Fabrication and Properties of the Polymer Electrolyte Membrane (PEM) for Direct Methanol Fuel Cell Applications
C. Moganapriya, R. Rajasekar, V. K. Gobinath, A. Mohankumar
This chapter provides an overview of recent research on the fabrication of polymer electrolyte membrane and their properties for direct methanol fuel cell applications. Precise importance has been focused towards the basic principles involved in fabricating polymer electrolyte membrane and the characterization of different properties. Importance of the chapter is the detailed disclosure regarding fabrication techniques such as sol-gel technique, spray coating technique, dip coating and several novel methods with their procedure. Nafion PEMs are widely used for direct methanol fuel cell applications. It has high methanol permeability and expensive material. Similar to Nafion, various thermoplastic polymers namely poly (ether ether ketone) (PEEK), polysulfone (PSF) and polybenzimidazole (PBI) have been used as substitute PEMs owing to their nominal cost, excellent thermal and mechanical stability at elevated temperature. In recent times, there has been ample research on fabricating PEM that can satisfy all the required characteristics for the desired performance of direct methanol fuel cells. Recent research achievements and their application in DMFC also been reported in this chapter.
Keywords
PEM, DMFC, Nafion, Sol-Gel, Dip Coating, Spray Coating
Published online 5/5/2019, 18 pages
Citation: C. Moganapriya, R. Rajasekar, V. K. Gobinath, A. Mohankumar, Fabrication and Properties of the Polymer Electrolyte Membrane (PEM) for Direct Methanol Fuel Cell Applications, Materials Research Foundations, Vol. 49, pp 159-176, 2019
DOI: https://doi.org/10.21741/9781644900192-5
Part of the book on Nanomaterials for Alcohol Fuel Cells
References
[1] P. Prapainainar, S. Maliwan, K. Sarakham, Z. Du, C. Prapainainar, S.M. Holmes, P. Kongkachuichay, Homogeneous polymer/filler composite membrane by spraying method for enhanced direct methanol fuel cell performance, Int. J. Hydrogen Energ. 43 (2018) 14675-14690. https://doi.org/10.1016/j.ijhydene.2018.05.173
[2] H. Ahmad, S.K. Kamarudin, U.A. Hasran, W.R.W. Daud, Overview of hybrid membranes for direct-methanol fuel-cell applications, Int. J. Hydrogen Energ. 35 (2010) 2160-2175. https://doi.org/10.1016/j.ijhydene.2009.12.054
[3] M.U. Guruz, V.P. Dravid, Y.W. Chung, Synthesis and characterization of single and multilayer boron nitride and boron carbide thin films grown by magnetron sputtering of boron carbide, Thin Solid Films. 414 (2002) 129-135. https://doi.org/10.1016/s0040-6090(02)00422-4
[4] A. Ainla, D. Brandell, Nafion®–polybenzimidazole (PBI) composite membranes for DMFC applications, Solid State Ion. 178 (2007) 581-585. https://doi.org/10.1016/j.ssi.2007.01.014
[5] C. Li, Z. Yang, X. Liu, Y. Zhang, J. Dong, Q. Zhang, H. Cheng, Enhanced performance of sulfonated poly (ether ether ketone) membranes by blending fully aromatic polyamide for practical application in direct methanol fuel cells (DMFCs), Int. J. Hydrogen Energ. 42 (2017) 28567-28577. https://doi.org/10.1016/j.ijhydene.2017.09.166
[6] R.K. Abdul Rasheed, Q. Liao, Z. Caizhi, S.H. Chan, A review on modelling of high temperature proton exchange membrane fuel cells (HT-PEMFCs), Int. J. Hydrogen Energ. 42 (2017) 3142-3165. https://doi.org/10.1016/j.ijhydene.2016.10.078
