Advances in Electrocatalyst for Ethanol Electro-Oxidation

$20.00

Advances in Electrocatalyst for Ethanol Electro-Oxidation

R. Chauhan, V.C. Srivastava

Ethanol is used in a fuel cell as a source of fuel due to its low-cost and low-toxicity towards the environment. Direct ethanol fuel cells (DEFC) are of two types, i.e., acid and alkaline type, in which the alkaline type DEFC shows better performance. Different types of catalysts like metal (noble or non-noble) and non-metal (carbon) based are being used as a catalyst for ethanol oxidation. Ethanol electro-oxidation has complex reaction mechanism having different types of intermediates and final products. This chapter aims to present the advances in the analysis of electrocatalytic activity, reaction mechanism and synthesis of the electrocatalyst for electro-oxidation of ethanol.

Keywords
Direct Ethanol Fuel Cell, Advanced Electro-Oxidation, Nanocatalyst, Reaction Mechanism, Pathways

Published online 5/5/2019, 28 pages

Citation: R. Chauhan, V.C. Srivastava, Advances in Electrocatalyst for Ethanol Electro-Oxidation, Materials Research Foundations, Vol. 49, pp 293-320, 2019

DOI: https://doi.org/10.21741/9781644900192-10

Part of the book on Nanomaterials for Alcohol Fuel Cells

References
[1]B.M. Daas, S. Ghosh, Fuel cell applications of chemically synthesized zeolite modified electrode (ZME) as catalyst for alcohol electro-oxidation – A review, J. Electroanal. Chem. 783 (2016) 308–315. https://doi.org/10.1016/j.jelechem.2016.11.004
[2]Y. Li, System Design and performance in alkaline direct ethanol fuel cells, in: Lect. Notes Energy, 2018, pp. 217–247. https://doi.org/10.1007/978-3-319-71371-7_7
[3]G.K. Dinesh, R. Chauhan, S. Chakma, Influence and strategies for enhanced biohydrogen production from food waste, Renew. Sustain. Energy Rev. 92 (2018) 807–822. https://doi.org/10.1016/j.rser.2018.05.009
[4]T.Y. Chen, G.W. Lee, Y.T. Liu, Y.F. Liao, C.C. Huang, D.S. Lin, T.L. Lin, Heterojunction confinement on the atomic structure evolution of near monolayer core–shell nanocatalysts in redox reactions of a direct methanol fuel cell, J. Mater. Chem. A. 3 (2015) 1518–1529. https://doi.org/10.1039/C4TA04640D
[5]H. Huang, J. Zhu, W. Zhang, C.S. Tiwary, J. Zhang, X. Zhang, Q. Jiang, H. He, Y. Wu, W. Huang, P.M. Ajayan, Q. Yan, Controllable codoping of nitrogen and sulfur in graphene for highly efficient Li-oxygen batteries and direct methanol fuel cells, Chem. Mater. 28 (2016) 1737–1745. https://doi.org/10.1021/acs.chemmater.5b04654
[6]M.A.F. Akhairi, S.K. Kamarudin, Catalysts in direct ethanol fuel cell (DEFC): An overview, Int. J. Hydrogen Energy. 41 (2016) 4214–4228. https://doi.org/10.1016/j.ijhydene.2015.12.145
[7]R.F. Association, World ethanol production, (2017)
[8]J. Sánchez-Monreal, P.A. García-Salaberri, M. Vera, A genetically optimized kinetic model for ethanol electro-oxidation on Pt-based binary catalysts used in direct ethanol fuel cells, J. Power Sources. 363 (2017) 341–355. https://doi.org/10.1016/j.jpowsour.2017.07.069
[9]A. Brouzgou, A. Podias, P. Tsiakaras, PEMFCs and AEMFCs directly fed with ethanol: a current status comparative review, J. Appl. Electrochem. 43 (2013) 119–136. https://doi.org/10.1007/s10800-012-0513-2
[10]M. Meyer, J. Melke, D. Gerteisen, Modelling and simulation of a direct ethanol fuel cell considering multistep electrochemical reactions, transport processes and mixed potentials, Electrochim. Acta. 56 (2011) 4299–4307. https://doi.org/10.1016/j.electacta.2011.01.070
