Carbon-Based Nanomaterials for Alcohol Oxidation

$20.00

Carbon-Based Nanomaterials for Alcohol Oxidation

M.Selim Çögenli, A.Bayrakçeken Yurtcan

Carbon is a unique material for utilization in direct alcohol fuel cells as catalyst support material due to its outstanding properties including high surface area and high electrical conductivity, which are the most crucial properties for fuel cell applications. This chapter focused on the carbon-based nanomaterials used as catalyst support material in most studied directs of alcohol fuel cells especially for direct ethanol, methanol fuel cells, and other alcohol fuel cells. The targeted carbon-based nanomaterials include carbon black, carbon nanotubes, carbon gels, graphene, mesoporous carbon, and heteroatom-doped carbon nanomaterials.

Keywords
Carbon, Direct Alcohol Fuel Cells, Ethanol Oxidation, Methanol Oxidation, Nanomaterials

Published online 5/5/2019, 78 pages

Citation: M.Selim Çögenli, A.Bayrakçeken Yurtcan, Carbon-Based Nanomaterials for Alcohol Oxidation, Materials Research Foundations, Vol. 49, pp 1-78, 2019

DOI: https://doi.org/10.21741/9781644900192-1

Part of the book on Nanomaterials for Alcohol Fuel Cells

References
[1] E.H.L. Falcao, F. Wudl, Carbon allotropes: beyond graphite and diamond, J. Chem. Technol. Biot. 82 (2007) 524-531. https://doi.org/10.1002/jctb.1693
[2] B. McEnaney, Structure and bonding in carbon materials, in: T.D. burchell (Ed.) carbon materials for advanced technologies, Elsevier Science Ltd, Oxford, 1999, pp. 1-33. https://doi.org/10.1016/B978-008042683-9/50003-0
[3] C. Lamy, C. Coutanceau, Electrocatalysis of alcohol oxidation reactions at platinum group metals, catalysts for alcohol-fuelled direct oxidation fuel cells, The Royal Society of Chemistry, 2012, pp. 1-70.
[4] B.H.R. Suryanto, C. Zhao, Surface-oxidized carbon black as a catalyst for the water oxidation and alcohol oxidation reactions, Chem. Commun. 52 (2016) 6439-6442. https://doi.org/10.1039/C6CC01319H
[5] A. Lavacchi, H. Miller, F. Vizza, Carbon-Based Nanomaterials, in: A. Lavacchi, H. Miller, F. Vizza (Eds.) Nanotechnology in Electrocatalysis for Energy, Springer New York, New York, 2013, pp. 115-144. https://doi.org/10.1007/978-1-4899-8059-5_5
[6] D. Gervasio, Fuel cells – direct alcohol fuel cells, new materials, in: J. Garche (Ed.) Encyclopedia of Electrochemical Power Sources, Elsevier, Amsterdam, 2009, pp. 420-427. https://doi.org/10.1016/B978-044452745-5.00247-1
[7] V.K. Puthiyapura, D.J.L. Brett, A.E. Russell, W.F. Lin, C. Hardacre, Biobutanol as fuel for direct alcohol fuel cells—investigation of Sn-modified Pt catalyst for butanol electro-oxidation, ACS Appl.Mater. Interfaces. 8 (2016) 12859-12870. https://doi.org/10.1021/acsami.6b02863
[8] C. Bianchini, P.K. Shen, Palladium-based electrocatalysts for alcohol oxidation in half cells and in direct alcohol fuel cells, Chem. Rev. 109 (2009) 4183-4206. https://doi.org/10.1021/cr9000995
[9] B. Braunchweig, D. Hibbitts, M. Neurock, A. Wieckowski, Electrocatalysis: A direct alcohol fuel cell and surface science perspective, Catal. Today. 202 (2013) 197-209. https://doi.org/10.1016/j.cattod.2012.08.013
[10] O.O. Fashedemi, H.A. Miller, A. Marchionni, F. Vizza, K.I. Ozoemena, Electro-oxidation of ethylene glycol and glycerol at palladium-decorated FeCo@Fe core-shell nanocatalysts for alkaline direct alcohol fuel cells: functionalized MWCNT supports and impact on product selectivity, J. Mater. Chem. A. 3 (2015) 7145-7156. https://doi.org/10.1039/C5TA00076A
[11] Y.X. Chen, M. Bellini, M. Bevilacqua, P. Fornasiero, A. Lavacchi, H.A. Miller, L.Q. Wang, F. Vizza, Direct alcohol fuel cells: toward the power densities of hydrogen-fed proton exchange membrane fuel cells, ChemSusChem. 8 (2015) 524-533. https://doi.org/10.1002/cssc.201402999
[12] J.E. Solis-Tobias, J.A. Diaz-Guillen, P.C. Melendez-Gonzalez, N.M. Sanchez-Padilla, R. Perez-Hernandez, I.L. Alonso-Lemus, F.J. Rodriguez-VareIa, Enhanced catalytic activity of supported nanostructured Pd for the oxidation of organic molecules using gamma-Fe2O3 and Fe3O4 as co-electrocatalysts, Int. J. Hydrogen Energ. 42 (2017) 30301-30309. https://doi.org/10.1016/j.ijhydene.2017.08.112
[13] C. Lamy, A. Lima, V. LeRhun, F. Delime, C. Coutanceau, J.M. Leger, Recent advances in the development of direct alcohol fuel cells (DAFC), J. Power Sources. 105 (2002) 283-296. https://doi.org/10.1016/S0378-7753(01)00954-5
[14] C.C. Jin, Z. Zhang, Z.D. Chen, Q. Chen, High catalytic activity of Pt-modified ag electrodes for oxidation of glycerol and allyl alcohol, Int. J. Electrochem. Sc. 8 (2013) 4215-4224.
[15] C.C. Jin, C.C. Wan, R.L. Dong, High activity of Pd deposited on Ag/C for allyl alcohol oxidation, Electrochim. Acta. 262 (2018) 319-325. https://doi.org/10.1016/j.electacta.2018.01.021
[16] M.Z.F. Kamarudin, S.K. Kamarudin, M.S. Masdar, W.R.W. Daud, Review: Direct ethanol fuel cells, Int. J. Hydrogen Energ. 38 (2013) 9438-9453. https://doi.org/10.1016/j.ijhydene.2012.07.059
[17] J.S. Spendelow, A. Wieckowski, Electrocatalysis of oxygen reduction and small alcohol oxidation in alkaline media, Phys. Chem. Chem. Phys. 9 (2007) 2654-2675. https://doi.org/10.1039/b703315j
[18] A. Santasalo-Aarnio, S. Tuomi, K. Jalkanen, K. Kontturi, T. Kallio, The correlation of electrochemical and fuel cell results for alcohol oxidation in acidic and alkaline media, Electrochim. Acta. 87 (2013) 730-738. https://doi.org/10.1016/j.electacta.2012.09.100
[19] E. Antolini, E.R. Gonzalez, Alkaline direct alcohol fuel cells, J. Power Sources. 195 (2010) 3431-3450. https://doi.org/10.1016/j.jpowsour.2009.11.145
[20] J.L. Cohen, D.J. Volpe, H.D. Abruna, Electrochemical determination of activation energies for methanol oxidation on polycrystalline platinum in acidic and alkaline electrolytes, Phys. Chem. Chem. Phys. 9 (2007) 49-77. https://doi.org/10.1039/B612040G
[21] T.S. Zhao, Z.X. Liang, J.B. Xu, Fuel cells – direct alcohol fuel cells overview, in: J. Garche (Ed.) Encyclopedia of Electrochemical Power Sources, Elsevier, Amsterdam, 2009, pp. 362-369. https://doi.org/10.1016/B978-044452745-5.00240-9
[22] A. Ashok, A. Kumar, J. Ponraj, S.A. Mansour, F. Tarlochan, Single step synthesis of porous NiCoO2 for effective electrooxidation of glycerol in alkaline medium, J. Electrochem. Soc. 165 (2018) J3301-J3309. https://doi.org/10.1149/2.0401815jes
[23] P.V. Samant, C.M. Rangel, M.H. Romero, J.B. Fernandes, J.L. Figueiredo, Carbon supports for methanol oxidation catalyst, J. Power Sources. 151 (2005) 79-84. https://doi.org/10.1016/j.jpowsour.2005.02.083
[24] Y.L. Guo, D.Q. Zheng, H.Y. Liu, A. Friedrich, J. Garche, Investigations of bifunctional mechanism in methanol oxidation on carbon-supported Pt and Pt-Ru catalysts, J. New Mat. Electr. Sys. 9 (2006) 33-39.
