments of polymer composites catalysts as anode material for fuel cell applications. The present chapter includes a deeper understanding of the composition-tunable metal based polymer nanocomposites as electrocatalysts and their effectiveness of catalytic activity and energy conversion in DAFCs.
Keywords
Direct Alcohol Fuel Cell (DAFCs), Noble Metal, Conducting Polymer Nanostructure, Polymer Composites, Methanol, Ethanol, Electrooxidation
Published online 5/5/2019, 22 pages
Citation: S. Ghosh, R.N. Basu, Polymer-based Nanocomposites for Direct Alcohol Fuel Cells, Materials Research Foundations, Vol. 49, pp 271-292, 2019
DOI: https://doi.org/10.21741/9781644900192-9
Part of the book on Nanomaterials for Alcohol Fuel Cells
References
[1] U. Lucia, Overview on fuel cells, Renew. Sustain. Energy Rev. 30 (2014) 164–169. https://doi.org/10.1016/j.rser.2013.09.025
[2] C. Lamy, A. Lima, V. LeRhun, F. Delime, C. Coutanceau, J.M. Léger, Recent advances in the development of direct alcohol fuel cells (DAFC), J. Power Sources. 105 (2002) 283–296. https://doi.org/10.1016/S0378-7753(01)00954-5
[3] S. Ghosh, T. Maiyalagan, R.N. Basu, Recent Advances in Nanostructured Electrocatalysts for Low-temperature Direct Alcohol Fuel Cells, in: Electrocatal. Low Temp. Fuel Cells, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2017, pp. 347–371. https://doi.org/10.1002/9783527803873.ch11
[4] S.P.S. Badwal, S. Giddey, A. Kulkarni, J. Goel, S. Basu, Direct ethanol fuel cells for transport and stationary applications – A comprehensive review, Appl. Energy. 145 (2015) 80–103. https://doi.org/10.1016/j.apenergy.2015.02.002
[5] E. Antolini, Palladium in fuel cell catalysis, Energy Environ. Sci. 2 (2009) 915–931. https://doi.org/10.1039/b820837a
[6] C. Bianchini, P.K. Shen, Palladium-Based Electrocatalysts for Alcohol Oxidation in Half Cells and in Direct Alcohol Fuel Cells, Chem. Rev. 109 (2009) 4183–4206. https://doi.org/10.1021/cr9000995
[7] S. Ghosh, H. Remita, P. Kar, S. Choudhury, S. Sardar, P. Beaunier, P.S. Roy, S.K. Bhattacharya, S.K. Pal, Facile synthesis of Pd nanostructures in hexagonal mesophases as a promising electrocatalyst for ethanol oxidation, J. Mater. Chem. A. 3 (2015) 9517–9527. https://doi.org/10.1039/C5TA00923E
[8] P.T. Yu, W. Gu, J. Zhang, R. Makharia, F.T. Wagner, H.A. Gasteiger, Carbon-Support Requirements for Highly Durable Fuel Cell Operation, in: Polym. Electrolyte Fuel Cell Durab., Springer New York, New York, 2009,pp. 29–53. https://doi.org/10.1007/978-0-387-85536-3_3
[9] Y.C. Park, H. Tokiwa, K. Kakinuma, M. Watanabe, M. Uchida, Effects of carbon supports on Pt distribution, ionomer coverage and cathode performance for polymer electrolyte fuel cells, J. Power Sources. 315 (2016) 179–191. https://doi.org/10.1016/j.jpowsour.2016.02.091
[10] J. Goel, S. Basu, Effect of support materials on the performance of direct ethanol fuel cell anode catalyst, Int. J. Hydrogen Energy. 39 (2014) 15956–15966. https://doi.org/10.1016/j.ijhydene.2014.01.203
[11] P. Serp, J.L. Figueiredo, Carbon Materials for Catalysis, John Wiley & Sons, Inc., Hoboken, NJ, USA, 2008. https://doi.org/10.1002/9780470403709