[11]R.M. Antoniassi, A. Oliveira Neto, M. Linardi, E.V. Spinacé, The effect of acetaldehyde and acetic acid on the direct ethanol fuel cell performance using PtSnO2/C electrocatalysts, Int. J. Hydrogen Energy. 38 (2013) 12069–12077. https://doi.org/10.1016/j.ijhydene.2013.06.139
[12]R. Kavanagh, X.M. Cao, W.F. Lin, C. Hardacre, P. Hu, Origin of low CO2selectivity on platinum in the direct ethanol fuel cell, Angew. Chemie Int. Ed. 51 (2012) 1572–1575. https://doi.org/10.1002/anie.201104990
[13]J.E. Sulaiman, S. Zhu, Z. Xing, Q. Chang, M. Shao, Pt–Ni Octahedra as electrocatalysts for the ethanol electro-oxidation reaction, ACS Catal. 7 (2017) 5134–5141. https://doi.org/10.1021/acscatal.7b01435
[14]T. Wu, J. Fan, Q. Li, P. Shi, Q. Xu, Y. Min, Palladium nanoparticles anchored on anatase titanium dioxide-black phosphorus hybrids with heterointerfaces: Highly electroactive and durable catalysts for ethanol electrooxidation, Adv. Energy Mater. 8 (2018) 1701799. https://doi.org/10.1002/aenm.201701799
[15]K.M. Hassan, A.A. Hathoot, R. Maher, M. Abdel Azzem, Electrocatalytic oxidation of ethanol at Pd, Pt, Pd/Pt and Pt/Pd nano particles supported on poly 1,8-diaminonaphthalene film in alkaline medium, RSC Adv. 8 (2018) 15417–15426. https://doi.org/10.1039/C7RA13694C
[16]W.H. Yang, Q.H. Zhang, H.H. Wang, Z.Y. Zhou, S.G. Sun, Preparation and utilization of a sub-5 nm PbO2 colloid as an excellent co-catalyst for Pt-based catalysts toward ethanol electro-oxidation, New J. Chem. 41 (2017) 12123–12130. https://doi.org/10.1039/C7NJ02620J
[17]L. Chen, L. Lu, H. Zhu, Y. Chen, Y. Huang, Y. Li, L. Wang, Improved ethanol electrooxidation performance by shortening Pd–Ni active site distance in Pd–Ni–P nanocatalysts, Nat. Commun. 8 (2017) 14136. https://doi.org/10.1038/ncomms14136
[18]O.Y. Podyacheva, A.S. Lisitsyn, L.S. Kibis, A.I. Stadnichenko, A.I. Boronin, E.M. Slavinskaya, O.A. Stonkus, S.A. Yashnik, Z.R. Ismagilov, Influence of the nitrogen-doped carbon nanofibers on the catalytic properties of supported metal and oxide nanoparticles, Catal. Today. 301 (2018) 125–133. https://doi.org/10.1016/j.cattod.2017.01.004
[19]A. Perry, S. Kabir, I. Matanovic, M.S. Chavez, K. Artyushkova, A. Serov, P. Atanassov, Novel hybrid catalyst for the oxidation of organic acids: Pd nanoparticles supported on Mn-N-3D-graphene nanosheets, ChemElectroChem. 4 (2017) 2336–2344. https://doi.org/10.1002/celc.201700285
[20]S. Kabir, A. Serov, A. Zadick, K. Artyushkova, P. Atanassov, Palladium nanoparticles supported on three-dimensional graphene nanosheets: Superior cathode electrocatalysts, ChemElectroChem. 3 (2016) 1655–1666. https://doi.org/10.1002/celc.201600245
[21]W. Zheng, H.W. Man, L. Ye, S.C.E. Tsang, Electroreduction of carbon dioxide to formic acid and methanol over a palladium/polyaniline catalyst in acidic solution: a study of the palladium size effect, Energy Technol. 5 (2017) 937–944. https://doi.org/10.1002/ente.201600659
[22]M.Z.F. Kamarudin, S.K. Kamarudin, M.S. Masdar, W.R.W. Daud, Review: Direct ethanol fuel cells, Int. J. Hydrogen Energy. 38 (2013) 9438–9453. https://doi.org/10.1016/j.ijhydene.2012.07.059
[23]E.A. Monyoncho, T.K. Woo, E.A. Baranova, Ethanol electrooxidation reaction in alkaline media for direct ethanol fuel cells, in: SPR Electrochem. 2019, pp. 1–57. https://doi.org/10.1039/9781788013895-00001