[25] S.C.S. Lai, S.E.F. Kleijn, F.T.Z. Ozturk, V.C.V. Vellinga, J. Koning, P. Rodriguez, M.T.M. Koper, Effects of electrolyte pH and composition on the ethanol electro-oxidation reaction, Catal. Today. 154 (2010) 92-104. https://doi.org/10.1016/j.cattod.2010.01.060
[26] J. Melke, A. Schoekel, D. Dixon, C. Cremers, D.E. Ramaker, C. Roth, Ethanol oxidation on carbon-supported Pt, PtRu, and PtSn catalysts studied by operando X-ray absorption spectroscopy, J. Phys. Chem. C. 114 (2010) 5914-5925. https://doi.org/10.1021/jp909342w
[27] A. Serov, C. Kwak, Recent achievements in direct ethylene glycol fuel cells (DEGFC), Appl. Catal. B-Environ. 97 (2010) 1-12. https://doi.org/10.1016/j.apcatb.2010.04.011
[28] M.S. Cogenli, A.B. Yurtcan, Catalytic activity, stability and impedance behavior of PtRu/C, PtPd/C and PtSn/C bimetallic catalysts toward methanol and formic acid oxidation, Int. J. Hydrogen. Energ. 43 (2018) 10698-10709. https://doi.org/10.1016/j.ijhydene.2018.01.081
[29] M.M.O. Thotiyl, S. Sampath, Electrochemical oxidation of ethanol in acid media on titanium nitride supported fuel cell catalysts, Electrochim. Acta. 56 (2011) 3549-3554. https://doi.org/10.1016/j.ijhydene.2018.01.081
[30] Z.L. Liu, X.Y. Ling, X.D. Su, J.Y. Lee, Carbon-supported Pt and PtRu nanoparticles as catalysts for a direct methanol fuel cell, J. Phys. Chem. B. 108 (2004) 8234-8240. https://doi.org/10.1016/j.ijhydene.2018.01.081
[31] H. Li, D.L. Kang, H. Wang, R.F. Wang, Carbon-supported Pt-RuCo nanoparticles with low-noble-metal content and superior catalysis for ethanol oxidization, Int. J. Electrochem. Soc. 6 (2011) 1058-1065.
[32] Y.J. Gu, W.T. Wong, Electro-oxidation of methanol on Pt particles dispersed on RuO2 nanorods, J. Electrochem. Soc. 153 (2006) A1714-A1718. https://doi.org/10.1149/1.2217327
[33] R. Rizo, D. Sebastian, M.J. Lazaro, E. Pastor, On the design of Pt-Sn efficient catalyst for carbon monoxide and ethanol oxidation in acid and alkaline media, Appl. Catal. B-Environ. 200 (2017) 246-254. https://doi.org/10.1149/1.2217327
[34] L. Jiang, A. Hsu, D. Chu, R. Chen, Ethanol electro-oxidation on Pt/C and PtSn/C catalysts in alkaline and acid solutions, Int. J. Hydrogen Energ. 35 (2010) 365-372. https://doi.org/10.1016/j.ijhydene.2009.10.058
[35] C.G. Lee, M. Umeda, I. Uchida, Cyclic voltammetric analysis of C-1-C-4 alcohol electrooxidations with Pt/C and Pt-Ru/C microporous electrodes, J. Power Sources. 160 (2006) 78-89. https://doi.org/10.1016/j.jpowsour.2006.01.068
[36] J. Zhang, L. Ma, M.Y. Gan, F.F. Yang, S.N. Fu, X. Li, Well-dispersed platinum nanoparticles supported on hierarchical nitrogen-doped porous hollow carbon spheres with enhanced activity and stability for methanol electrooxidation, J.. Power Sources. 288 (2015) 42-52. https://doi.org/10.1016/j.jpowsour.2015.04.109
[37] A.N. Jiang, B.H. Zhang, Y.G. Xue, Y. Cheng, Z.H. Li, J.C. Hao, Pt electrocatalyst supported on metal ion-templated hierarchical porous nitrogen-doped carbon from chitosan for methanol electrooxidation, Micropor. Mesopor. Mat. 248 (2017) 99-107. https://doi.org/10.1016/j.micromeso.2017.04.025
[38] M.S. Ahmed, S. Jeon, Electrochemical activity evaluation of chemically damaged carbon nanotube with palladium nanoparticles for ethanol oxidation, J. Power. Sources. 282 (2015) 479-488. https://doi.org/10.1016/j.jpowsour.2015.02.072
[39] H.P. Boehm, Some aspects of the surface-chemistry of carbon-blacks and other carbons, Carbon. 32 (1994) 759-769. https://doi.org/10.1016/0008-6223(94)90031-0
[40] E. Antolini, Carbon supports for low-temperature fuel cell catalysts, Appl. Catal. B-Environ. 88 (2009) 1-24. https://doi.org/10.1016/j.apcatb.2008.09.030
[41] E. Auer, A. Freund, J. Pietsch, T. Tacke, Carbons as supports for industrial precious metal catalysts, Appl. Catal.A-Gen. 173 (1998) 259-271. https://doi.org/10.1016/S0926-860X(98)00184-7
[42] C.H.A. Wong, A. Ambrosi, M. Pumera, Thermally reduced graphenes exhibiting a close relationship to amorphous carbon, Nanoscale. 4 (2012) 4972-4977. https://doi.org/10.1039/c2nr30989k
[43] M. Uchida, Y. Aoyama, M. Tanabe, N. Yanagihara, N. Eda, A. Ohta, Influences of both carbon supports and heat-treatment of supported catalyst on electrochemical oxidation of methanol, J. Electrochem. Soc. 142 (1995) 2572-2576. https://doi.org/10.1149/1.2050055
[44] L. Calvillo, V. Celorrio, R. Moliner, A.B. Garcia, I. Camean, M.J. Lazaro, Comparative study of Pt catalysts supported on different high conductive carbon materials for methanol and ethanol oxidation, Electrochim. Acta. 102 (2013) 19-27. https://doi.org/10.1016/j.electacta.2013.03.192
[45] T.R. Maumau, R.M. Modibedi, M.K. Mathe, Electro-oxidation of alcohols using carbon supported gold, palladium catalysts in alkaline media, Mater. Today-Proc. 5 (2018) 10542-10550. https://doi.org/10.1016/j.matpr.2017.12.386
[46] L.M. Zhang, Z.B. Wang, J.J. Zhang, X.L. Sui, L. Zhao, J.C. Han, investigation on electrocatalytic activity and stability of pt/c catalyst prepared by facile solvothermal synthesis for direct methanol fuel cell, Fuel Cell. 15 (2015) 619-627. https://doi.org/10.1002/fuce.201400172
[47] S. Chandravathanam, B. Kavitha, B. Viswanathan, Y.Y. Thangam, Study of sulphonic acid functionalization of Vulcan XC-72 carbon black support of Pt/Vulcan XC-72 catalyst for methanol electrooxidation, Indian. J. Chem. A. 51 (2012) 704-707.
[48] Y.Y. Chu, Z.B. Wang, D.M. Gu, G.P. Yin, Performance of Pt/C catalysts prepared by microwave-assisted polyol process for methanol electrooxidation, J. Power Sources. 195 (2010) 1799-1804. https://doi.org/10.1016/j.jpowsour.2009.10.039
[49] C.Y. Hu, X. Wang, Highly dispersed palladium nanoparticles on commercial carbon black with significantly high electro-catalytic activity for methanol and ethanol oxidation, Int. J. Hydrogen Energ. 40 (2015) 12382-12391. https://doi.org/10.1016/j.ijhydene.2015.07.100
[50] Z.H. Yang, M.R. Berber, N. Nakashima, A polymer-coated carbon black-based fuel cell electrocatalyst with high CO-tolerance and durability in direct methanol oxidation, J. Mater. Chem. A. 2 (2014) 18875-18880. https://doi.org/10.1039/C4TA03185G
[51] R.J. Feng, M. Li, J.X. Liu, Synthesis of core-shell Au@Pt nanoparticles supported on Vulcan XC-72 carbon and their electrocatalytic activities for methanol oxidation, Colloid. Surface A. 406 (2012) 6-12. https://doi.org/10.1016/j.colsurfa.2012.04.030
[52] L. Khotseng, A. Bangisa, R.M. Modibedi, V. Linkov, Electrochemical evaluation of Pt-based binary catalysts on various supports for the direct methanol fuel cell, Electrocatalysis-Us. 7 (2016) 1-12. https://doi.org/10.1007/s12678-015-0282-x
[53] A.B. Kashyout, A.A.A. Nassr, L. Giorgi, T. Maiyalagan, B.A.B. Youssef, Electrooxidation of methanol on carbon supported Pt-Ru nanocatalysts prepared by ethanol reduction method, Int. J. Electrochem. Sci. 6 (2011) 379-393.
