Nanomaterials for Oxygen Reduction Reaction

$20.00

Nanomaterials for Oxygen Reduction Reaction

S. Mahalakshmi, S. Bhuvanesh, R. Aravindan, K.S. Abisek, M. Harikrishnakumar, R. Rajasekar

Fuel cells are the best alternatives to meet the growing energy demand with no pollution. Nanomaterials play a significant role in applications as electrocatalysts for fuel cells. Among them, nanomaterials of platinum (Pt) have been mainly used as electrocatalytic material in fuel cells for a long time due to its excellent electrochemical properties towards oxygen reduction reaction (ORR). Bearing the limitations like scarcity and higher cost, Pt nanomaterials have to be replaced by novel materials for ORR. Carbon-based nanomaterials are in research owing to their electrocatalytic activity at par with that of Pt nanomaterials, which are applied as bifunctional electrocatalyst, transition metal oxides and also as supports for various dopants. This article focuses on recent research in nanomaterials for ORR in fuel cells.

Keywords
Fuel Cells, Oxygen Reduction Reaction, Electrocatalysts, Nanomaterials, Platinum, Carbon

Published online 5/5/2019, 40 pages

Citation: S. Mahalakshmi, S. Bhuvanesh, R. Aravindan, K.S. Abisek, M. Harikrishnakumar, R. Rajasekar, Nanomaterials for Oxygen Reduction Reaction, Materials Research Foundations, Vol. 49, pp 231-270, 2019

DOI: https://doi.org/10.21741/9781644900192-8

Part of the book on Nanomaterials for Alcohol Fuel Cells

References
[1] S. Du, B. Millington, B. G. Pollet, The effect of Nafion ionomer loading coated on gas diffusion electrodes with in-situ grown Pt nanowires and their durability in proton exchange membrane fuel cells,Int. J. Hydrogen Energ.36 (2011) 4386–4393. https://doi.org/10.1016/J.IJHYDENE.2011.01.014.
[2] M. Rethinasabapathy, S.M. Kang, Y. Haldorai, N. Jonna, M. Jankiraman, G.W. Lee, S.C. Jang, B. Natesan, C. Roh, Y. S. Huh, Quaternary PtRuFeCo nanoparticles supported N-doped graphene as an efficient bifunctional electrocatalyst for low-temperature fuel cells,J. Ind. Eng. Chem.69 (2019) 285–294. https://doi.org/10.1016/j.jiec.2018.09.043.
[3] D. Puthusseri, S. Ramaprabhu, Oxygen reduction reaction activity of platinum nanoparticles decorated nitrogen doped carbon in proton exchange membrane fuel cell under real operating conditions, Int. J. Hydrogen Energ.41 (2016) 13163–13170. https://doi.org/10.1016/j.ijhydene.2016.05.146.
[4] Y. Cai, P. Gao, F. Wang, H. Zhu, Surface tuning of carbon supported chemically ordered nanoparticles for promoting their catalysis toward the oxygen reduction reaction,Electrochim. Acta.246 (2017) 671–679. https://doi.org/10.1016/j.electacta.2017.05.068.
[5] X. Huang, Z. Zhao, L. Cao, Y. Chen, E. Zhu, Z. Lin, M. Li, A. Yan, A. Zettl, Y. M. Wang, X. Duan, T. Mueller, Y. Huang, High-performance transition metal-doped Pt3Ni octahedra for oxygen reduction reaction,Science.348 (2015) 1230–1234. https://doi.org/10.1126/science.aaa8765.
[6] D. C. Higgins, D. Meza, Z. Chen, Nitrogen-doped carbon nanotubes as platinum catalyst supports for oxygen reduction reaction in proton exchange membrane fuel cells,J. Phys. Chem. C, 114 (2010) 21982–21988. https://doi.org/10.1021/jp106814j.