[24]A.M. Zainoodin, S.K. Kamarudin, W.R.W. Daud, Electrode in direct methanol fuel cells, Int. J. Hydrogen Energy. 35 (2010) 4606–4621. https://doi.org/10.1016/j.ijhydene.2010.02.036
[25]E. Antolini, E.R. Gonzalez, Alkaline direct alcohol fuel cells, J. Power Sources. 195 (2010) 3431–3450. https://doi.org/10.1016/j.jpowsour.2009.11.145
[26]Z. Zhang, L. Xin, K. Sun, W. Li, Pd–Ni electrocatalysts for efficient ethanol oxidation reaction in alkaline electrolyte, Int. J. Hydrogen Energy. 36 (2011) 12686–12697. https://doi.org/10.1016/j.ijhydene.2011.06.141
[27]Y. Chen, L. Zhuang, J. Lu, Non-Pt anode catalysts for alkaline direct alcohol fuel cells, Chinese J. Catal. 28 (2007) 870–874. https://doi.org/10.1016/S1872-2067(07)60073-4
[28]Y.Y. Feng, Z.H. Liu, W.Q. Kong, Q.Y. Yin, L.X. Du, Promotion of palladium catalysis by silver for ethanol electro-oxidation in alkaline electrolyte, Int. J. Hydrogen Energy. 39 (2014) 2497–2504. https://doi.org/10.1016/j.ijhydene.2013.12.004
[29]J.B. Xu, T.S. Zhao, Y.S. Li, W.W. Yang, Synthesis and characterization of the Au-modified Pd cathode catalyst for alkaline direct ethanol fuel cells, Int. J. Hydrogen Energy. 35 (2010) 9693–9700. https://doi.org/10.1016/j.ijhydene.2010.06.074
[30]Z.X. Liang, T.S. Zhao, J.B. Xu, L.D. Zhu, Mechanism study of the ethanol oxidation reaction on palladium in alkaline media, Electrochim. Acta. 54 (2009) 2203–2208. https://doi.org/10.1016/j.electacta.2008.10.034
[31]H. Hitmi, E.M. Belgsir, J.-M. Léger, C. Lamy, R.O. Lezna, A kinetic analysis of the electro-oxidation of ethanol at a platinum electrode in acid medium, Electrochim. Acta. 39 (1994) 407–415. https://doi.org/10.1016/0013-4686(94)80080-4
[32]D.J. Tarnowski, C. Korzeniewski, Effects of surface step density on the electrochemical oxidation of ethanol to acetic acid, J. Phys. Chem. B. 101 (1997) 253–258. https://doi.org/10.1021/jp962450c
[33]Y. Wang, K. Jiang, W.B. Cai, Enhanced electrocatalysis of ethanol on dealloyed Pd-Ni-P film in alkaline media: an infrared spectroelectrochemical investigation, Electrochim. Acta. 162 (2015) 100–107. https://doi.org/10.1016/j.electacta.2014.11.182
[34]T. Sheng, W.F. Lin, C. Hardacre, P. Hu, Significance of β-dehydrogenation in ethanol electro-oxidation on platinum doped with Ru, Rh, Pd, Os and Ir, Phys. Chem. Chem. Phys. 16 (2014) 13248–13254. https://doi.org/10.1039/C4CP00737A
[35]A. Dutta, A. Mondal, J. Datta, Tuning of platinum nano-particles by Au usage in their binary alloy for direct ethanol fuel cell: Controlled synthesis, electrode kinetics and mechanistic interpretation, J. Power Sources. 283 (2015) 104–114. https://doi.org/10.1016/j.jpowsour.2015.01.113
[36]H.A. Asiri, A.B. Anderson, Mechanisms for ethanol electrooxidation on Pt(111) and adsorption bond strengths defining an ideal catalyst, J. Electrochem. Soc. 162 (2015) F115–F122. https://doi.org/10.1149/2.0781501jes
[37]A.N. Geraldes, D. Furtunato da Silva, J.C. Martins da Silva, O. Antonio de Sá, E.V. Spinacé, A.O. Neto, M. Coelho dos Santos, Palladium and palladium–tin supported on multi wall carbon nanotubes or carbon for alkaline direct ethanol fuel cell, J. Power Sources. 275 (2015) 189–199. https://doi.org/10.1016/j.jpowsour.2014.11.024