[54] Q. Wang, H.L. Tao, Z.Q. Li, S.S. Liu, L. Han, Enhanced activity for methanol electro-oxidation on PtRu/C catalyst by reduction treatment, Int. J. Electrochem. Sci. 12 (2017) 6211-6220. https://doi.org/10.20964/2017.07.62
[55] J. Qi, L.H. Jiang, M.Y. Jing, Q.W. Tang, G.Q. Sun, Preparation of Pt/C via a polyol process – Investigation on carbon support adding sequence, Int. J. Hydrogen Energ. 36 (2011) 10490-10501. https://doi.org/10.1016/j.ijhydene.2011.06.022
[56] M. Carmo, A.R. Dos Santos, J.G.R. Poco, M. Linardi, Physical and electrochemical evaluation of commercial carbon black as electrocatalysts supports for DMFC applications, J. Power Sources. 173 (2007) 860-866. https://doi.org/10.1016/j.jpowsour.2007.08.032
[57] Z.H. Yang, C. Kim, S. Hirata, T. Fujigaya, N. Nakashima, Facile enhancement in CO-tolerance of a polymer-coated pt electrocatalyst supported on carbon black: Comparison between vulcan and ketjenblack, Acs Appl. Mater. Interfaces. 7 (2015) 15885-15891. https://doi.org/10.1021/acsami.5b03371
[58] N. Nakagawa, Y. Suzuki, T. Watanabe, T. Takei, K. Kanamura, Preparation of Pt-Ru nanoparticles with a uniform size distribution on a mesoporous carbon and their activity towards methanol electro-oxidation, Electrochemistry. 75 (2007) 172-174. https://doi.org/10.5796/electrochemistry.75.172
[59] J.X. Cheng, X.L. Hu, J.B. Zhang, H.H. Huang, N. Su, H.K. Zhu, Fabrication of a composite of platinum, N-g-C3N4 and Ketjen black for photo-electrochemical methanol oxidation, J. Mater. Sci. 52 (2017) 8444-8454. https://doi.org/10.1007/s10853-017-1110-x
[60] Y. Zhang, Y.H. Wang, L.Y. Bian, R. Lu, J.B. Zang, Functional separation of oxidation-reduction reaction and electron transport: PtRu/undoped nanodiamond and acetylene black as a hybrid electrocatalyst in a direct methanol fuel cell, Int. J. Hydrogen Energ. 41 (2016) 4624-4631. https://doi.org/10.1016/j.ijhydene.2016.01.082
[61] M.R. Tarasevich, Z.R. Karichev, V.A. Bogdanovskaya, A.V. Kapustin, E.N. Lubnin, M.A. Osina, Oxidation of methanol and other low-molecular-weight alcohols on the RuNi catalysts in an alkaline environment, Russ. J. Electrochem. 41 (2005) 736-745. https://doi.org/10.1007/s11175-005-0133-9
[62] E.E. Said-Galiyev, A.Y. Nikolaev, E.E. Levin, E.K. Lavrentyeva, M.O. Gallyamov, S.N. Polyakov, G.A. Tsirlina, O.A. Petrii, A.R. Khokhlov, Structural and electrocatalytic features of Pt/C catalysts fabricated in supercritical carbon dioxide, J. Solid State Electr. 15 (2011) 623-633. https://doi.org/10.1007/s10008-010-1169-7
[63] Y.J. Luo, Y.H. Xiao, G.H. Cai, Y. Zheng, K.M. Wei, Complete methanol oxidation in carbon monoxide streams over Pd/CeO2 catalysts: Correlation between activity and properties, Appl. Catal. B-Environ. 136 (2013) 317-324. https://doi.org/10.1016/j.apcatb.2013.02.020
[64] W. Wang, Y. Li, H. Wang, Improved methanol oxidation on a PtRu-RuO2/C composite catalyst with close contact, React. Kinet. Mech. Cat. 108 (2013) 433-441. https://doi.org/10.1007/s11144-012-0532-3
[65] S. Jana, G. Mondal, B.C. Mitra, P. Bera, A. Mondal, Synthesis, characterization and electrocatalytic activity of SnO2, Pt-SnO2 thin films for methanol oxidation, Chem. Phys. 439 (2014) 44-48. https://doi.org/10.1016/j.chemphys.2014.05.003
[66] Y. Fan, J.H. Liu, H.T. Lu, P. Huang, D.L. Xu, Hierarchical structure SnO2 supported Pt nanoparticles as enhanced electrocatalyst for methanol oxidation, Electrochim. Acta. 76 (2012) 475-479. https://doi.org/10.1016/j.electacta.2012.05.067
[67] H.Y. Sun, J.M. You, M.H. Yang, F.L. Qu, Synthesis of Pt/Fe3O4-CeO2 catalyst with improved electrocatalytic activity for methanol oxidation, J. Power Sources. 205 (2012) 231-234. https://doi.org/10.1016/j.jpowsour.2012.01.014
[68] Y.H. Qin, Y.F. Li, R.L. Lv, T.L. Wang, W.G. Wang, C.W. Wang, 2 Enhanced methanol oxidation activity and stability of Pt particles anchored on carbon-doped TiO2 nanocoating support, J. Power Sources. 278 (2015) 639-644. https://doi.org/10.1016/j.jpowsour.2014.12.096
[69] R.M.S. Rodrigues, R.R. Dias, C.A.L.G.O. Forbicini, M. Linardi, E.V. Spinace, A.O. Neto, Enhanced activity of PtRu/85%C+15% rare earth for methanol oxidation in acidic medium, Int. J. Electrochem. Sci. 6 (2011) 5759-5766.
[70] A. Bin Yousaf, M. Imran, N. Uwitonze, A. Zeb, S.J. Zaidi, T.M. Ansari, G. Yasmeen, S. Manzoor, Enhanced electrocatalytic performance of Pt3Pd1 alloys supported on CeO2/C for methanol oxidation and oxygen reduction reactions, J. Phys. Chem. C. 121 (2017) 2069-2079. https://doi.org/10.1021/acs.jpcc.6b11528
[71] H. Su, T.H. Chen, Preparation of PtSn2-SnO2/C nanocatalyst and its high performance for methanol electro-oxidation, Chinese. Chem. Lett. 27 (2016) 1083-1086. https://doi.org/10.1016/j.cclet.2016.03.010
[72] G.X. Wang, T. Takeguchi, Y. Zhang, E.N. Muhamad, M. Sadakane, S. Ye, W. Ueda, Effect of SnO2deposition sequence in SnO2-modified PtRu/C catalyst preparation on catalytic activity for methanol electro-oxidation, J. Electrochem. Soc. 156 (2009) B862-B869. https://doi.org/10.1149/1.3133249
[73] Y.Y. Chu, Z.H. Teng, B. Wu, Y.W. Tang, T.H. Lu, Y. Gao, Effect of mixed support of carbon black and nanographite on the activity of Pt catalyst for ethanol oxidation, J. Appl. Electrochem. 38 (2008) 1357-1362. https://doi.org/10.1007/s10800-008-9571-x
[74] X.Y. Ma, Y.F. Chen, H. Wang, Q.X. Li, W.F. Lin, W.B. Cai, Electrocatalytic oxidation of ethanol and ethylene glycol on cubic, octahedral and rhombic dodecahedral palladium nanocrystals, Chem. Commun. 54 (2018) 2562-2565. https://doi.org/10.1039/C7CC08793D
[75] H. Chen, Y.Y. Huang, D. Tang, T. Zhang, Y.B. Wang, Ethanol oxidation on Pd/C promoted with CaSiO3 in alkaline medium, Electrochim. Acta. 158 (2015) 18-23. https://doi.org/10.1016/j.electacta.2015.01.103
[76] F.M. Souza, J. Nandenha, B.L. Batista, V.H.A. Oliveira, V.S. Pinheiro, L.S. Parreira, A.O. Neto, M.C. Santos, PdxNby electrocatalysts for DEFC in alkaline medium: Stability, selectivity and mechanism for FOR, Int. J. Hydrogen Energ. 43 (2018) 4505-4516. https://doi.org/10.1016/j.ijhydene.2018.01.058
[77] H. Wang, Q.P. Zhao, Q. Ma, PtSn nanoparticles supported on iron nanoparticles wrapped inside nitrogen-doped carbon for ethanol oxidation, Ionics. 21 (2015) 1703-1709. https://doi.org/10.1007/s11581-014-1326-6
[78] J. Riberio, D.M. dos Anjos, K.B. Kokoh, C. Coutanceau, J.M. Leger, P. Olivi, A.R. de Andrade, G. Tremiliosi-Filho, Carbon-supported ternary PtSnIr catalysts for direct ethanol fuel cell, Electrochim. Acta. 52 (2007) 6997-7006. https://doi.org/10.1016/j.electacta.2007.05.017
[79] E. Higuchi, K. Miyata, H. Inoue, Preparation of nanoparticles of Pt and SnO2highly dispersed on carbon black support and their activity for ethanol oxidation reaction, Electrochemistry. 78 (2010) 526-528. https://doi.org/10.5796/electrochemistry.78.526
[80] P.K. Shen, C.W. Xu, Alcohol oxidation on nanocrystalline oxide Pd/C promoted electrocatalysts, Electrochem. Commun. 8 (2006) 184-188. https://doi.org/10.1016/j.elecom.2005.11.013
[81] D.R.M. Godoi, H.M. Villullas, F.C. Zhu, Y.X. Jiang, S.G. Sun, J.S. Guo, L.L. Sun, R.R. Chen, A comparative investigation of metal-support interactions on the catalytic activity of Pt nanoparticles for ethanol oxidation in alkaline medium, J. Power Sources. 311 (2016) 81-90. https://doi.org/10.1016/j.jpowsour.2016.02.011
[82] R.F.B. De Souza, M.M. Tusi, M. Brandalise, R.R. Dias, M. Linardi, E.V. Spinace, M.C. dos Santos, A.O. Neto, Preparation of PtSn/C-Rh and PtSn/C-CeO2 for Ethanol Electro-Oxidation, Int. J. Electrochem. Sci. 5 (2010) 895-902.