[12] N. Mackiewicz, G. Surendran, H. Remita, B. Keita, G. Zhang, L. Nadjo, A. Hagège, E. Doris, C. Mioskowski, Supramolecular self-assembly of amphiphiles on carbon nanotubes: A versatile strategy for the construction of CNT/metal nanohybrids, application to electrocatalysis, J. Am. Chem. Soc. 130 (2008) 8110–8111. https://doi.org/10.1021/ja8026373
[13] S. Ghosh, Y. Holade, H. Remita, K. Servat, P. Beaunier, A. Hagège, K.B. Kokoh, T.W. Napporn, One-pot synthesis of reduced graphene oxide supported gold-based nanomaterials as robust nanocatalysts for glucose electrooxidation, Electrochim. Acta. 212 (2016) 864–875. https://doi.org/10.1016/j.electacta.2016.06.169
[14] C.T. Hable, M.S. Wrighton, Electrocatalytic oxidation of methanol and ethanol: a comparison of platinum-tin and platinum-ruthenium catalyst particles in a conducting polyaniline matrix, Langmuir. 9 (1993) 3284–3290. https://doi.org/10.1021/la00035a085
[15] B. Rajesh, K.R. Thampi, J.M. Bonard, A.J. McEvoy, N. Xanthopoulos, H.J. Mathieu, B. Viswanathan, Pt particles supported on conducting polymeric nanocones as electro-catalysts for methanol oxidation, J. Power Sources. 133 (2004) 155–161. https://doi.org/10.1016/j.jpowsour.2004.02.008
[16] K. Dutta, S. Das, D. Rana, P.P. Kundu, Enhancements of catalyst distribution and functioning upon utilization of conducting polymers as supporting matrices in DMFCs: A review, Polym. Rev. 55 (2015) 1–56. https://doi.org/10.1080/15583724.2014.958771
[17] C. Zhan, G. Yu, Y. Lu, L. Wang, E. Wujcik, S. Wei, Conductive polymer nanocomposites: a critical review of modern advanced devices, J. Mater. Chem. C. 5 (2017) 1569–1585. https://doi.org/10.1039/C6TC04269D
[18] Y. Shi, L. Peng, Y. Ding, Y. Zhao, G. Yu, Nanostructured conductive polymers for advanced energy storage, Chem. Soc. Rev. 44 (2015) 6684–6696. https://doi.org/10.1039/C5CS00362H
[19] S. Ghosh, T. Maiyalagan, R.N. Basu, Nanostructured conducting polymers for energy applications: towards a sustainable platform, Nanoscale. 8 (2016) 6921–6947. https://doi.org/10.1039/C5NR08803H
[20] S. Ghosh, N.A. Kouamé, L. Ramos, S. Remita, A. Dazzi, A. Deniset-Besseau, P. Beaunier, F. Goubard, P.-H. Aubert, H. Remita, Conducting polymer nanostructures for photocatalysis under visible light, Nat. Mater. 14 (2015) 505–511. https://doi.org/10.1038/nmat4220
[21] X. Chen, S. Wei, A. Yadav, R. Patil, J. Zhu, R. Ximenes, L. Sun, Z. Guo, Poly(propylene)/carbon nanofiber nanocomposites: ex situ solvent-assisted preparation and analysis of electrical and electronic properties, Macromol. Mater. Eng. 296 (2011) 434–443. https://doi.org/10.1002/mame.201000341
[22] S. Sardar, P. Kar, H. Remita, B. Liu, P. Lemmens, S.K. Pal, S. Ghosh, Enhanced charge separation and fret at heterojunctions between semiconductor nanoparticles and conducting polymer nanofibers for efficient solar light harvesting, Sci. Rep. 5 (2015) 17313. https://doi.org/10.1038/srep17313
[23] G. Wang, A. Morrin, M. Li, N. Liu, X. Luo, Nanomaterial-doped conducting polymers for electrochemical sensors and biosensors, J. Mater. Chem. B. 6 (2018) 4173–4190. https://doi.org/10.1039/C8TB00817E