[7] N.N. Krishnan, H.-J. Lee, H.-J. Kim, J.-Y. Kim, I. Hwang, J.H. Jang, E.A. Cho, S.-K. Kim, D. Henkensmeier, S.A. Hong, T.H. Lim, Sulfonated poly(ether sulfone)/sulfonated polybenzimidazole blend membrane for fuel cell applications, Eur. Polym. J.46 (2010) 1633-1641. https://doi.org/10.1016/j.eurpolymj.2010.03.005
[8] C. Li, G. Sun, S. Ren, J. Liu, Q. Wang, Z. Wu, H. Sun, W. Jin, Casting Nafion–sulfonated organosilica nano-composite membranes used in direct methanol fuel cells, J.Membr. Sci.272 (2006) 50-57. https://doi.org/10.1016/j.memsci.2005.07.032
[9] J. Wang, X. Zheng, H. Wu, B. Zheng, Z. Jiang, X. Hao, B. Wang, Effect of zeolites on chitosan/zeolite hybrid membranes for direct methanol fuel cell, J. Power Sourc.178 (2008) 9-19. https://doi.org/10.1016/j.jpowsour.2007.12.063
[10] Q. Luo, H. Zhang, J. Chen, D. You, C. Sun, Y. Zhang, Preparation and characterization of Nafion/SPEEK layered composite membrane and its application in vanadium redox flow battery, J.Membr. Sci.325 (2008) 553-558. https://doi.org/10.1016/j.memsci.2008.08.025
[11] C. Li, L. Xiao, Z. Jiang, X. Tian, L. Luo, W. Liu, Z.L. Xu, H. Yang, Z.J. Jiang, Sulfonic acid functionalized graphene oxide paper sandwiched in sulfonated poly(ether ether ketone): A proton exchange membrane with high performance for semi-passive direct methanol fuel cells, Int. J. Hydrogen Energ. 42 (2017) 16731-16740. https://doi.org/10.1016/j.ijhydene.2017.05.126
[12] F.A. Zakil, S.K. Kamarudin, S. Basri, Modified Nafion membranes for direct alcohol fuel cells: An overview, Renew. Sustain. Energ. Rev. 65 (2016) 841-852. https://doi.org/10.1016/j.rser.2016.07.040
[13] C.Y. Yen, C.H. Lee, Y.F. Lin, H.L. Lin, Y.H. Hsiao, S.H. Liao, C.Y. Chuang, C.C.M. Ma, Sol–gel derived sulfonated-silica/Nafion® composite membrane for direct methanol fuel cell, J. Power Sour.173 (2007) 36-44. https://doi.org/10.1016/j.jpowsour.2007.08.017
[14] C. Lamy, A. Lima, V. LeRhun, F. Delime, C. Coutanceau, J.-M. Léger, Recent advances in the development of direct alcohol fuel cells (DAFC), J. Power Sour.105 (2002) 283-296. https://doi.org/10.1016/s0378-7753(01)00954-5
[15] D.J. Kim, H.J. Lee, S.Y. Nam, Sulfonated poly(arylene ether sulfone) membranes blended with hydrophobic polymers for direct methanol fuel cell applications, Int. J. Hydrogen Energ. 39 (2014) 17524-17532. https://doi.org/10.1016/j.ijhydene.2013.09.030
[16] S. Zhong, X. Cui, Y. Gao, W. Liu, S. Dou, Fabrication and properties of poly(vinyl alcohol)-based polymer electrolyte membranes for direct methanol fuel cell applications, Int. J. Hydrogen Energ. 39 (2014) 17857-17864. https://doi.org/10.1016/j.ijhydene.2014.08.040
[17] M. Nacef, A.M. Affoune, Comparison between direct small molecular weight alcohols fuel cells’ and hydrogen fuel cell’s parameters at low and high temperature. Thermodynamic study, Int. J. Hydrogen Energ. 36 (2011) 4208-4219. https://doi.org/10.1016/j.ijhydene.2010.06.075
[18] E. Kjeang, J. Goldak, M. R. Golriz, J. Gu, D. James, K. Kordesch, Modeling methanol crossover by diffusion and electro‐osmosis in a flowing electrolyte direct methanol fuel cell, Fuel Cell. 5 (2005) 486-498. https://doi.org/10.1002/fuce.200400087
[19] K. Kang, S. Park, S.O. Cho, K. Choi, H. Ju, Development of lightweight 200-W direct methanol fuel cell system for unmanned aerial vehicle applications and flight demonstration, Fuel Cell. 14(2014) 694-700. https://doi.org/10.1002/fuce.201300244
[20] M. Müller, N. Kimiaie, A. Glüsen, Direct methanol fuel cell systems for backup power – Influence of the standby procedure on the lifetime,Int. J. Hydrogen Energ. 39(2014) 21739-21745. https://doi.org/10.1016/j.ijhydene.2014.08.132