[83] R.F. Wang, Z.Y. Liu, Y.J. Ma, H. Wang, V. Linkov, S. Ji, Heterostructure core PdSn-SnO2 decorated by Pt as efficient electrocatalysts for ethanol oxidation, Int. J. Hydrogen Energ. 38 (2013) 13604-13610. https://doi.org/10.1016/j.ijhydene.2013.08.044
[84] J.F. Pang, M.Y. Zheng, A.Q. Wang, T. Zhang, Catalytic hydrogenation of corn stalk to ethylene glycol and 1,2-propylene glycol, Ind. Eng. Chem. Res. 50 (2011) 6601-6608. https://doi.org/10.1021/ie102505y
[85] R.B. de Lima, V. Paganin, T. Iwasita, W. Vielstich, On the electrocatalysis of ethylene glycol oxidation, Electrochim. Acta. 49 (2003) 85-91. https://doi.org/10.1016/j.electacta.2003.05.004
[86] C. Coutanceau, L. Demarconnay, C. Lamy, J.M. Leger, Development of electrocatalysts for solid alkaline fuel cell (SAFC), J. Power Sources. 156 (2006) 14-19. https://doi.org/10.1016/j.jpowsour.2005.08.035
[87] M.T. Liu, L.X. Chen, D.N. Li, A.J. Wang, Q.L. Zhang, J.J. Feng, One-pot controlled synthesis of AuPd@Pd core-shell nanocrystals with enhanced electrocatalytic performances for formic acid oxidation and glycerol oxidation, J. Colloid Interf. Sci. 508 (2017) 551-558. https://doi.org/10.1016/j.jcis.2017.08.041
[88] Z.Z. Yang, L. Liu, A.J. Wang, J.H. Yuan, J.J. Feng, Q.Q. Xu, Simple wet-chemical strategy for large-scaled synthesis of snowflake-like PdAu alloy nanostructures as effective electrocatalysts of ethanol and ethylene glycol oxidation, Int. J. Hydrogen Energ. 42 (2017) 2034-2044. https://doi.org/10.1016/j.ijhydene.2016.08.088
[89] L. Demarconnay, S. Brimaud, C. Coutanceau, J.M. Leger, Ethylene glycol electrooxidation in alkaline medium at multi-metallic Pt based catalysts, J. Electroanal. Chem. 601 (2007) 169-180. https://doi.org/10.1016/j.jelechem.2006.11.006
[90] Y. Li, D. Lu, L.Q. Zhou, M.L. Ye, X. Xiong, K.Z. Yang, Y.X. Pan, M.H. Chen, P. Wu, T. Li, Y.T. Chen, Z. Wang, Q.H. Xia, Bi-modified Pd-based/carbon-doped TiO2 hollow spheres catalytic for ethylene glycol electrooxidation in alkaline medium, J. Mater. Res. 31 (2016) 3712-3722. https://doi.org/10.1557/jmr.2016.429
[91] H.P. Liu, J.Q. Ye, C.W. Xu, S.P. Jiang, Y.X. Tong, Electro-oxidation of methanol, 1-propanol and 2-propanol on Pt and Pd in alkaline medium, J. Power Sources. 177 (2008) 67-70. https://doi.org/10.1016/j.jpowsour.2007.11.015
[92] E. Pastor, S. Wasmus, T. Iwasita, M.C. Arevalo, S. Gonzalez, A.J. Arvia, Spectroscopic investigations of C-3 primary alcohols on platinum-electrodes in acid-solutions .1. N-Propanol, J. Electroanal. Chem. 350 (1993) 97-116. https://doi.org/10.1016/0022-0728(93)80199-R
[93] A. Sadiki, P. Vo, S.Z. Hu, T.S. Copenhaver, L. Scudiero, S. Ha, J.L. Haan, Increased electrochemical oxidation rate of alcohols in alkaline media on palladium surfaces electrochemically modified by antimony, lead, and tin, Electrochim. Acta. 139 (2014) 302-307. https://doi.org/10.1016/j.electacta.2014.07.019
[94] C.W. Xu, Z.Q. Tian, Z.C. Chen, S.P. Jiang, Pd/C promoted by Au for 2-propanol electrooxidation in alkaline media, Electrochem. Commun. 10 (2008) 246-249. https://doi.org/10.1016/j.elecom.2007.11.036
[95] W.S. Su, T.C. Leung, C.T. Chan, Work function of single-walled and multiwalled carbon nanotubes: First-principles study, Phys. Rev. B. 76 (2007). https://doi.org/10.1103/PhysRevB.76.235413
[96] G. Wu, B.Q. Xu, Carbon nanotube supported Pt electrodes for methanol oxidation: A comparison between multi- and single-walled carbon nanotubes, J. Power Sources. 174 (2007) 148-158. https://doi.org/10.1016/j.jpowsour.2007.08.024
[97] R.R. Sanganna Gari, Z. Li, L. Dong, Effects of different carbon nanotube supported catalysts on methanol and ethanol electro-oxidation, MRS Proceedings. 1213 (2009) 1213-T1208-1217.
