Carbon Polymer Supports Hybrid for Alcohol Oxidation

$20.00

Carbon Polymer Supports Hybrid for Alcohol Oxidation

M. Harikrishna Kumar, S. Mahalakshmi, K.V. Mahesh Kumar, P.Sathishkumar, C. Moganapriya, R.Rajasekar

Many works have been reported by using polymer-supported reagents organic synthesis of alcohol oxidation. New functional materials have been developed by coordination of polymers which is used in a wide variety of applications. To carry out oxidization of alcohol many oxidizing agents are used. Coordination of polymers through catalyst is more advantageous due to high stability and a large number of active metals. In recent days many nanomaterials are used as a catalyst which increases the oxidation rate in the base matrix. Synthesis of the base matrix is also possible for enhancing alcohol oxidation.

Keywords
Polymers, Synthesis Technique, Catalyst, Alcohol Oxidation

Published online 5/5/2019, 16 pages

Citation: M. Harikrishna Kumar, S. Mahalakshmi, K.V. Mahesh Kumar, P.Sathishkumar, C. Moganapriya, R.Rajasekar, Carbon Polymer Supports Hybrid for Alcohol Oxidation, Materials Research Foundations, Vol. 49, pp 177-192, 2019

DOI: https://doi.org/10.21741/9781644900192-6

Part of the book on Nanomaterials for Alcohol Fuel Cells

References
[1] H. Han, S. Zhang, H. Hou, Y. Fan, Y. Zhu, Fe (Cu)-containing coordination polymers: syntheses, crystal structures, and applications as benzyl alcohol oxidation catalysts, Eur. J. Inorg. Chem. 2006 (2006) 1594-1600. https://doi.org/10.1002/ejic.200500808
[2] H. Hou, Y. Song, H. Xu, Y. Wei, Y. Fan, Y. Zhu, L. Li, C. Du, Polymeric complexes with “piperazine− pyridine” building blocks: synthesis, network structures, and third-order nonlinear optical properties, Macromolecules. 36 (2003) 999-1008. https://doi.org/10.1021/ma025787n
[3] X. Meng, G. Li, H. Hou, H. Han, Y. Fan, Y. Zhu, C. Du, A series of novel metal-ferrocenedicarboxylate coordination polymers: crystal structures, magnetic and luminescence properties, J. Organomet. Chem. 679 (2003) 153-161. https://doi.org/10.1016/s0022-328x(03)00516-3
[4] S.A. Bourne, J. Lu, A. Mondal, B. Moulton, M.J. Zaworotko, Self-assembly of nanometer-scale secondary building units into an undulating two-dimensional network with two types of hydrophobic cavity, Angew. Chem. Int. Ed.40 (2001) 2111-2113. https://doi.org/10.1002/1521-3773(20010601)40:11<2111::aid-anie2111>3.3.co;2-6
[5] J.O. Weston, H. Miyamura, T. Yasukawa, D. Sutarma, C.A. Baker, P.K. Singh, M. Bravo-Sanchez, N. Sano, P.J. Cumpson, Y. Ryabenkova, Water as a catalytic switch in the oxidation of aryl alcohols by polymer incarcerated rhodium nanoparticles, Catal. Sci. Technol. 7 (2017) 3985-3998. https://doi.org/10.1039/c7cy01006k
[6] S.J. Hong, J.Y. Ryu, J.Y. Lee, C. Kim, S.-J. Kim, Y. Kim, Synthesis, structure and heterogeneous catalytic activities of Cu-containing polymeric compounds: anion effect and comparison of homogeneous vs. heterogeneous catalytic activity, Dalton Trans. (2004) 2697-2701. https://doi.org/10.1039/b406877g
[7] S. Ghosh, A.L. Teillout, D. Floresyona, P. de Oliveira, A. Hagege, H. Remita, Conducting polymer-supported palladium nanoplates for applications in direct alcohol oxidation, Int. J. Hydrogen Energ. 40 (2015) 4951-4959. https://doi.org/10.1016/j.ijhydene.2015.01.101
[8] F. Favier, E.C. Walter, M.P. Zach, T. Benter, R.M. Penner, Hydrogen sensors and switches from electrodeposited palladium mesowire arrays, Science. 293 (2001) 2227-2231. https://doi.org/10.1126/science.1063189