[7] W. Wu, Z. Tang, K. Wang, Z. Liu, L. Li, S. Chen, Peptide templated AuPt alloyed nanoparticles as highly efficient bi-functional electrocatalysts for both oxygen reduction reaction and hydrogen evolution reaction,Electrochim. Acta.260 (2018) 168–176. https://doi.org/10.1016/J.ELECTACTA.2017.11.057.
[8] C. Wang, D. van der Vliet, K.C. Chang, H. You, D. Strmcnik, J. A. Schlueter, N. M. Markovic, V. R. Stamenkovic, Monodisperse Pt 3 Co nanoparticles as a catalyst for the oxygen reduction reaction: size-dependent activity,J. Phys. Chem. C. 113 (2009) 19365–19368. https://doi.org/10.1021/jp908203p.
[9] J. Zhang, F. H. B. Lima, M. H. Shao, K. Sasaki, J. X. Wang, J. Hanson, R. R. Adzic, Platinum monolayer on nonnoble metal−noblemetal core−shell nanoparticle electrocatalysts for O2 reduction,J. Phys. Chem. B. 109 (2005) 22701–22704. https://doi.org/10.1021/jp055634c.
[10] A. Sarkar, A. Manthiram, Synthesis of Pt@Cu core−shell nanoparticles by galvanic displacement of Cu by Pt4+ions and their application as electrocatalysts for oxygen reduction reaction in fuel cells,J. Phys. Chem. C.114 (2010) 4725–4732. https://doi.org/10.1021/jp908933r.
[11] S. Guo, S. Zhang, D. Su, S. Sun, Seed-mediated synthesis of core/shell FePtM/FePt (M = Pd, Au) nanowires and their electrocatalysis for oxygen reduction reaction,J. Am. Chem. Soc.135 (2013) 13879–13884. https://doi.org/10.1021/ja406091p.
[12] C. Wang, H. Daimon, T. Onodera, T. Koda, S. Sun, A general approach to the size- and shape-controlled synthesis of platinum nanoparticles and their catalytic reduction of oxygen,Angew. Chem. Int. Ed.47 (2008) 3588–3591. https://doi.org/10.1002/anie.200800073.
[13] M. Shao, A. Peles, K. Shoemaker, Electrocatalysis on platinum nanoparticles: particle size effect on oxygen reduction reaction activity,Nano Lett.11 (2011) 3714–3719. https://doi.org/10.1021/nl2017459.
[14] S.I. Choi, S. Xie, M. Shao, J. H. Odell, N. Lu, H.C. Peng, L. Protsailo, S. Guerrero, J. Park, X. Xia, J. Wang, M. J. Kim, Y. Xia, Synthesis,andcharacterization of 9 nm Pt–Ni octahedra with a record high activity of 3.3 A/mg Pt for the oxygen reduction reaction,Nano Lett.13 (2013) 3420–3425. https://doi.org/10.1021/nl401881z.
[15] B. Wu, D. Hu, Y. Kuang, B. Liu, X. Zhang, J. Chen, Functionalization of carbon nanotubes by an ionic-liquid polymer: dispersion of Pt and PtRu nanoparticles on carbon nanotubes and their electrocatalytic oxidation of methanol,Angew. Chem. Int. Ed.48 (2009) 4751–4754. https://doi.org/10.1002/anie.200900899.
[16] P. Hernández-Fernández, S. Rojas, P. Ocón, J. L. Gómez de la Fuente, J. San Fabián, J. Sanza, M. A. Peña, F. J. García-García, P. Terreros, J. L. G. Fierro, Influence of the preparation route of bimetallic Pt−Au nanoparticle electrocatalysts for the oxygen reduction reaction,J. Phys. Chem. C.111 (2007) 2913–2923. https://doi.org/10.1021/jp066812k.
[17] C. He, T. Zhang, F. Sun, C. Li, Y. Lin, Fe/N co-doped mesoporous carbon nanomaterial as an efficient electrocatalyst for oxygen reduction reaction,Electrochim. Acta.231 (2017) 549–556. https://doi.org/10.1016/j.electacta.2017.01.104.