[24] K. Mallick, M.J. Witcomb, A. Dinsmore, M.S. Scurrell, Fabrication of a metal nanoparticles and polymer nanofibers composite material by an in situ chemical synthetic route, Langmuir. 21 (2005) 7964–7967. https://doi.org/10.1021/la050534j
[25] H. Wei, D. Ding, S. Wei, Z. Guo, Anticorrosive conductive polyurethane multiwalled carbon nanotube nanocomposites, J. Mater. Chem. A. 1 (2013) 10805. https://doi.org/10.1039/c3ta11966a
[26] H. Wu, G. Yu, L. Pan, N. Liu, M.T. McDowell, Z. Bao, Y. Cui, Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles, Nat. Commun. 4 (2013) 1943. https://doi.org/10.1038/ncomms2941
[27] S. Ghosh, A.L. Teillout, D. Floresyona, P. de Oliveira, A. Hagège, H. Remita, Conducting polymer-supported palladium nanoplates for applications in direct alcohol oxidation, Int. J. Hydrogen Energy. 40 (2015) 4951–4959. https://doi.org/10.1016/j.ijhydene.2015.01.101
[28] P.K. Rastogi, V. Ganesan, S. Krishnamoorthi, A promising electrochemical sensing platform based on a silver nanoparticles decorated copolymer for sensitive nitrite determination, J. Mater. Chem. A. 2 (2014) 933–943. https://doi.org/10.1039/C3TA13794E
[29] V. Selvaraj, M. Alagar, Ethylene glycol oxidation on Pt and Pt–Ru nanoparticle decorated polythiophene/multiwalled carbon nanotube composites for fuel cell applications, Nanotechnology. 19 (2008) 45504. https://doi.org/10.1088/0957-4484/19/04/045504
[30] D. Prasanna, V. Selvaraj, Cyclophosphazene based conductive polymer-carbon nanotube composite as novel supporting material for methanol fuel cell applications, J. Colloid Interface Sci. 472 (2016) 116–125. https://doi.org/10.1016/j.jcis.2016.03.032
[31] L. Shi, R.P. Liang, J.D. Qiu, Controllable deposition of platinum nanoparticles on polyaniline-functionalized carbon nanotubes, J. Mater. Chem. 22 (2012) 17196–17203. https://doi.org/10.1039/c2jm31859h
[32] L. Wei, Y.J. Fan, J.H. Ma, L.H. Tao, R.X. Wang, J.P. Zhong, H. Wang, Highly dispersed Pt nanoparticles supported on manganese oxide–poly(3,4-ethylenedioxythiophene)–carbon nanotubes composite for enhanced methanol electrooxidation, J. Power Sources. 238 (2013) 157–164. https://doi.org/10.1016/j.jpowsour.2013.03.051
[33] R.X. Wang, Y.J. Fan, L. Wang, L.N. Wu, S.N. Sun, S.G. Sun, Pt nanocatalysts on a polyindole-functionalized carbon nanotube composite with high performance for methanol electrooxidation, J. Power Sources. 287 (2015) 341–348. https://doi.org/10.1016/j.jpowsour.2015.03.181
[34] P. Xu, X. Han, B. Zhang, Y. Du, H.-L. Wang, Multifunctional polymer–metal nanocomposites via direct chemical reduction by conjugated polymers, Chem. Soc. Rev. 43 (2014) 1349–1360. https://doi.org/10.1039/C3CS60380F
[35] V. Armel, O. Winther-Jensen, R. Kerr, D.R. MacFarlane, B. Winther-Jensen, Designed electrodeposition of nanoparticles inside conducting polymers, J. Mater. Chem. 22 (2012) 19767–19773. https://doi.org/10.1039/c2jm34214f
[36] T. Thirugnanasambandan, Polymers-metal nanocomposites, in: Environ. Nanotechnol., Springer, Cham, 2019: pp. 213–254. https://doi.org/10.1007/978-3-319-98708-8_8