[98] M. Kumar, Y. Ando, Chemical vapor deposition of carbon nanotubes: A review on growth mechanism and mass production, J. Nanosci. Nanotechno. 10 (2010) 3739-3758. https://doi.org/10.1166/jnn.2010.2939
[99] L.C. Qin, Determination of the chiral indices (n,m) of carbon nanotubes by electron diffraction, Phys. Chem. Chem. Phys. 9 (2007) 31-48. https://doi.org/10.1039/B614121H
[100] C.H. Hsu, P.L. Kuo, The use of carbon nanotubes coated with a porous nitrogen-doped carbon layer with embedded Pt for the methanol oxidation reaction, J. Power Sources. 198 (2012) 83-89. https://doi.org/10.1016/j.jpowsour.2011.10.012
[101] J.H. Lehman, M. Terrones, E. Mansfield, K.E. Hurst, V. Meunier, Evaluating the characteristics of multiwall carbon nanotubes, Carbon. 49 (2011) 2581-2602. https://doi.org/10.1016/j.carbon.2011.03.028
[102] Q.F. Yi, L.Z. Sun, X.P. Liu, H.D. Nie, Palladium-nickel nanoparticles loaded on multi-walled carbon nanotubes modified with beta-cyclodextrin for electrooxidation of alcohols, Fuel. 111 (2013) 88-95. https://doi.org/10.1016/j.fuel.2013.04.051
[103] J.M. Sieben, M.M.E. Duarte, Methanol, ethanol and ethylene glycol electro-oxidation at Pt and Pt-Ru catalysts electrodeposited over oxidized carbon nanotubes, Int. J. Hydrogen Energ. 37 (2012) 9941-9947. https://doi.org/10.1016/j.ijhydene.2012.01.173
[104] V.S. Kumar, M. Satyanarayana, K.Y. Goud, K.V. Gobi, Pd nanoparticles-embedded carbon nanotube interface for electrocatalytic oxidation of methanol toward DMFC applications, Clean. Technol. Envir. 20 (2018) 759-768. https://doi.org/10.1007/s10098-017-1449-3
[105] Y.Y. Zhou, C.H. Liu, J. Liu, X.L. Cai, Y. Lu, H. Zhang, X.H. Sun, S.D. Wang, Self-decoration of PtNi alloy nanoparticles on multiwalled carbon nanotubes for highly efficient methanol electro-oxidation, Nano-Micro. Lett. 8 (2016) 371-380. https://doi.org/10.1007/s40820-016-0096-2
[106] M. Zhao, Y. Ji, N. Zhong, Fabrication of ultrafine amorphous Pd-Ni-P nanoparticles supported on carbon nanotubes as an effective catalyst for electro-oxidation of methanol, Int. J. Electrochem. Sci. 11 (2016) 10488-10497. https://doi.org/10.20964/2016.12.61
[107] Z.H. Yang, A. Nagashima, T. Fujigaya, N. Nakashima, Electrocatalyst composed of platinum nanoparticles deposited on doubly polymer-coated carbon nanotubes shows a high CO-tolerance in methanol oxidation reaction, Int. J. Hydrogen Energ. 41 (2016) 19182-19190. https://doi.org/10.1016/j.ijhydene.2016.08.198
[108] Z.H. Yang, F. Luo, Pt nanoparticles deposited on dihydroxy-polybenzimidazole wrapped carbon nanotubes shows a remarkable durability in methanol electro-oxidation, Int. J. Hydrogen Energ. 42 (2017) 507-514. https://doi.org/10.1016/j.ijhydene.2016.10.148
[109] K. Kardimi, T. Tsoufis, A. Tomou, B.J. Kooi, M.I. Prodromidis, D. Gournis, Synthesis and characterization of carbon nanotubes decorated with Pt and PtRu nanoparticles and assessment of their electrocatalytic performance, Int. J. Hydrogen Energ. 37 (2012) 1243-1253. https://doi.org/10.1016/j.ijhydene.2011.09.143
[110] M. Xu, Z. Sun, Q. Chen, B.K. Tay, Effect of chemical oxidation on the gas sensing properties of multi-walled carbon nanotubes, Int. J. Nanotechnol. 6 (2009) 735-744. https://doi.org/10.1504/IJNT.2009.025311
[111] J.J. Yang, Y.Y. Chu, L. Li, H.T. Wang, Z. Dai, X.Y. Tan, Effects of calcination temperature and CeO2 contents on the performance of Pt/CeO2-CNTs hybrid nanotube catalysts for methanol oxidation, J. Appl. Electrochem. 46 (2016) 369-377. https://doi.org/10.1007/s10800-016-0931-7
[112] C.M. Zhou, H.J. Wang, J.H. Liang, F. Peng, H. Yu, J. Yang, Effects of RuO2content in Pt/RuO2/CNTs nanocatalyst on the electrocatalytic oxidation performance of methanol, Chinese J. Catal. 29 (2008) 1093-1098. https://doi.org/10.1016/S1872-2067(09)60007-3
[113] M.H. Huang, J.S. Zhang, C.X. Wu, L.H. Guan, Pt Nanoparticles densely coated on SnO2-covered multiwalled carbon nanotubes with excellent electrocatalytic activity and stability for methanol oxidation, Acs Appl. Mater. Interfaces. 9 (2017) 26921-26927. https://doi.org/10.1021/acsami.7b07866
[114] G. Liu, Z.C. Pan, W.Y. Li, K. Yu, G.W. Xia, Q.X. Zhao, S.K. Shi, G.H. Hu, C.M. Xiao, Z.G. Wei, The effect of titanium nickel nitride decorated carbon nanotubes-reduced graphene oxide hybrid support for methanol oxidation, Appl. Surf. Sci. 410 (2017) 70-78. https://doi.org/10.1016/j.apsusc.2017.03.075
[115] F. Peng, C.M. Zhou, H.J. Wang, H. Yu, J.H. Liang, J.A. Yang, The role of RuO2 in the electrocatalytic oxidation of methanol for direct methanol fuel cell, Catal. Commun. 10 (2009) 533-537. https://doi.org/10.1016/j.catcom.2008.10.037
[116] L. Li, Y. Qian, J.J. Yang, X.Y. Tan, Z. Dai, Y.X. Jin, H.T. Wang, W.L. Qu, Y.Y. Chu, A novel structural design of hybrid nanotube with CNTs and CeO2 supported Pt nanoparticles with improved performance for methanol electro-oxidation, Int. J. Hydrogen Energ. 41 (2016) 9284-9294. https://doi.org/10.1016/j.ijhydene.2016.04.069
[117] N. Kakati, J. Maiti, S.H. Jee, S.H. Lee, Y.S. Yoon, Hydrothermal synthesis of PtRu on CNT/SnO2 composite as anode catalyst for methanol oxidation fuel cell, J. Alloy. Compd. 509 (2011) 5617-5622. https://doi.org/10.1016/j.jallcom.2011.02.087
[118] M.C. Tsai, T.K. Yeh, C.H. Tsai, Methanol oxidation efficiencies on carbon-nanotube-supported platinum and platinum-ruthenium nanoparticles prepared by pulsed electrodeposition, Int. J. Hydrogen Energ. 36 (2011) 8261-8266. https://doi.org/10.1016/j.ijhydene.2011.03.107
[119] Y.R. Wang, Q.L. He, K.Q. Ding, H.G. Wei, J. Guo, Q. Wang, R. O’Connor, X.H. Huang, Z.P. Luo, T.D. Shen, S.Y. Wei, Z.H. Guo, Multiwalled carbon nanotubes composited with palladium nanocatalysts for highly efficient ethanol oxidation, J. Electrochem. Soc. 162 (2015) F755-F763. https://doi.org/10.1149/2.0751507jes
[120] C. Wen, X. Zhang, Y. Wei, T. Zhang, C. Chen, A facile self-assembly approach to prepare palladium/carbon nanotubes catalyst for the electro-oxidation of ethanol, Mater. Res. Express. 5 (2018) 025013. https://doi.org/10.1088/2053-1591/aaa9f0
[121] J.M. Sieben, M.M.E. Duarte, Nanostructured Pt and Pt-Sn catalysts supported on oxidized carbon nanotubes for ethanol and ethylene glycol electro-oxidation, Int. J. Hydrogen Energ. 36 (2011) 3313-3321. https://doi.org/10.1016/j.ijhydene.2010.12.020
[122] S. Thilaga, S. Durga, V. Selvarani, S. Kiruthika, B. Muthukumaran, Multiwalled carbon nanotube supported Pt-Sn-M (M = Ru, Ni, and Ir) catalysts for ethanol electrooxidation, Ionics. 24 (2018) 1721-1731. https://doi.org/10.1007/s11581-017-2349-6
[123] Q.F. Yi, H. Chu, Q.H. Chen, Z. Yang, X.P. Liu, High performance Pd, PdNi, PdSn and PdSnNi nanocatalysts supported on carbon nanotubes for electrooxidation of C2-C4 alcohols, Electroanal. 27 (2015) 388-397. https://doi.org/10.1002/elan.201400423
[124] H.Q. Song, X.P. Qiu, F.S. Li, Promotion of carbon nanotube-supported Pt catalyst for methanol and ethanol electro-oxidation by ZrO2 in acidic media, Appl. Catal a-Gen. 364 (2009) 1-7. https://doi.org/10.1016/j.apcata.2009.04.046
[125] H.Q. Song, X.P. Qiu, F.S. Li, W.T. Zhu, L.Q. Chen, Ethanol electro-oxidation on catalysts with TiO2 coated carbon nanotubes as support, Electrochem. Commun. 9 (2007) 1416-1421. https://doi.org/10.1016/j.elecom.2007.01.048
[126] H.L. Pang, J.P. Lu, J.H. Chen, C.T. Huang, B. Liu, X.H. Zhang, Preparation of SnO2-CNTs supported Pt catalysts and their electrocatalytic properties for ethanol oxidation, Electrochim. Acta. 54 (2009) 2610-2615. https://doi.org/10.1016/j.electacta.2008.10.058
[127] Q. Liu, K. Jiang, J.C. Fan, Y. Lin, Y.L. Min, Q.J. Xu, W.B. Cai, Manganese dioxide coated graphene nanoribbons supported palladium nanoparticles as an efficient catalyst for ethanol electrooxidation in alkaline media, Electrochim. Acta. 203 (2016) 91-98. https://doi.org/10.1016/j.electacta.2016.04.021
[128] V. Selvaraj, M. Vinoba, M. Alagar, Electrocatalytic oxidation of ethylene glycol on Pt and Pt-Ru nanoparticles modified multi-walled carbon nanotubes, J. Colloid. Interf. Sci. 322 (2008) 537-544. https://doi.org/10.1016/j.jcis.2008.02.069
[129] N.W. Maxakato, C.J. Arendse, K.I. Ozoemena, Insights into the electro-oxidation of ethylene glycol at Pt/Ru nanocatalysts supported on MWCNTs: Adsorption-controlled electrode kinetics, Electrochem. Commun. 11 (2009) 534-537. https://doi.org/10.1016/j.elecom.2008.12.038
[130] Z.P. Sun, X.G. Zhang, Y.Y. Liang, H.L. Li, A facile approach towards sulfonate functionalization of multi-walled carbon nanotubes as Pd catalyst support for ethylene glycol electro-oxidation, J. Power Sources. 191 (2009) 366-370. https://doi.org/10.1016/j.jpowsour.2009.01.093
[131] T. Ramulifho, K.I. Ozoemena, R.M. Modibedi, C.J. Jafta, M.K. Mathe, Electrocatalytic oxidation of ethylene glycol at palladium-bimetallic nanocatalysts (PdSn and PdNi) supported on sulfonate-functionalised multi-walled carbon nanotubes, J. Electroanal. Chem. 692 (2013) 26-30. https://doi.org/10.1016/j.jelechem.2012.12.010
[132] R. Khaleghian-Moghadam, M. Noroozifar, M. Khorasani-Motlagh, M.S. Ekrami-Kakhki, Electrochemical activities of platinum-decorated multi-wall carbon nanotube/chitosan composites for the oxidations of alcohols, J. Solid. State. Electr. 17 (2013) 643-654. https://doi.org/10.1007/s10008-012-1908-z
[133] Y.y. Zhang, Q.f. Yi, H. Chu, H.d. Nie, Catalytic activity of Pd-Ag nanoparticles supported on carbon nanotubes for the electro-oxidation of ethanol and propanol, J. Fuel Chem. Tech. 45 (2017) 475-483. https://doi.org/10.1016/S1872-5813(17)30026-9
[134] S.I. Kim, T. Yamamoto, A. Endo, T. Ohmori, M. Nakaiwa, Preparation of platinum nanoparticles supported on resorcinol-formaldehyde carbon cryogel microspheres, J. Ind. Eng. Chem. 12 (2006) 769-776.