[18] T. Huang, S. Mao, M. Qiu, O. Mao, C. Yuan, J. Chen, Nitrogen-boron dipolar-doped nanocarbon as a high-efficiency electrocatalyst for oxygen reduction reaction,Electrochim. Acta.222 (2016) 481–487. https://doi.org/10.1016/j.electacta.2016.10.201.
[19] J. Liang, Y. Jiao, M. Jaroniec, S. Z. Qiao, Sulfur,and nitrogen dual-doped mesoporous graphene electrocatalyst for oxygen reduction with synergistically enhanced performance,Angew. Chem. Int. Ed.51 (2012) 11496–11500. https://doi.org/10.1002/anie.201206720.
[20] Z.H. Sheng, H.L. Gao, W.J. Bao, F.B. Wang, X.H. Xia, Synthesis of boron doped graphene for oxygen reduction reaction in fuel cells,J. Mater. Chem.22 (2012) 390–395. https://doi.org/10.1039/C1JM14694G.
[21] Y. Sun, Z. Shen, S. Xin, L. Ma, C. Xiao, S. Ding, F. Li, G. Gao, Ultrafine Co-doped ZnO nanoparticles on reduced graphene oxide as an efficient electrocatalyst for oxygen reduction reaction,Electrochim. Acta.224 (2017) 561–570. https://doi.org/10.1016/j.electacta.2016.12.021.
[22] D. M. Nguyen, M. H. Nguyen, Q. B. Bui, Uniform WMoSx nanoparticles attached graphene nanosheets as a highly effective electrocatalyst for oxygen reduction reaction in alkaline medium,Mater. Chem. Phys.224 (2019) 186–195. https://doi.org/10.1016/j.matchemphys.2018.11.079.
[23] Z.S. Wu, S. Yang, Y. Sun, K. Parvez, X. Feng, K. Müllen, 3D Nitrogen-doped graphene aerogel-supported Fe 3 O 4 nanoparticles as efficient electrocatalysts for the oxygen reduction reaction,J. Am. Chem. Soc.134 (2012) 9082–9085. https://doi.org/10.1021/ja3030565.
[24] V. I. Zaikovskii, K. S. Nagabhushana, V. V. Kriventsov, K. N. Loponov, S. V. Cherepanova, R. I. Kvon, H. Bönnemann, D. I. Kochubey, E. R. Savinova, synthesis and structural characterization of Se-modified carbon-supported Ru nanoparticles for the oxygen reduction reaction,J. Phys. Chem. B.110 (2006) 6881–6890. https://doi.org/10.1021/jp056715b.
[25] J. Zhang, Z. Zhao, Z. Xia, L. Dai, A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions,Nat. Nanotechnol.10 (2015) 444–452. https://doi.org/10.1038/nnano.2015.48.
[26] Z. Zhuang & W. Chen, Ultra-low loading of Pd5+ nanoclusters on carbon nanotubes as bifunctional electrocatalysts for the oxygen reduction reaction and the ethanol oxidation reaction,J. Colloid. Interface. Sci.In Press, (2018). https://doi.org/10.1016/j.jcis.2018.12.015.
[27] R. M. Félix-Navarro, M. Beltrán-Gastélum, E. A. Reynoso-Soto, F. Paraguay-Delgado, G. Alonso-Nuñez, J. R. Flores-Hernández, Bimetallic Pt–Au nanoparticles supported on multi-wall carbon nanotubes as electrocatalysts for oxygen reduction. Renew. Energ.87 (2016) 31–41. https://doi.org/10.1016/j.renene.2015.09.060.
[28] B. Lim, M. Jiang, P. H. C. Camargo, E. C. Cho, J. Tao, X. Lu, Y. Zhu, Y. Xia, Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction,Science.324 (2009) 1302–1305. https://doi.org/10.1126/science.1170377.