[38]Y.Y. Yang, J. Ren, Q.X. Li, Z.Y. Zhou, S.G. Sun, W. Bin Cai, Electrocatalysis of ethanol on a pd electrode in alkaline media: An in situ attenuated total reflection surface-enhanced infrared absorption spectroscopy study, ACS Catal. 4 (2014) 798–803. https://doi.org/10.1021/cs401198t
[39]V. Rao, C. Cremers, U. Stimming, L. Cao, S. Sun, S. Yan, G. Sun, Q. Xin, Electro-oxidation of ethanol at gas diffusion electrodes a DEMS study, J. Electrochem. Soc. 154 (2007) B1138. https://doi.org/10.1149/1.2777108
[40]C. Cremers, D. Bayer, B. Kintzel, M. Joos, M. Krausa, D. Martin, J. Bernard, Investigation on denaturing agents for use with ethanol in direct ethanol fuel cells (DEFC), in: ECS Trans., ECS, 2009, pp. 517–524. https://doi.org/10.1149/1.3142783
[41]D. Bayer, C. Cremers, H. Baltruschat, J. Tübke, The electro-oxidation of ethanol in alkaline medium at different catalyst metals, in: 2011, pp. 1669–1680. https://doi.org/10.1149/1.3635698
[42]E.A. Monyoncho, S.N. Steinmann, C. Michel, E.A. Baranova, T.K. Woo, P. Sautet, Ethanol electro-oxidation on palladium revisited using polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS) and density functional theory (DFT): Why is it difficult to break the C–C bond, ACS Catal. 6 (2016) 4894–4906. https://doi.org/10.1021/acscatal.6b00289
[43]M. Zhiani, S. Majidi, H. Rostami, M.M. Taghiabadi, Comparative study of aliphatic alcohols electrooxidation on zero-valent palladium complex for direct alcohol fuel cells, Int. J. Hydrogen Energy. 40 (2015) 568–576. https://doi.org/10.1016/j.ijhydene.2014.10.144
[44]T. Sheng, W.F. Lin, C. Hardacre, P. Hu, Role of water and adsorbed hydroxyls on ethanol electrochemistry on Pd: new mechanism, active centers, and energetics for direct ethanol fuel cell running in alkaline medium, J. Phys. Chem. C. 118 (2014) 5762–5772. https://doi.org/10.1021/jp407978h
[45]J.N. Tiwari, R.N. Tiwari, G. Singh, K.S. Kim, Recent progress in the development of anode and cathode catalysts for direct methanol fuel cells, Nano Energy. 2 (2013) 553–578. https://doi.org/10.1016/j.nanoen.2013.06.009
[46]S. Beyhan, C. Coutanceau, J.M. Léger, T.W. Napporn, F. Kadırgan, Promising anode candidates for direct ethanol fuel cell: Carbon supported PtSn-based trimetallic catalysts prepared by Bönnemann method, Int. J. Hydrogen Energy. 38 (2013) 6830–6841. https://doi.org/10.1016/j.ijhydene.2013.03.058
[47]E. Ribadeneira, B.A. Hoyos, Evaluation of Pt–Ru–Ni and Pt–Sn–Ni catalysts as anodes in direct ethanol fuel cells, J. Power Sources. 180 (2008) 238–242. https://doi.org/10.1016/j.jpowsour.2008.01.084
[48]M.Z. Yazdan-Abad, M. Noroozifar, N. Alfi, A.R. Modarresi-Alam, H. Saravani, A simple and fast method for the preparation of super active Pd/CNTs catalyst toward ethanol electrooxidation, Int. J. Hydrogen Energy. 43 (2018) 12103–12109. https://doi.org/10.1016/j.ijhydene.2018.04.179
[49]Q. Zhang, X. Wu, M. Gao, H. Qiu, J. Hu, K. Huang, S. Feng, Y. Yang, T. Wang, B. Zhao, Z. Liu, Highly active electrocatalyst of 3D Pd/reduced graphene oxide nanostructure for electro-oxidation of methanol and ethanol, Inorg. Chem. Commun. 94 (2018) 43–47. https://doi.org/10.1016/j.inoche.2018.05.028
[50]D.R.M. Godoi, H.M. Villullas, F.-C. Zhu, Y.-X. Jiang, S.-G. Sun, J. Guo, L. Sun, R. Chen, A comparative investigation of metal-support interactions on the catalytic activity of Pt nanoparticles for ethanol oxidation in alkaline medium, J. Power Sources. 311 (2016) 81–90. https://doi.org/10.1016/j.jpowsour.2016.02.011