[135] M. Enterria, J.L. Figueiredo, Nanostructured mesoporous carbons: Tuning texture and surface chemistry, Carbon. 108 (2016) 79-102. https://doi.org/10.1016/j.carbon.2016.06.108
[136] R.W. Pekala, Organic aerogels from the polycondensation of resorcinol with formaldehyde, J. Mater. Sci. 24 (1989) 3221-3227. https://doi.org/10.1007/BF01139044
[137] H. Tamon, H. Ishizaka, T. Yamamoto, T. Suzuki, Influence of freeze-drying conditions on the mesoporosity of organic gels as carbon precursors, Carbon. 38 (2000) 1099-1105. https://doi.org/10.1016/S0008-6223(99)00235-3
[138] P.V. Samant, J.B. Fernandes, C.M. Rangel, J.L. Figueiredo, Carbon xerogel supported Pt and Pt-Ni catalysts for electro-oxidation of methanol in basic medium, Catal. Today. 102 (2005) 173-176. https://doi.org/10.1016/j.cattod.2005.02.039
[139] H. Zhu, Z.J. Guo, X.W. Zhang, K.F. Han, Y.B. Guo, F.H. Wang, Z.M. Wang, Y.S. Wei, Methanol-tolerant carbon aerogel-supported Pt-Au catalysts for direct methanol fuel cell, Int. J. Hydrogen Energ. 37 (2012) 873-876. https://doi.org/10.1016/j.ijhydene.2011.04.032
[140] S.L. Wei, D.C. Wu, X.L. Shang, R.W. Fu, Studies on the structure and electrochemical performance of pt/carbon aerogel catalyst for direct methanol fuel cells, Energ. Fuel. 23 (2009) 908-911. https://doi.org/10.1021/ef8006432
[141] Y. Liu, M. Wei, J.Y. Qu, L.Q. Mao, Carbon aerogels supported Pt nanoparticles as electrocatalysts for methanol oxidation in alkaline media, J. Chin. Chem. Soc-Taip. 61 (2014) 404-408. https://doi.org/10.1002/jccs.201300637
[142] X.L. Wang, C. Li, G.Q. Shi, A high-performance platinum electrocatalyst loaded on a graphene hydrogel for high-rate methanol oxidation, Phys. Chem. Chem. Phys. 16 (2014) 10142-10148. https://doi.org/10.1039/c3cp54058h
[143] J.L. Duan, X.L. Zhang, W.J. Yuan, H.L. Chen, S. Jiang, X.W. Liu, Y.F. Zhang, L.M. Chang, Z.Y. Sun, J. Du, Graphene oxide aerogel-supported Pt electrocatalysts for methanol oxidation, J. Power Sources. 285 (2015) 76-79. https://doi.org/10.1016/j.jpowsour.2015.03.064
[144] L. Zhao, Z.B. Wang, J.L. Li, J.J. Zhang, X.L. Sui, L.M. Zhang, One-pot synthesis of a three-dimensional graphene aerogel supported Pt catalyst for methanol electrooxidation, Rsc Adv. 5 (2015) 98160-98165. https://doi.org/10.1039/C5RA20503D
[145] P. Kolla, K. Kerce, Y. Normah, H. Fong, A. Smirnova, Metal oxides modified mesoporous carbon supports as anode catalysts in DMFC, Ecs. Transactions. 45 (2013) 35-45. https://doi.org/10.1149/04521.0035ecst
[146] L. Zhao, Z.B. Wang, J.L. Li, J.J. Zhang, X.L. Sui, L.M. Zhang, Hybrid of carbon-supported Pt nanoparticles and three dimensional graphene aerogel as high stable electrocatalyst for methanol electrooxidation, Electrochim. Acta. 189 (2016) 175-183. https://doi.org/10.1016/j.electacta.2015.12.072
[147] C.H.A. Tsang, K.N. Hui, K.S. Hui, L. Ren, Deposition of Pd/graphene aerogel on nickel foam as a binder-free electrode for direct electro-oxidation of methanol and ethanol, J. Mater. Chem. A. 2 (2014) 17986-17993. https://doi.org/10.1039/C4TA03138E
[148] Y.J. Huo, F.F. Yao, Y.S. Ma, Catalytic Performance of graphite oxide supported Au nanoparticles in aerobic oxidation of benzyl alcohol: Support effect, Chinese J. Chem. Phys. 30 (2017) 90-96. https://doi.org/10.1063/1674-0068/30/cjcp1604088
[149] L. Ren, K.S. Hui, K.N. Hui, Self-assembled free-standing three-dimensional nickel nanoparticle/graphene aerogel for direct ethanol fuel cells, J. Mater. Chem. A. 1 (2013) 5689-5694. https://doi.org/10.1039/c3ta10657h
[150] X.F. Zhang, Z.Q. Tian, P.K. Shen, Composite of nanosized carbides and carbon aerogel and its supported Pd electrocatalyst for synergistic oxidation of ethylene glycol, Electrochem. Commun. 28 (2013) 9-12. https://doi.org/10.1016/j.elecom.2012.11.031
[151] A. Krittayavathananon, M. Sawangphruk, Electrocatalytic oxidation of ethylene glycol on palladium coated on 3D reduced graphene oxide aerogel paper in alkali media: Effects of carbon supports and hydrodynamic diffusion, Electrochim. Acta. 212 (2016) 237-246. https://doi.org/10.1016/j.electacta.2016.06.162
[152] A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, The electronic properties of graphene, Rev. Mod. Phys. 81 (2009) 109-162. https://doi.org/10.1103/RevModPhys.81.109
[153] S. Park, R.S. Ruoff, Chemical methods for the production of graphenes, Nat. Nanotechnol. 4 (2009) 217-224. https://doi.org/10.1038/nnano.2009.58
[154] Y.W. Zhu, S. Murali, W.W. Cai, X.S. Li, J.W. Suk, J.R. Potts, R.S. Ruoff, Graphene and graphene oxide: synthesis, properties, and applications, Adv. Mater. 22 (2010) 3906-3924. https://doi.org/10.1002/adma.201001068
[155] H.L. Gao, L.L. He, Y. Zhang, S.L. Zhang, L.Z. Wang, Facile synthesis of Pt nanoparticles supported on graphene/Vulcan XC-72 carbon and their application for methanol oxidation, Ionics. 23 (2017) 435-442. https://doi.org/10.1007/s11581-016-1861-4
[156] S. Woo, J. Lee, S.K. Park, H. Kim, T.D. Chung, Y. Piao, Enhanced electrocatalysis of PtRu onto graphene separated by Vulcan carbon spacer, J. Power Sources. 222 (2013) 261-266. https://doi.org/10.1016/j.jpowsour.2012.07.115
[157] Y.L. Ma, Q. Wang, Y.L. Miao, Y. Lin, R.Y. Li, Plasma synthesis of Pt nanoparticles on 3D reduced graphene oxidecarbon nanotubes nanocomposites towards methanol oxidation reaction, Appl. Surf. Sci. 450 (2018) 413-421. https://doi.org/10.1016/j.apsusc.2018.04.094
[158] S.H. Yang, F.F. Zhang, C.L. Gao, J.F. Xia, L. Lu, Z.H. Wang, A sandwich-like PtCo-graphene/carbon dots/graphene catalyst for efficient methanol oxidation, J. Electroanal. Chem. 802 (2017) 27-32. https://doi.org/10.1016/j.jelechem.2017.08.027
[159] R. Zhang, W.F. Xia, W.J. Kang, R. Li, K.G. Qu, Y.T. Zhang, B.L. Chen, H.S. Wang, Y.F. Sun, H.B. Li, Methanol oxidation reaction performance on graphene-supported ptag alloy nanocatalyst: Contrastive study of electronic and geometric effects induced from Ag doping, Chemistryselect. 3 (2018) 3615-3620. https://doi.org/10.1002/slct.201800010
[160] J.L. Xie, X.J. Yang, X.Y. Xu, C. Yang, Microwave synthesis of reduced graphene oxide-supported platinum nanocomposite with high electrocatalytic activity for methanol oxidation, Int. J. Electrochem. Sci. 12 (2017) 466-474. https://doi.org/10.20964/2017.01.42