[21] N. W. DeLuca, Y. A. Elabd, Polymer electrolyte membranes for the direct methanol fuel cell: A review, J. Polymer Sci. B Polymer Phys. 44(2006) 2201-2225. https://doi.org/10.1002/polb.20861
[22] N. Miyake, J. Wainright, R. Savinell, Evaluation of a sol-gel derived nafion/silica hybrid membrane for proton electrolyte membrane fuel cell applications: I. Proton conductivity and water content, J. Electrochem. Soc. 148 (2001) A898-A904. https://doi.org/10.1149/1.1383071
[23] N. Miyake, J. Wainright, R. Savinell, Evaluation of a sol-gel derived Nafion/silica hybrid membrane for polymer electrolyte membrane fuel cell applications: II. Methanol uptake and methanol permeability, J. Electrochem. Soc. 148 (2001) A905-A909. https://doi.org/10.1149/1.1383072
[24] D. Jung, S. Cho, D. Peck, D. Shin, J. Kim, Performance evaluation of a Nafion/silicon oxide hybrid membrane for direct methanol fuel cell, J. Power Sour.106 (2002) 173-177. https://doi.org/10.1016/s0378-7753(01)01053-9
[25] Q. Deng, R. Moore, K.A. Mauritz, Nafion®/(SiO2, ORMOSIL, and dimethylsiloxane) hybrids via in situ sol–gel reactions: characterization of fundamental properties, J. Appl. Polymer Sci. 68 (1998) 747-763. https://doi.org/10.1002/(sici)1097-4628(19980502)68:5<747::aid-app7>3.0.co;2-o
[26] N.H. Jalani, K. Dunn, R. Datta, Synthesis and characterization of Nafion®-MO2 (M= Zr, Si, Ti) nanocomposite membranes for higher temperature PEM fuel cells, Electrochim.Acta. 51 (2005) 553-560. https://doi.org/10.1016/j.electacta.2005.05.016
[27] C.C. Yang, Y.J. Li, T.H. Liou, Preparation of novel poly (vinyl alcohol)/SiO2 nanocomposite membranes by a sol–gel process and their application on alkaline DMFCs, Desalination. 276 (2011) 366-372. https://doi.org/10.1016/j.desal.2011.03.079
[28] Y.M. Sun, W.F. Huang, C.C. Chang, Spray-coated and solution-cast ethylcellulose pseudolatex membranes, J.Membr. Sci.157 (1999) 159-170. https://doi.org/10.1016/s0376-7388(98)00369-x
[29] P. Prapainainar, Z. Du, P. Kongkachuichay, S.M. Holmes, C. Prapainainar, Mordenite/Nafion and analcime/Nafion composite membranes prepared by spray method for improved direct methanol fuel cell performance, Appl. Surf. Sci. 421 (2017) 24-41. https://doi.org/10.1016/j.apsusc.2017.02.004
[30] V. Tricoli, F. Nannetti, Zeolite–Nafion composites as ion conducting membrane materials, Electrochim.Acta. 48 (2003) 2625-2633. https://doi.org/10.1016/s0013-4686(03)00306-2
[31] A. Wolz, S. Zils, M. Michel, C. Roth, Structured multilayered electrodes of proton/electron conducting polymer for polymer electrolyte membrane fuel cells assembled by spray coating, J.Power Sour.195 (2010) 8162-8167. https://doi.org/10.1016/j.jpowsour.2010.06.087
[32] J. Lee, K.Y. Kong, C.R. Jung, E. Cho, S.P. Yoon, J. Han, T.-G. Lee, S.W. Nam, A structured Co–B catalyst for hydrogen extraction from NaBH4 solution, Catal.Today. 120 (2007) 305-310. https://doi.org/10.1016/j.cattod.2006.09.019
[33] S. Mondal, S. Soam, P.P. Kundu, Reduction of methanol crossover and improved electrical efficiency in direct methanol fuel cell by the formation of a thin layer on Nafion 117 membrane: Effect of dip-coating of a blend of sulphonated PVdF-co-HFP and PBI, J.Membr. Sci.474 (2015) 140-147. https://doi.org/10.1016/j.memsci.2014.09.023
[34] S. Kwak, D. Peck, Y. Chun, C. Kim, K. Yoon, New fabrication method of the composite membrane for polymer electrolyte membrane fuel cell, J. New. Mater. Electrochem. Syst. 4 (2001) 25-30.