[51]R. Carrera-Cerritos, R. Fuentes-Ramírez, F.M. Cuevas-Muñiz, J. Ledesma-García, L.G. Arriaga, Performance and stability of Pd nanostructures in an alkaline direct ethanol fuel cell, J. Power Sources. 269 (2014) 370–378. https://doi.org/10.1016/j.jpowsour.2014.06.161
[52]M. Zareie Yazdan-Abad, M. Noroozifar, A.R. Modaresi Alam, H. Saravani, Palladium aerogel as a high-performance electrocatalyst for ethanol electro-oxidation in alkaline media, J. Mater. Chem. A. 5 (2017) 10244–10249. https://doi.org/10.1039/C7TA03208K
[53]M.K.S. Barr, L. Assaud, N. Brazeau, M. Hanbücken, S. Ntais, L. Santinacci, E.A. Baranova, Enhancement of Pd catalytic activity toward ethanol electrooxidation by atomic layer deposition of SnO2 onto TiO2nanotubes, J. Phys. Chem. C. 121 (2017) 17727–17736. https://doi.org/10.1021/acs.jpcc.7b05799
[54]L. Xu, Z. Wang, X. Chen, Z. Qu, F. Li, W. Yang, Ultrathin layered double hydroxide nanosheets with Ni(III) active species obtained by exfoliation for highly efficient ethanol electrooxidation, Electrochim. Acta. 260 (2018) 898–904. https://doi.org/10.1016/j.electacta.2017.12.065
[55]J. Zhan, M. Cai, C. Zhang, C. Wang, Synthesis of mesoporous NiCo2O4 fibers and their electrocatalytic activity on direct oxidation of ethanol in alkaline media, Electrochim. Acta. 154 (2015) 70–76. https://doi.org/10.1016/j.electacta.2014.12.078
[56]Y. Katayama, T. Okanishi, H. Muroyama, T. Matsui, K. Eguchi, Enhanced supply of hydroxyl species in CeO2 -modified platinum catalyst studied by in situ ATR-FTIR spectroscopy, ACS Catal. 6 (2016) 2026–2034. https://doi.org/10.1021/acscatal.6b00108
[57]C. Busó-Rogero, J. Solla-Gullón, F.J. Vidal-Iglesias, E. Herrero, J.M. Feliu, Oxidation of ethanol on platinum nanoparticles: surface structure and aggregation effects in alkaline medium, J. Solid State Electrochem. 20 (2016) 1095–1106. https://doi.org/10.1007/s10008-015-2970-0
[58]L. Ma, D. Chu, R. Chen, Comparison of ethanol electro-oxidation on Pt/C and Pd/C catalysts in alkaline media, Int. J. Hydrogen Energy. 37 (2012) 11185–11194. https://doi.org/10.1016/j.ijhydene.2012.04.132
[59]A. Kumar, D.A. Buttry, Influence of halide ions on anodic oxidation of ethanol on palladium, Electrocatalysis. 7 (2016) 201–206. https://doi.org/10.1007/s12678-015-0298-2
[60]R.C. Cerritos, M. Guerra-Balcázar, R.F. Ramírez, J. Ledesma-García, L.G. Arriaga, Morphological effect of Pd catalyst on ethanol electro-oxidation reaction, materials (basel). 5 (2012) 1686–1697. https://doi.org/10.3390/ma5091686
[61]S. Cherevko, X. Xing, C.H. Chung, Pt and Pd decorated Au nanowires: Extremely high activity of ethanol oxidation in alkaline media, Electrochim. Acta. 56 (2011) 5771–5775. https://doi.org/10.1016/j.electacta.2011.04.052
[62]C.L. Sun, J.S. Tang, N. Brazeau, J.J. Wu, S. Ntais, C.W. Yin, H.L. Chou, E.A. Baranova, Particle size effects of sulfonated graphene supported Pt nanoparticles on ethanol electrooxidation, Electrochim. Acta. 162 (2015) 282–289. https://doi.org/10.1016/j.electacta.2014.12.099
[63]L. Cao, G. Sun, H. Li, Q. Xin, Carbon-supported IrSn catalysts for direct ethanol fuel cell, Fuel Cells Bull. 2007 (2007) 12–16. https://doi.org/10.1016/S1464-2859(08)70142-1
[64]P. Sharma, S. Radhakrishnan, M.S. Khil, H.Y. Kim, B.S. Kim, Simple room temperature synthesis of porous nickel phosphate foams for electrocatalytic ethanol oxidation, J. Electroanal. Chem. 808 (2018) 236–244. https://doi.org/10.1016/j.jelechem.2017.12.025