[161] A. Eshghi, M. Kheirmand, M.M. Sabzehmeidani, platinum-iron nanoparticles supported on reduced graphene oxide as an improved catalyst for methanol electro oxidation, Int. J. Hydrogen Energ. 43 (2018) 6107-6116. https://doi.org/10.1016/j.ijhydene.2018.01.206
[162] F.H. Li, Y.Q. Guo, M.X. Chen, H.X. Qiu, X.Y. Sun, W. Wang, Y. Liu, J.P. Gao, Comparison study of electrocatalytic activity of reduced graphene oxide supported Pt-Cu bimetallic or Pt nanoparticles for the electrooxidation of methanol and ethanol, Int. J. Hydrogen Energ. 38 (2013) 14242-14249. https://doi.org/10.1016/j.ijhydene.2013.08.093
[163] J. Florez-Montano, A. Calderon-Cardenas, W. Lizcano-Valbuena, J.L. Rodriguez, E. Pastor, Ni@Pt nanodisks with low Pt content supported on reduced graphene oxide for methanol electrooxidation in alkaline media, Int. J. Hydrogen Energ. 41 (2016) 19799-19809. https://doi.org/10.1016/j.ijhydene.2016.06.166
[164] M.S. Ahmed, S. Jeon, Synthesis and electrocatalytic activity evaluation of nanoflower shaped Ni-Pd on alcohol oxidation reaction, J. Electrochem. Soc. 161 (2014) F1300-F1306. https://doi.org/10.1149/2.1041412jes
[165] Y. Yang, L.M. Luo, Y.F. Guo, Z.X. Dai, R.H. Zhang, C.H. Sun, X.W. Zhou, In situ synthesis of PtPd bimetallic nanocatalysts supported on graphene nanosheets for methanol oxidation using triblock copolymer as reducer and stabilizer, J. Electroanal. Chem. 783 (2016) 132-139. https://doi.org/10.1016/j.jelechem.2016.11.034
[166] H.X. Wang, L.M. Sheng, X.L. Zhao, K. An, Z.M. Ou, Y.H. Fang, One-step synthesis of Pt-Pd catalyst nanoparticles supported on few-layer graphene for methanol oxidation, Curr. Appl. Phys. 18 (2018) 898-904. https://doi.org/10.1016/j.cap.2018.04.006
[167] X.Y. Yan, T. Liu, J. Jin, S. Devaramani, D.D. Qin, X.Q. Lu, Well dispersed Pt-Pd bimetallic nanoparticles on functionalized graphene as excellent electro-catalyst towards electro-oxidation of methanol, J. Electroanal. Chem. 770 (2016) 33-38. https://doi.org/10.1016/j.jelechem.2016.03.033
[168] S. Themsirimongkon, K. Ounnunkad, S. Saipanya, Electrocatalytic enhancement of platinum and palladium metal on polydopamine reduced graphene oxide support for alcohol oxidation, J. Colloid Interf. Sci. 530 (2018) 98-112. https://doi.org/10.1016/j.jcis.2018.06.072
[169] R.N. Singh, R. Awasthi, Graphene support for enhanced electrocatalytic activity of Pd for alcohol oxidation, Catal. Sci. Technol. 1 (2011) 778-783. https://doi.org/10.1039/c1cy00021g
[170] S. Themsirimongkon, A. Khammamung, A. Pinithchaisakula, K. Ounangkad, S. Saipanya, Determination of PtAuPd metal sequences for electrodeposition on graphene oxide for anode catalyst improvement in methanol oxidation, Mol. Cryst. Liq. Cryst. 653 (2017) 164-176. https://doi.org/10.1080/15421406.2017.1351281
[171] E.J. Lim, Y. Kim, S.M. Choi, S. Lee, Y. Noh, W.B. Kim, Binary PdM catalysts (M = Ru, Sn, or Ir) over a reduced graphene oxide support for electro-oxidation of primary alcohols (methanol, ethanol, 1-propanol) under alkaline conditions, J. Mater. Chem. A. 3 (2015) 5491-5500. https://doi.org/10.1039/C4TA06893A
[172] H.Q. Ye, Y.M. Li, J.H. Chen, J.L. Sheng, X.Z. Fu, R. Sun, C.P. Wong, PdCu alloy nanoparticles supported on reduced graphene oxide for electrocatalytic oxidation of methanol, J. Mater. Sci. 53 (2018) 15871-15881. https://doi.org/10.1007/s10853-018-2759-5
[173] F. Yang, B. Zhang, S. Dong, Y.S. Tang, L.Q. Hou, Z. Chen, Z.H. Li, W. Yang, C. Xu, M.J. Wang, Y. Li, Y.F. Li, Silica nanosphere supported palladium nanoparticles encapsulated with graphene: High-performance electrocatalysts for methanol oxidation reaction, Appl. Surf. Sci. 452 (2018) 11-18. https://doi.org/10.1016/j.apsusc.2018.05.022
[174] T.H.T. Vu, T.T.T. Tran, H.N.T. Le, L.T. Tran, P.H.T. Nguyen, H.T. Nguyen, N.Q. Bui, Solvothermal synthesis of Pt -SiO2/graphene nanocomposites as efficient electrocatalyst for methanol oxidation, Electrochim. Acta. 161 (2015) 335-342. https://doi.org/10.1016/j.electacta.2015.02.100
[175] H.Q. Zhang, X. Han, Y. Zhao, Pd-TiO2 nanoparticles supported on reduced graphene oxide: Green synthesis and improved electrocatalytic performance for methanol oxidation, J. Electroanal. Chem. 799 (2017) 84-91. https://doi.org/10.1016/j.jelechem.2017.05.026
[176] L.T. Ye, Z.S. Li, L. Zhang, F.L. Lei, S. Lin, A green one-pot synthesis of Pt/TiO2/graphene composites and its electro-photo-synergistic catalytic properties for methanol oxidation, J. Colloid Interf. Sci. 433 (2014) 156-162. https://doi.org/10.1016/j.jcis.2014.06.012
[177] W. Zhuang, L.J. He, J.H. Zhu, R. An, X.B. Wu, L.W. Mu, X.H. Lu, L.H. Lu, X.J. Liu, H.J. Ying, TiO2 nanofibers heterogeneously wrapped with reduced graphene oxide as efficient Pt electrocatalyst supports for methanol oxidation, Int. J. Hydrogen. Energ. 40 (2015) 3679-3688. https://doi.org/10.1016/j.ijhydene.2015.01.042
[178] R. Liu, H.H. Zhou, J. Liu, Y. Yao, Z.Y. Huang, C.P. Fu, Y.F. Kuang, Preparation of Pd/MnO2-reduced graphene oxide nanocomposite for methanol electro-oxidation in alkaline media, Electrochem. Commun. 26 (2013) 63-66. https://doi.org/10.1016/j.elecom.2012.10.019
[179] C.S. Sharma, A.S.K. Sinha, R.N. Singh, Use of graphene-supported manganite nano-composites for methanol electrooxidation, Int. J. Hydrogen Energ. 39 (2014) 20151-20158. https://doi.org/10.1016/j.ijhydene.2014.10.019
[180] B. Celik, G. Baskaya, H. Sert, O. Karatepe, E. Erken, F. Sen, Monodisperse Pt(0)/DPA@GO nanoparticles as highly active catalysts for alcohol oxidation and dehydrogenation of DMAB, Int. J. Hydrogen Energ. 41 (2016) 5661-5669. https://doi.org/10.1016/j.ijhydene.2016.02.061
[181] J. Zhang, A. Feng, J. Bai, Z. Tan, W. Shao, Y. Yang, W. Hong, Z. Xiao, One-pot synthesis of hierarchical flower-like Pd-Cu alloy support on graphene towards ethanol oxidation, Nanoscale Res. Lett. 12 (2017) 521. https://doi.org/10.1186/s11671-017-2290-7