[37] S. Patra, N. Munichandraiah, Electrooxidation of methanol on pt-modified conductive polymer PEDOT, Langmuir. 25 (2009) 1732–1738. https://doi.org/10.1021/la803099w
[38] S. Dash, N. Munichandraiah, Electrocatalytic oxidation of C 3 -aliphatic alcohols on electrodeposited pd-pedot nanodendrites in alkaline medium, J. Electrochem. Soc. 160 (2013) H197–H202. https://doi.org/10.1149/2.007304jes
[39] R.K. Pandey, V. Lakshminarayanan, Electro-Oxidation of Formic Acid, Methanol, and ethanol on electrodeposited pd-polyaniline nanofiber films in acidic and alkaline medium, J. Phys. Chem. C. 113 (2009) 21596–21603. https://doi.org/10.1021/jp908239m
[40] R.K. Pandey, V. Lakshminarayanan, Enhanced electrocatalytic activity of Pd-dispersed 3,4-polyethylenedioxythiophene film in hydrogen evolution and ethanol electro-oxidation reactions, J. Phys. Chem. C. 114 (2010) 8507–8514. https://doi.org/10.1021/jp1014687
[41] K.M. Kost, D.E. Bartak, B. Kazee, T. Kuwana, Electrodeposition of platinum microparticles into polyaniline films with electrocatalytic applications, Anal. Chem. 60 (1988) 2379–2384. https://doi.org/10.1021/ac00172a012
[42] B. Rajesh, K.R. Thampi, J.M. Bonard, H.J. Mathieu, N. Xanthopoulos, B. Viswanathan, Conducting polymeric nanotubules as high performance methanol oxidation catalyst support, Chem. Commun. 0 (2003) 2022. https://doi.org/10.1039/b305591d
[43] G. Wu, L. Li, J.H. Li, B.Q. Xu, Methanol electrooxidation on Pt particles dispersed into PANI/SWNT composite films, J. Power Sources. 155 (2006) 118–127. https://doi.org/10.1016/j.jpowsour.2005.04.035
[44] V. Selvaraj, M. Alagar, Pt and Pt–Ru nanoparticles decorated polypyrrole/multiwalled carbon nanotubes and their catalytic activity towards methanol oxidation, Electrochem. Commun. 9 (2007) 1145–1153. https://doi.org/10.1016/j.elecom.2007.01.011
[45] C.W. Kuo, L.M. Huang, T.C. Wen, A. Gopalan, Enhanced electrocatalytic performance for methanol oxidation of a novel Pt-dispersed poly(3,4-ethylenedioxythiophene)–poly(styrene sulfonic acid) electrode, J. Power Sources. 160 (2006) 65–72. https://doi.org/10.1016/j.jpowsour.2006.01.100
[46] C.W. Kuo, Z.Y. Kuo, T.Y. Wu, J.Y. Chen, W.B. Li, Enhanced Electrocatalytic Performance for Methanol Oxidation via Insertion of Ruthenium Oxide Particles into Pt and Polyaniline-Poly(Acrylic Acid-co-Maleic Acid) Composite Electrode, ECS Trans. 50 (2013) 1997–2000. https://doi.org/10.1149/05002.1997ecst
[47] H. Gharibi, K. Kakaei, M. Zhiani, Platinum nanoparticles supported by a vulcan XC-72 and PANI doped with trifluoromethane sulfonic acid substrate as a new electrocatalyst for direct methanol fuel cells, J. Phys. Chem. C. 114 (2010) 5233–5240. https://doi.org/10.1021/jp9119414
[48] L. Yang, Y. Tang, D. Yan, T. Liu, C. Liu, S. Luo, Polyaniline-reduced graphene oxide hybrid nanosheets with nearly vertical orientation anchoring palladium nanoparticles for highly active and stable electrocatalysis, ACS Appl. Mater. Interfaces. 8 (2016) 169–176. https://doi.org/10.1021/acsami.5b08022