[65]M. Mazloum-Ardakani, V. Eslami, A. Khoshroo, Nickel nitride nanoparticles as efficient electrocatalyst for effective electro-oxidation of ethanol and methanol in alkaline media, Mater. Sci. Eng. B. 229 (2018) 201–205. https://doi.org/10.1016/j.mseb.2017.12.038
[66]H.B. Hassan, Z.A. Hamid, Electrodeposited Ni–Cr2O3 nanocomposite anodes for ethanol electrooxidation, Int. J. Hydrogen Energy. 36 (2011) 5117–5127. https://doi.org/10.1016/j.ijhydene.2011.01.024
[67]Y. Oh, S.K. Kim, D.H. Peck, J. Jang, J. Kim, D.H. Jung, Improved performance using tungsten carbide/carbon nanofiber based anode catalysts for alkaline direct ethanol fuel cells, Int. J. Hydrogen Energy. 39 (2014) 15907–15912. https://doi.org/10.1016/j.ijhydene.2014.02.010
[68]N.A.M. Barakat, M.A. Abdelkareem, H.Y. Kim, Ethanol electro-oxidation using cadmium-doped cobalt/carbon nanoparticles as novel non precious electrocatalyst, Appl. Catal. A Gen. 455 (2013) 193–198. https://doi.org/10.1016/j.apcata.2013.02.004
[69]S. Sharma, B.G. Pollet, Support materials for PEMFC and DMFC electrocatalysts – A review, J. Power Sources. 208 (2012) 96–119. https://doi.org/10.1016/j.jpowsour.2012.02.011
[70]E. Antolini, E.R. Gonzalez, Polymer supports for low-temperature fuel cell catalysts, Appl. Catal. A Gen. 365 (2009) 1–19. https://doi.org/10.1016/j.apcata.2009.05.045
[71]S.S. Gwebu, P.N. Nomngongo, N.W. Maxakato, Pt-Sn nanoparticles supported on carbon nanodots as anode catalysts for alcohol electro-oxidation in acidic conditions, Electroanalysis. 30 (2018) 1125–1132. https://doi.org/10.1002/elan.201800098
[72]L. Karuppasamy, C.Y. Chen, S. Anandan, J.J. Wu, Sonochemical fabrication of reduced graphene oxide supported Au nano dendrites for ethanol electrooxidation in alkaline medium, Catal. Today. 307 (2018) 308–317. https://doi.org/10.1016/j.cattod.2017.06.032
[73]M. Wang, Z. Ma, R. Li, B. Tang, X.Q. Bao, Z. Zhang, X. Wang, Novel flower-like PdAu(Cu) Anchoring on a 3D rGO-CNT sandwich-stacked framework for highly efficient methanol and ethanol electro-oxidation, Electrochim. Acta. 227 (2017) 330–344. https://doi.org/10.1016/j.electacta.2017.01.046
[74]R. Kumar, R. Savu, R.K. Singh, E. Joanni, D.P. Singh, V.S. Tiwari, A.R. Vaz, E.T.S.G. da Silva, J.R. Maluta, L.T. Kubota, S.A. Moshkalev, Controlled density of defects assisted perforated structure in reduced graphene oxide nanosheets-palladium hybrids for enhanced ethanol electro-oxidation, Carbon N. Y. 117 (2017) 137–146. https://doi.org/10.1016/j.carbon.2017.02.065
[75]S. Kabir, A. Serov, K. Artyushkova, P. Atanassov, Design of novel graphene materials as a support for palladium nanoparticles: highly active catalysts towards ethanol electrooxidation, Electrochim. Acta. 203 (2016) 144–153. https://doi.org/10.1016/j.electacta.2016.04.026
[76]Z. Li, R. Lin, Z. Liu, D. Li, H. Wang, Q. Li, Novel graphitic carbon nitride/graphite carbon/palladium nanocomposite as a high-performance electrocatalyst for the ethanol oxidation reaction, Electrochim. Acta. 191 (2016) 606–615. https://doi.org/10.1016/j.electacta.2016.01.124
[77]N. Manthey, Toyota’s fuel cell bus Sora ready for production – electrive.com, (2018)
[78]Fuel Cell & Hydrogen Energy Association, Portable Power — Fuel Cell & Hydrogen Energy Association, (2015)
[79]Shell eco-marathon Asia, news and highlights, (2018)