[29] H. Yang, W. Vogel, C. Lamy, Structure and electrocatalytic activity of carbon-supported Pt – Ni Alloy nanoparticles toward the oxygen reduction reaction,J. Phys. Chem. B.108 (2004) 11024–11034. https://doi.org/10.1021/JP049034+.
[30] D. Raciti, J. Kubal, C. Ma, M. Barclay, M. Gonzalez, M. Chi, J. Greeley, K. L. More, C. Wang, Pt3Re alloy nanoparticles as electrocatalysts for the oxygen reduction reaction,Nano Energy.20 (2016) 202–211. https://doi.org/10.1016/j.nanoen.2015.12.014.
[31] J. Kim, Y. Lee, S. Sun, Structurally ordered FePt nanoparticles and their enhanced catalysis for oxygen reduction reaction,J. Am. Chem. Soc.132 (2010) 4996–4997. https://doi.org/10.1021/ja1009629.
[32] C. Wang, H. Daimon, Y. Lee, J. Kim, S. Sun, Synthesis of monodisperse Pt nanocubes and their enhanced catalysis for oxygen reduction,J. Am. Chem. Soc.129 (2007) 6974–6975. https://doi.org/10.1021/ja070440r.
[33] J. Zhang, H. Yang, J. Fang, & S. Zou, Synthesis and oxygen reduction activity of shape-controlled Pt 3 Ni nanopolyhedra,Nano Lett.10 (2010) 638–644. https://doi.org/10.1021/nl903717z.
[34] D. Wang, H. L. Xin, R. Hovden, H. Wang, Y. Yu, D. A. Muller, F. J. DiSalvo, H. D. Abruña, Structurally ordered intermetallic platinum–cobalt core–shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts,Nat. Mater.12 (2013) 81–87. https://doi.org/10.1038/nmat3458.
[35] N. V. Long, T. Duy Hien, T. Asaka, M. Ohtaki, M. Nogami, Synthesis and characterization of Pt–Pd alloy and core-shell bimetallic nanoparticles for direct methanol fuel cells (DMFCs): Enhanced electrocatalytic properties of well-shaped core-shell morphologies and nanostructures,Int. J. Hydrogen Energ.36 (2011) 8478–8491. https://doi.org/10.1016/j.ijhydene.2011.03.140.
[36] V. Mazumder, M. Chi, K. L. More, S. Sun, Core/shell Pd/FePt nanoparticles as an active and durable catalyst for the oxygen reduction reaction,J. Am. Chem. Soc.132 (2010) 7848–7849. https://doi.org/10.1021/ja1024436.
[37] M. Shao, K. Sasaki, N. S. Marinkovic, L. Zhang, R. R. Adzic, Synthesis and characterization of platinum monolayer oxygen-reduction electrocatalysts with Co-Pd core-shell nanoparticle supports,Electrochem. Comm.9 (2007) 2848–2853. https://doi.org/10.1016/j.elecom.2007.10.009.
[38] C. Wang, H. Daimon, S. Sun, Dumbbell-like Pt−Fe3O4 Nanoparticles and their enhanced catalysis for oxygen reduction reaction,Nano Lett.9 (2009) 1493–1496. https://doi.org/10.1021/nl8034724.
[39] C. Cui, L. Gan, H.-H. Li, S.H. Yu, M. Heggen, P. Strasser, Octahedral PtNi nanoparticle catalysts: exceptional oxygen reduction activity by tuning the alloy particle surface composition,Nano Lett.12 (2012) 5885–5889. https://doi.org/10.1021/nl3032795.
[40] M. K. Carpenter, T. E. Moylan, R. S. Kukreja, M. H. Atwan, M. M. Tessema, solvothermal synthesis of platinum alloy nanoparticles for oxygen reduction electrocatalysis,J. Am. Chem. Soc.134 (2012) 8535–8542. https://doi.org/10.1021/ja300756y.