[49] S. Ghosh, N. Bhandary, S. Basu, R.N. Basu, Synergistic effects of polypyrrole nanofibers and pd nanoparticles for improved electrocatalytic performance of Pd/PPy nanocomposites for ethanol oxidation, Electrocatalysis. 8 (2017) 329–339. https://doi.org/10.1007/s12678-017-0374-x
[50] L. Su, W. Jia, A. Schempf, Y. Ding, Y. Lei, Free-standing palladium/polyamide 6 nanofibers for electrooxidation of alcohols in alkaline medium, J. Phys. Chem. C. 113 (2009) 16174–16180. https://doi.org/10.1021/jp905606s
[51] Z.X. Liang, T.S. Zhao, J.B. Xu, L.D. Zhu, Mechanism study of the ethanol oxidation reaction on palladium in alkaline media, Electrochim. Acta. 54 (2009) 2203–2208. https://doi.org/10.1016/j.electacta.2008.10.034
[52] K. Kim, H. Ahn, M.J. Park, Highly Catalytic Pt Nanoparticles Grown in Two-Dimensional Conducting Polymers at the Air–Water Interface, ACS Appl. Mater. Interfaces. 9 (2017) 30278–30282. https://doi.org/10.1021/acsami.7b10821
[53] H. Xu, L.-X. Ding, C.-L. Liang, Y.-X. Tong, G.-R. Li, High-performance polypyrrole functionalized PtPd electrocatalysts based on PtPd/PPy/PtPd three-layered nanotube arrays for the electrooxidation of small organic molecules, NPG Asia Mater. 5 (2013) e69–e69. https://doi.org/10.1038/am.2013.54
[54] G. Fu, X. Yan, Z. Cui, D. Sun, L. Xu, Y. Tang, J.B. Goodenough, J.-M. Lee, Catalytic activities for methanol oxidation on ultrathin CuPt3 wavy nanowires with/without smart polymer, Chem. Sci. 7 (2016) 5414–5420. https://doi.org/10.1039/C6SC01501H
[55] S. Ghosh, S. Bera, S. Bysakh, R.N. Basu, Conducting polymer nanofiber-supported Pt alloys: unprecedented materials for methanol oxidation with enhanced electrocatalytic performance and stability, Sustain. Energy Fuels. 1 (2017) 1148–1161. https://doi.org/10.1039/C7SE00126F
[56] A.L. Wang, H. Xu, J.X. Feng, L.X. Ding, Y.X. Tong, G.R. Li, Design of Pd/PANI/Pd sandwich-structured nanotube array catalysts with special shape effects and synergistic effects for ethanol electrooxidation, J. Am. Chem. Soc. 135 (2013) 10703–10709. https://doi.org/10.1021/ja403101r
[57] H. Xu, A.L. Wang, Y.X. Tong, G.R. Li, Enhanced catalytic activity and stability of Pt/CeO 2 /PANI hybrid hollow nanorod arrays for methanol electro-oxidation, ACS Catal. 6 (2016) 5198–5206. https://doi.org/10.1021/acscatal.6b01010
[58] Y. Liu, S. Liu, Z. Che, S. Zhao, X. Sheng, M. Han, J. Bao, Concave octahedral Pd@PdPt electrocatalysts integrating core–shell, alloy and concave structures for high-efficiency oxygen reduction and hydrogen evolution reactions, J. Mater. Chem. A. 4 (2016) 16690–16697. https://doi.org/10.1039/C6TA07124D
[59] J. Datta, A. Dutta, S. Mukherjee, The beneficial role of the cometals Pd and Au in the carbon-supported PtPdAu catalyst toward promoting ethanol oxidation kinetics in alkaline fuel cells: Temperature effect and reaction mechanism, J. Phys. Chem. C. 115 (2011) 15324–15334. https://doi.org/10.1021/jp200318m
[60] S. Ghosh, S. Bera, S. Bysakh, R.N. Basu, Highly active multimetallic palladium nanoalloys embedded in conducting polymer as anode catalyst for electrooxidation of ethanol, ACS Appl. Mater. Interfaces. 9 (2017) 33775–33790. https://doi.org/10.1021/acsami.7b08327