[35] H. Ito, T. Maeda, A. Nakano, H. Takenaka, Properties of Nafion membranes under PEM water electrolysis conditions, Int. J. Hydrogen Energ. 36 (2011) 10527-10540. https://doi.org/10.1016/j.ijhydene.2011.05.127
[36] P.C. Rieke, N.E. Vanderborgh, Temperature dependence of water content and proton conductivity in polyperfluorosulfonic acid membranes, J.Membr. Sci.32 (1987) 313-328. https://doi.org/10.1016/s0376-7388(00)85014-0
[37] J.T. Hinatsu, M. Mizuhata, H. Takenaka, Water uptake of perfluorosulfonic acid membranes from liquid water and water vapor, J. Electrochem. Soc.141 (1994) 1493-1498. https://doi.org/10.1149/1.2054951
[38] K. Broka, P. Ekdunge, Oxygen and hydrogen permeation properties and water uptake of Nafion® 117 membrane and recast film for PEM fuel cell, J.Appl. Electrochem.27 (1997) 117-123.
[39] T.A. Zawodzinski, C. Derouin, S. Radzinski, R.J. Sherman, V.T. Smith, T.E. Springer, S. Gottesfeld, Water uptake by and transport through Nafion® 117 membranes, J. Electrochem. Soc. 140 (1993) 1041-1047. https://doi.org/10.1149/1.2056194
[40] A. Parthasarathy, S. Srinivasan, A.J. Appleby, C.R. Martin, Temperature dependence of the electrode kinetics of oxygen reduction at the platinum/Nafion® interface—a microelectrode investigation, J. Electrochem. Soc. 139 (1992) 2530-2537. https://doi.org/10.1149/1.2221258
[41] M. Yoshitake, M. Tamura, N. Yoshida, T. Ishisaki, Studies of perfluorinated ion exchange membranes for polymer electrolyte fuel cells, Denki Kagaku oyobi Kogyo Butsuri Kagaku. 64 (1996) 727-736.
[42] P. von Schroeder, Uber Erstarrungs-und quellugserscheinungen von gelatine, Zeitschrift für physikalische Chemie. 45 (1903) 75-117. https://doi.org/10.1515/zpch-1903-4503
[43] A.Z. Weber, J. Newman, Transport in polymer-electrolyte membranes I. Physical model, J. Electrochem. Soc 150 (2003) A1008-A1015. https://doi.org/10.1149/1.1580822
[44] T.E. Springer, T. Zawodzinski, S. Gottesfeld, Polymer electrolyte fuel cell model, J. Electrochem. Soc 138 (1991) 2334-2342.
[45] R.W. Kopitzke, C.A. Linkous, H.R. Anderson, G.L. Nelson, Conductivity and water uptake of aromatic‐based proton exchange membrane electrolytes, J. Electrochem. Soc 147 (2000) 1677-1681. https://doi.org/10.1149/1.1393417
[46] M. Doyle, M.E. Lewittes, M.G. Roelofs, S.A. Perusich, R.E. Lowrey, Relationship between ionic conductivity of perfluorinated ionomeric membranes and nonaqueous solvent properties, J.Membr. Sci.184 (2001) 257-273. https://doi.org/10.1016/s0376-7388(00)00642-6
[47] K. Onda, T. Murakami, T. Hikosaka, M. Kobayashi, K. Ito, Performance analysis of polymer-electrolyte water electrolysis cell at a small-unit test cell and performance prediction of large stacked cell, J. Electrochem. Soc. 149 (2002) A1069-A1078. https://doi.org/10.1149/1.1492287
[48] F. Marangio, M. Santarelli, M. Pagani, M.C. Quaglia, Direct High Pressure Hydrogen Production: a Laboratory Scale PEM Electrolyser Prototype, ECS Transac.17 (2009) 555-567. https://doi.org/10.1149/1.3142786
[49] C. Prapainainar, S. Kanjanapaisit, P. Kongkachuichay, S.M. Holmes, P. Prapainainar, Surface modification of mordenite in Nafion composite membrane for direct ethanol fuel cell and its characterizations: Effect of types of silane coupling agent, J.Environ. Chem. Eng.4 (2016) 2637-2646. https://doi.org/10.1016/j.jece.2016.05.005
[50] P. Prapainainar, A. Theampetch, P. Kongkachuichay, N. Laosiripojana, S. Holmes, C. Prapainainar, Effect of solution casting temperature on properties of nafion composite membrane with surface modified mordenite for direct methanol fuel cell, Surf. Coating. Tech. 271 (2015) 63-73. https://doi.org/10.1016/j.surfcoat.2015.01.021