[41] S. Guo, S. Sun, FePt nanoparticles assembled on graphene as an enhanced catalyst for oxygen reduction reaction,J. Am. Chem. Soc.134 (2012) 2492–2495. https://doi.org/10.1021/ja2104334.
[42] Y. Mu, H. Liang, J. Hu, L. Jiang, L. Wan, Controllable Pt nanoparticle deposition on carbon nanotubes as an anode catalyst for direct methanol fuel cells,J. Phys. Chem. B.109 (2005) 22212–22216. https://doi.org/10.1021/jp0555448.
[43] L. Tao, S. Dou, Z. Ma, S. Wang, Platinum nanoparticles supported on nitrobenzene-functionalized multiwalled carbon nanotube as efficient electrocatalysts for the methanol oxidation reaction,Electrochim. Acta.157 (2015) 46–53. https://doi.org/10.1016/j.electacta.2015.01.054.
[44] Z. Peng, H. Yang, Synthesis and oxygen reduction electrocatalytic property of Pt-on-Pd bimetallic heteronanostructures,J. Am. Chem. Soc.131 (2009) 7542–7543. https://doi.org/10.1021/ja902256a.
[45] N. Rajalakshmi, H. Ryu, M. M. Shaijumon, S. Ramaprabhu, Performance of polymer electrolyte membrane fuel cells with carbon nanotubes as oxygen reduction catalyst support material,J. Power Sources.140 (2005) 250–257. https://doi.org/10.1016/j.jpowsour.2004.08.042.
[46] H.W. Ha, I.Y. Kim, S.J. Hwang, R. S. Ruoff, One-Pot Synthesis of platinum nanoparticles embedded on reduced graphene oxide for oxygen reduction in methanol fuel cells, Electrochem. Solid. State. Lett.14 (2011) B70–B73. https://doi.org/10.1149/1.3584092.
[47] W. Li, C. Liang, W. Zhou, J. Qiu, Zhou, G. Sun, .Q. Xin, Preparation and characterization of multiwalled carbon nanotube-supported platinum for cathode catalysts of direct methanol fuel cells,J. Phys. Chem. B.107 (2003) 6292–6299. https://doi.org/10.1021/jp022505c.
[48] Y. Qian, Wen, P. A. Adcock, Z. Jiang, N. Hakim, M. S. Saha, S. Mukerjee, PtM/C catalyst prepared using reverse micelle method for oxygen reduction reaction in PEM Fuel Cells,J. Phys. Chem. C.112 (2008) 1146–1157. https://doi.org/10.1021/jp074929i.
[49] K. Yamamoto, T. Imaoka, W.J. Chun, O. Enoki, H. Katoh, M. Takenaga, A. Sonoi, Size-specific catalytic activity of platinum clusters enhances oxygen reduction reactions,Nature Chem.1 (2009) 397–402. https://doi.org/10.1038/nchem.288.
[50] T. J. Schmidt, U. A. Paulus, H. A. Gasteiger, R. J. Behm, The oxygen reduction reaction on a Pt/carbon fuel cell catalyst in the presence of chloride anions,J. Electroanal. Chem. 508 (2001) 41–47. https://doi.org/10.1016/S0022-0728(01)00499-5.
[51] C. V. Rao, A. L. M. Reddy, Y. Ishikawa, P. M. Ajayan, Synthesis and electrocatalytic oxygen reduction activity of graphene-supported Pt3Co and Pt3Cr alloy nanoparticles,Carbon.49 (2011) 931–936. https://doi.org/10.1016/j.carbon.2010.10.056.
[52] R. Srivastava, P. Mani, N. Hahn, P. Strasser, Efficient oxygen reduction fuel cell electrocatalysis on voltammetrically dealloyed Pt–Cu–Co nanoparticles, Angew. Chem. Int. Ed.46 (2007) 8988–8991. https://doi.org/10.1002/anie.200703331.