[9] H.P. Liang, N.S. Lawrence, L.J. Wan, L. Jiang, W.G. Song, T.G. Jones, Controllable synthesis of hollow hierarchical palladium nanostructures with enhanced activity for proton/hydrogen sensing, J. Phys. Chem. C. 112 (2008) 338-344. https://doi.org/10.1021/jp0752320
[10] C. Langhammer, I. Zorić, B. Kasemo, B.M. Clemens, Hydrogen storage in Pd nanodisks characterized with a novel nanoplasmonic sensing scheme, Nano Letters. 7 (2007) 3122-3127. https://doi.org/10.1021/nl071664a
[11] C. Koenigsmann, A.C. Santulli, E. Sutter, S.S. Wong, Ambient surfactantless synthesis, growth mechanism, and size-dependent electrocatalytic behavior of high-quality, single crystalline palladium nanowires, ACS nano. 5 (2011) 7471-7487. https://doi.org/10.1021/nn202434r
[12] X. Huang, C. Tan, Z. Yin, H. Zhang, 25th Anniversary article: Hybrid nanostructures based on two-dimensional nanomaterials, Adv. Mater. 26 (2014) 2185-2204. https://doi.org/10.1002/adma.201304964
[13] Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,
Nat. Nanotechnol. 7 (2012) 699. https://doi.org/10.1038/nnano.2012.193
[14] F. Ksar, G. Sharma, F. Audonnet, P. Beaunier, H. Remita, Palladium urchin-like nanostructures and their H2 sorption properties, Nanotechnology. 22 (2011) 305609. https://doi.org/10.1088/0957-4484/22/30/305609
[15] M. Chhowalla, H.S. Shin, G. Eda, L.-J. Li, K.P. Loh, H. Zhang, The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets, Nat. Chem. 5 (2013) 263. https://doi.org/10.1038/nchem.1589
[16] J. Zhang, Y. Mo, M. Vukmirovic, R. Klie, K. Sasaki, R. Adzic, Platinum monolayer electrocatalysts for O2 reduction: Pt monolayer on Pd (111) and on carbon-supported Pd nanoparticles, J. Phys. Chem. B. 108 (2004) 10955-10964. https://doi.org/10.1021/jp0379953
[17] N. Mackiewicz, G. Surendran, H. Remita, B. Keita, G. Zhang, L. Nadjo, A. Hagege, E. Doris, C. Mioskowski, Supramolecular self-assembly of amphiphiles on carbon nanotubes: a versatile strategy for the construction of CNT/metal nanohybrids, application to electrocatalysis, J. Am. Chem. Soc. 130 (2008) 8110-8111. https://doi.org/10.1021/ja8026373
[18] D.V. McGrath, R.H. Grubbs, J.W. Ziller, Aqueous ruthenium (II) complexes of functionalized olefins: the x-ray structure of Ru (H2O)2 (. eta. 1 (O):. eta. 2 (C, C’)-OCOCH2CH=CHCH3)2, J. Am. Chem. Soc. 113 (1991) 3611-3613. https://doi.org/10.1021/ja00009a069
[19] D. Andrew Knight, T.L. Schull, Rhodium catalyzed allylic isomerization in water, Synthetic Comm.33 (2003) 827-831. https://doi.org/10.1081/scc-120016328
[20] J. Farkas, S. Békássy, J. Madarász, F. Figueras, Selective oxidation of benzylic alcohols to aldehydes with metal nitrate reagents catalyzed by BEA zeolites or clays, New. J. Chem. 26 (2002) 750-754. https://doi.org/10.1039/b106252m
[21] M. Arai, S. Nishiyama, S. Tsuruya, M. Masai, Effect of alkali-metal promoter on silica-supported copper catalysts in benzyl alcohol oxidation, J. Chem. Soc. Faraday Trans.92 (1996) 2631-2636. https://doi.org/10.1039/ft9969202631
[22] M. Haruta, N. Yamada, T. Kobayashi, S. Iijima, Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide, J. Catal. 115 (1989) 301-309. https://doi.org/10.1002/chin.198920020
[23] M. Valden, X. Lai, D.W. Goodman, Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties, science. 281 (1998) 1647-1650. https://doi.org/10.1126/science.281.5383.1647