[53] M. Oezaslan, P. Strasser, Activity of dealloyed PtCo3 and PtCu3 nanoparticle electrocatalyst for oxygen reduction reaction in polymer electrolyte membrane fuel cell,J. Power Sources.196 (2011) 5240–5249. https://doi.org/10.1016/j.jpowsour.2010.11.016.
[54] R. Sandström, E. Gracia-Espino, G. Hu, A. Shchukarev, J. Ma, T. Wågberg, Yttria stabilized,and surface activated platinum (Pt x YO y ) nanoparticles through rapid microwave assisted synthesis for oxygen reduction reaction,Nano Energ.46(2018) 141–149. https://doi.org/10.1016/j.nanoen.2018.01.038.
[55] Z. Chen, M. Waje, W. Li, Y. Yan, Supportless Pt and PtPd nanotubes as electrocatalysts for oxygen-reduction reactions,Angew. Chem.119 (2007) 4138–4141. https://doi.org/10.1002/ange.200700894.
[56] Z. Zhou, S. Wang, W. Zhou, G. Wang, L. Jiang, W. Li, S. Song, J. Liu, G. Sun, Q. Xin, Novel synthesis of highly active Pt/C cathode electrocatalyst for the direct methanol fuel cell,Chem. Comm.0 (2003) 394–395. https://doi.org/10.1039/b211075j.
[57] Z. Wen, J. Liu, J. Li, Core/shell Pt/C nanoparticles embedded in mesoporous carbon as a methanol-tolerant cathode catalyst in direct methanol fuel cells, Adv. Mater.20 (2008) 743–747. https://doi.org/10.1002/adma.200701578.
[58] D. Zhao, J. Dai, N. Zhou, N. Wang, Xinwen Peng, Y. Qu, L. Li, Prussian blue analogues-derived carbon composite with cobalt nanoparticles as an efficient bifunctional electrocatalyst for oxygen reduction and hydrogen evolution,Carbon.142 (2019) 196–205. https://doi.org/10.1016/j.carbon.2018.10.057.
[59] K. K. Hazarika, C. Goswami, H. Saikia, B. J. Borah, P. Bharali, Cubic Mn2O3nanoparticles on carbon as a bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions,Molec. Catal.451 (2018) 153–160. https://doi.org/10.1016/j.mcat.2017.12.012.
[60] J. Zhang, Y. Sun, J. Zhu, Z. Kou, P. Hu, L. Liu, S. Li, S. Mu, Y. Huang, Defect and pyridinic nitrogen engineering of carbon-based metal-free nanomaterial toward oxygen reduction,Nano Energy.52 (2018) 307–314. https://doi.org/10.1016/j.nanoen.2018.08.003.
[61] Y. Liang, Y. Li, H. Wang, J. Zhou, J. Wang, T. Regier, H. Dai, Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction,Nature Mater.10 (2011) 780–786. https://doi.org/10.1038/nmat3087.
[62] L. Qu, Y. Liu, J.-B. Baek, L. Dai, Nitrogen-doped graphene as an efficient metal-free electrocatalyst for oxygen reduction in fuel cells,ACS Nano.4 (2010) 1321–1326. https://doi.org/10.1021/nn901850u.
[63] L. Zhang, Z. Xia, Mechanisms of oxygen reduction reaction on nitrogen-doped graphene for fuel cells,J. Phys. Chem. C. 115 (2011) 11170–11176. https://doi.org/10.1021/jp201991j.
[64] J. Shui, M. Wang, F. Du, L. Dai, N-doped carbon nanomaterials are durable catalysts for oxygen reduction reaction in acidic fuel cells,Sci. Adv.1 (2015) e1400129-37. https://doi.org/10.1126/sciadv.1400129.
[65] H. T. Chung, J. H. Won, P. Zelenay, Active and stable carbon nanotube/nanoparticle composite electrocatalyst for oxygen reduction,Nature Comm.4 (2013) 1922. https://doi.org/10.1038/ncomms2944.
[66] Z. Lin, G. Waller, Y. Liu, M. Liu, C.P. Wong, Facile synthesis of nitrogen-doped graphene via pyrolysis of graphene oxide and urea, and its electrocatalytic activity toward the oxygen-reduction reaction,Adv. Energy Mater.2 (2012) 884–888. https://doi.org/10.1002/aenm.201200038.
[67] Z. Chen, D. Higgins, H. Tao, R. S. Hsu, Z. Chen, Highly active nitrogen-doped carbon nanotubes for oxygen reduction reaction in fuel cell applications,J. Phys. Chem. C.113 (2009) 21008–21013. https://doi.org/10.1021/jp908067v.
[68] Y. Zhao, L. Yang, S. Chen, X. Wang, Y. Ma, Q. Wu, Y. Jiang, W. Qian, Z. Hu, Can boron and nitrogen Co-doping improve oxygen reduction reaction activity of carbon nanotubes,J. Am. Chem. Soc.135 (2013) 1201–1204. https://doi.org/10.1021/ja310566z.
[69] D.S. Yang, D. Bhattacharjya, S. Inamdar, J. Park, J.-S. Yu, Phosphorus-doped ordered mesoporous carbons with different lengths as efficient metal-free electrocatalysts for oxygen reduction reaction in alkaline media,J. Am. Chem. Soc.134 (2012) 16127–16130. https://doi.org/10.1021/ja306376s.
[70] L. Zhang, J. Niu, M. Li, Z. Xia, Catalytic mechanisms of sulfur-doped graphene as efficient oxygen reduction reaction catalysts for fuel cells, J. Phys. Chem. C. 118 (2014) 3545–3553. https://doi.org/10.1021/jp410501u.
[71] Y. Liang, H. Wang, J. Zhou, Y. Li, J. Wang, T. Regier, H. Dai, Covalent hybrid of spinel manganese–cobalt oxide and graphene as advanced oxygen reduction electrocatalysts,J. Am. Chem. Soc.134 (2012) 3517–3523. https://doi.org/10.1021/ja210924t.
[72] U.A. do Rêgo, T. Lopes, J.L. Bott-Neto, A.A. Tanaka, E.A. Ticianelli, Oxygen reduction electrocatalysis on transition metal-nitrogen modified tungsten carbide nanomaterials,J. Electroanal. Chem. 810 (2018) 222–231. https://doi.org/10.1016/j.jelechem.2018.01.013.
[73] D. Wang, H. L. Xin, Y. Yu, H. Wang, E. Rus, D. A. Muller, H. D. Abruña, Pt-Decorated PdCo@Pd/C Core−shell nanoparticles with enhanced stability and electrocatalytic activity for the oxygen reduction reaction,J. Am. Chem. Soc.132 (2010) 17664–17666. https://doi.org/10.1021/ja107874u.
[74] H. Yin, H. Tang, D. Wang, Y. Gao, Z. Tang, Facile synthesis of surfactant-free Au cluster/graphene hybrids for high-performance oxygen reduction reaction,ACS Nano.6 (2012) 8288–8297. https://doi.org/10.1021/nn302984x.
[75] C. Zhang, R. Hao, H. Liao, Y. Hou, Synthesis of amino-functionalized graphene as metal-free catalyst and exploration of the roles of various nitrogen states in the oxygen reduction reaction,Nano Energy.2 (2013) 88–97. https://doi.org/10.1016/j.nanoen.2012.07.021.
[76] W. Niu, L. Li, X. Liu, N. Wang, J. Liu, W. Zhou, Z. Tang, S. Chen, Mesoporous N-doped carbons prepared with thermally removable nanoparticle templates: an efficient electrocatalyst for oxygen reduction reaction,J. Am. Chem. Soc.137 (2015) 5555–5562. https://doi.org/10.1021/jacs.5b02027.