[24] C. Milone, R. Ingoglia, G. Neri, A. Pistone, S. Galvagno, Gold catalysts for the liquid phase oxidation of o-hydroxybenzyl alcohol, Appl. Catal. Gen.211 (2001) 251-257. https://doi.org/10.1016/s0926-860x(00)00875-9
[25] S. Kanaoka, N. Yagi, Y. Fukuyama, S. Aoshima, H. Tsunoyama, T. Tsukuda, H. Sakurai, Thermosensitive gold nanoclusters stabilized by well-defined vinyl ether star polymers: reusable and durable catalysts for aerobic alcohol oxidation, J. Am. Chem. Soc. 129 (2007) 12060-12061. https://doi.org/10.1021/ja0735599
[26] H. Tsunoyama, H. Sakurai, Y. Negishi, T. Tsukuda, Size-specific catalytic activity of polymer-stabilized gold nanoclusters for aerobic alcohol oxidation in water, J. Am. Chem. Soc. 127 (2005) 9374-9375. https://doi.org/10.1021/ja052161e
[27] S.V. Ley, I.R. Baxendale, R.N. Bream, P.S. Jackson, A.G. Leach, D.A. Longbottom, M. Nesi, J.S. Scott, R.I. Storer, S.J. Taylor, Multi-step organic synthesis using solid-supported reagents and scavengers: Anew paradigm in chemical library generation, J. Chem. Soc., Perkin Trans. 1.(2000) 3815-4195. https://doi.org/10.1039/b006588i
[28] T.Y.S. But, Y. Tashino, H. Togo, P.H. Toy, A multipolymer system for organocatalytic alcohol oxidation, Org. Biomol. Chem. 3 (2005) 970-971. https://doi.org/10.1039/b500965k
[29] P. Gamez, I.W. Arends, R.A. Sheldon, J. Reedijk, Room temperature aerobic copper–catalysed selective oxidation of primary alcohols to aldehydes, Adv. Synth. Catal.346 (2004) 805-811. https://doi.org/10.1002/adsc.200404063
[30] C.W.Y. Chung, P.H. Toy, Multipolymer reaction system for selective aerobic alcohol oxidation: Simultaneous use of multiple different polymer-supported ligands, J. Combin. Chem. 9 (2007) 115-120. https://doi.org/10.1021/cc060111f
[31] G. Pozzi, M. Cavazzini, S. Quici, M. Benaglia, G. Dell’Anna, Poly (ethylene glycol)-supported TEMPO: an efficient, recoverable metal-free catalyst for the selective oxidation of alcohols, Org. Lett. 6 (2004) 441-443. https://doi.org/10.1002/chin.200424056
[32] E.C. Constable, J. Lewis, The preparation and coordination chemistry of 2, 2′: 6′, 2 ″-terpyridine macrocycles—1, Polyhedron 1. (1982) 303-306. https://doi.org/10.1016/s0277-5387(00)87169-7
[33] S. Caron, R.W. Dugger, S.G. Ruggeri, J.A. Ragan, D.H.B. Ripin, Large-scale oxidations in the pharmaceutical industry, Chem. rev.106 (2006) 2943-2989. https://doi.org/10.1021/cr040679f
[34] C.J. Dillard, J.B. German, Phytochemicals: nutraceuticals and human health, J. Sci. Food Agr. 80 (2000) 1744-1756.
[35] T. Punniyamurthy, S. Velusamy, J. Iqbal, Recent advances in transition metal catalyzed oxidation of organic substrates with molecular oxygen, Chem. Rev.105 (2005) 2329-2364. https://doi.org/10.1021/cr050523v
[36] T. Satoh, M. Miura, Oxidative coupling of aromatic substrates with alkynes and alkenes under rhodium catalysis, Chem. Eur. J. 16 (2010) 11212-11222. https://doi.org/10.1002/chem.201001363
[37] P. Ferreira, E. Phillips, D. Rippon, S.C. Tsang, W. Hayes, Poly (ethylene glycol)-supported nitroxyls: branched catalysts for the selective oxidation of alcohols, J. Org. Chem.69 (2004) 6851-6859. https://doi.org/10.1021/jo0490494
[38] F. Sieber, P. Wentworth, J.D. Toker, A.D. Wentworth, W.A. Metz, N.N. Reed, K.D. Janda, Development and application of a poly (ethylene glycol)-supported triarylphosphine reagent: Expanding the sphere of liquid-phase organic synthesis, J. Org. Chem.64 (1999) 5188-5192. https://doi.org/10.1021/jo9903712