[77] D. Deng, L. Yu, X. Chen, G. Wang, L. Jin, X. Pan, J. Deng, G. Sun, X. Bao, Iron Encapsulated within Pod-like carbon nanotubes for oxygen reduction reaction,Angewandte Chemie International Edition,Angew. Chem. Int. Ed.52 (2013) 371–375. https://doi.org/10.1002/anie.201204958.
[78] X. Chen, G. Wu, J. Chen, X. Chen, Z. Xie, X. Wang, Synthesis of “Clean” and well-dispersive Pd nanoparticles with excellent electrocatalytic property on graphene oxide. J. Am. Chem. Soc.133 (2011) 3693–3695. https://doi.org/10.1021/ja110313d.
[79] A. Sarkar, A. V. Murugan, A. Manthiram, Synthesis and characterization of nanostructured Pd−Mo electrocatalysts for oxygen reduction reaction in fuel cells,J. Phys. Chem. C.112 (2008) 12037–12043. https://doi.org/10.1021/jp801824g.
[80] I.Y. Jeon, H.J. Choi, M. Choi, J.M. Seo, S.M. Jung, M.J. Kim, S. Zhang, L. Zhang, Z. Xia, L. Dai, N. Park, J.B. Baek, Facile, scalable synthesis of edge-halogenated graphene nanoplatelets as efficient metal-free eletrocatalysts for oxygen reduction reaction,Sci. Rep.3 (2013) 1810. https://doi.org/10.1038/srep01810.
[81] W. Yang, X. Liu, X. Yue, J. Jia, S. Guo, Bamboo-like carbon nanotube/Fe 3 C nanoparticle hybrids and their highly efficient catalysis for oxygen reduction,J. Am. Chem. Soc.137 (2015) 1436–1439. https://doi.org/10.1021/ja5129132.
[82] N. Alonso-Vante, Y. Feng, T. He, Carbon-supported CoSe2 nanoparticles for oxygen reduction and hydrogen evolution in acidic environments, 2010.
[83] H. Zhu, S. Zhang, Y.X. Huang, L. Wu, S. Sun, Monodisperse M x Fe 3– x O 4 (M = Fe, Cu, Co, Mn) Nanoparticles and their electrocatalysis for oxygen reduction reaction, Nano Lett.13 (2013) 2947–2951. https://doi.org/10.1021/nl401325u.
[84] S. Han, Y. Yun, K.W. Park, Y.E. Sung, T. Hyeon, Simple solid-phase synthesis of hollow graphitic nanoparticles and their application to direct methanol fuel cell Electrodes,Adv. Mater.15 (2003) 1922–1925. https://doi.org/10.1002/adma.200305697.
[85] D. Hu, X. Wang, H. Yang, D. Liu, Y. Wang, J. Guo, T. Wu, Host-guest electrocatalyst with cage-confined cuprous sulfide nanoparticles in etched chalcogenide semiconductor zeolite for highly efficient oxygen reduction reaction,Electrochim. Acta.282 (2018) 877–885. https://doi.org/10.1016/j.electacta.2018.06.106.
[86] T. Li, Z. Tang, K. Wang, W. Wu, S. Chen, C. Wang, Palladium nanoparticles grown on β-Mo 2 C nanotubes as dual functional electrocatalysts for both oxygen reduction reaction and hydrogen evolution reaction,Int. J. Hydrogen Energ.43 (2018) 4932–4941. https://doi.org/10.1016/j.ijhydene.2018.01.107.
[87] Y. Gorlin, T. F. Jaramillo, A bifunctional nonprecious metal catalyst for oxygen reduction and water oxidation,J. Am. Chem. Soc.132 (2010) 13612–13614. https://doi.org/10.1021/ja104587v.
[88] V. Andrey,S. P.Nomoev, Structure and mechanism of the formation of core–shell nanoparticles obtained through a one-step gas-phase synthesis by electron beam evaporation, Beilstein J. Nanotechnol. 6(2015) 874-880.