[182] Q. Dong, Y. Zhao, X. Han, Y. Wang, M.C. Liu, Y. Li, Pd/Cu bimetallic nanoparticles supported on graphene nanosheets: Facile synthesis and application as novel electrocatalyst for ethanol oxidation in alkaline media, Int. J. Hydrogen Energ. 39 (2014) 14669-14679. https://doi.org/10.1016/j.ijhydene.2014.06.139
[183] F. Wang, J.S. Qiao, J. Wang, H.T. Wu, X.Y. Yue, Z.H. Wang, W. Sun, K.N. Sun, Reduced graphene oxide supported Ni@Au@Pd core@bishell nanoparticles as highly active electrocatalysts for ethanol oxidation reactions and alkaline direct bioethanol fuel cells applications, Electrochim. Acta. 271 (2018) 1-9. https://doi.org/10.1016/j.electacta.2018.03.013
[184] G.H. Jeong, D. Choi, M. Kang, J. Shin, J.G. Kang, S.W. Kim, One-pot synthesis of Au@ Pd/graphene nanostructures: electrocatalytic ethanol oxidation for direct alcohol fuel cells (DAFCs), Rsc Adv. 3 (2013) 8864-8870. https://doi.org/10.1039/c3ra40505b
[185] Q.F. Zhang, X.F. Wu, M.Y. Gao, H.F. Qiu, J. Hu, K.K. Huang, S.H. Feng, Y. Yang, T.T. Wang, B. Zhao, Z.L. Liu, Highly active electrocatalyst of 3D Pd/reduced graphene oxide nanostructure for electro-oxidation of methanol and ethanol, Inorg. Chem. Commun. 94 (2018) 43-47. https://doi.org/10.1016/j.inoche.2018.05.028
[186] N. Alfi, M.Z. Yazdan-Abad, A. Rezvani, M. Noroozifar, M. Khorasani-Motlagh, Three-dimensional Pd-Cd nanonetwork decorated on reduced graphene oxide by a galvanic method as a novel electrocatalyst for ethanol oxidation in alkaline media, J. Power Sources. 396 (2018) 742-748. https://doi.org/10.1016/j.jpowsour.2018.06.080
[187] H.V. Hien, T.D. Thanh, N.D. Chuong, D. Hui, N.H. Kim, J.H. Lee, Hierarchical porous framework of ultrasmall PtPd alloy-integrated graphene as active and stable catalyst for ethanol oxidation, Compos. Part B-Eng. 143 (2018) 96-104. https://doi.org/10.1016/j.compositesb.2018.02.013
[188] Y.Y. Zheng, J.H. Qiao, J.H. Yuan, J.F. Shen, A.J. Wang, S.T. Huang, Controllable synthesis of PtPd nanocubes on graphene as advanced catalysts for ethanol oxidation, Int. J. Hydrogen Energ. 43 (2018) 4902-4911. https://doi.org/10.1016/j.ijhydene.2018.01.131
[189] T. Oznuluer, U. Demir, H.O. Dogan, Fabrication of underpotentially deposited Cu monolayer/electrochemically reduced graphene oxide layered nanocomposites for enhanced ethanol electro-oxidation, Appl. Catal. B-Environ. 235 (2018) 56-65. https://doi.org/10.1016/j.apcatb.2018.04.065
[190] D. Puthusseri, S. Ramaprabhu, Platinum and SnO2 Decorated graphene sheets as ethanol oxidation electrocatalyst in acidic medium, Graphene. 3 (2015) 29-33. https://doi.org/10.1166/graph.2015.1051
[191] Y.T. Qu, Y.Z. Gao, L. Wang, J.C. Rao, G.P. Yin, Mild synthesis of Pt/SnO2/graphene nanocomposites with remarkably enhanced ethanol electro-oxidation activity and durability, Chem. Eur. J. 22 (2016) 193-198. https://doi.org/10.1002/chem.201503867
[192] A.E. Fahim, R.M.A. Hameed, N.K. Allam, Synthesis and characterization of core-shell structured M@Pd/SnO2-graphene [M = Co, Ni or Cu] electrocatalysts for ethanol oxidation in alkaline solution, New J. Chem. 42 (2018) 6144-6160. https://doi.org/10.1039/C8NJ01078A
[193] Q. He, S. Mukerjee, B. Shyam, D. Ramaker, S. Parres-Esclapez, M.J. Illan-Gomez, A. Bueno-Lopez, Promoting effect of CeO2 in the electrocatalytic activity of rhodium for ethanol electro-oxidation, J. Power Sources. 193 (2009) 408-415. https://doi.org/10.1016/j.jpowsour.2009.03.056
[194] K. Kakaei, A. Rahimi, S. Husseindoost, M. Hamidi, H. Javan, A. Balavandi, Fabrication of Pt-CeO2 nanoparticles supported sulfonated reduced graphene oxide as an efficient electrocatalyst for ethanol oxidation, Int. J. Hydrogen Energ. 41 (2016) 3861-3869. https://doi.org/10.1016/j.ijhydene.2016.01.013
[195] D.V. Kosynkin, A.L. Higginbotham, A. Sinitskii, J.R. Lomeda, A. Dimiev, B.K. Price, J.M. Tour, Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons, Nature. 458 (2009) 872. https://doi.org/10.1038/nature07872
[196] D. Rajesh, P.I. Neel, A. Pandurangan, C. Mahendiran, Pd-NiO decorated multiwalled carbon nanotubes supported on reduced graphene oxide as an efficient electrocatalyst for ethanol oxidation in alkaline medium, Appl. Surf. Sci. 442 (2018) 787-796. https://doi.org/10.1016/j.apsusc.2018.02.174
[197] R.R. Yue, H.W. Wang, D. Bin, J.K. Xu, Y.K. Du, W.S. Lu, J. Guo, Facile one-pot synthesis of Pd-PEDOT/graphene nanocomposites with hierarchical structure and high electrocatalytic performance for ethanol oxidation, J. Mater. Chem. A. 3 (2015) 1077-1088. https://doi.org/10.1039/C4TA05131A
[198] S. Shahrokhian, S. Rezaee, Fabrication of trimetallic Pt-Pd-Co porous nanostructures on reduced graphene oxide by galvanic replacement: Application to electrocatalytic oxidation of ethylene glycol, Electroanal. 29 (2017) 2591-2601. https://doi.org/10.1002/elan.201700355
[199] F.Q. Shao, X.X. Lin, J.J. Feng, J. Yuan, J.R. Chen, A.J. Wang, Simple fabrication of core-shell AuPt@Pt nanocrystals supported on reduced graphene oxide for ethylene glycol oxidation and hydrogen evolution reactions, Electrochim. Acta. 219 (2016) 321-329. https://doi.org/10.1016/j.electacta.2016.09.158
[200] J.N. Zheng, J.J. Lv, S.S. Li, M.W. Xue, A.J. Wang, J.J. Feng, One-pot synthesis of reduced graphene oxide supported hollow Ag@Pt core-shell nanospheres with enhanced electrocatalytic activity for ethylene glycol oxidation, J. Mater. Chem. A. 2 (2014) 3445-3451. https://doi.org/10.1039/c3ta13935b
[201] P. Wu, Y.Y. Huang, L.T. Kang, M.X. Wu, Y.B. Wang, Multisource synergistic electrocatalytic oxidation effect of strongly coupled PdM (M = Sn, Pb)/N-doped graphene nanocomposite on small organic molecules, Sci. Rep-Uk. 5 (2015) 14173. https://doi.org/10.1038/srep14173
[202] C.W. Xu, P.K. Shen, Novel Pt/CeO2/C catalysts for electrooxidation of alcohols in alkaline media, Chem. Commun. (2004) 2238-2239. https://doi.org/10.1039/b408589b
[203] Q. He, Y. Shen, K.J. Xiao, J.Y. Xi, X.P. Qiu, Alcohol electro-oxidation on platinum-ceria/graphene nanosheet in alkaline solutions, Int. J. Hydrogen Energ. 41 (2016) 20709-20719. https://doi.org/10.1016/j.ijhydene.2016.07.205
[204] L. Zhang, Y. Shen, One-pot synthesis of platinum-ceria/graphene nanosheet as advanced electrocatalysts for alcohol oxidation, Chemelectrochem. 2 (2015) 887-895. https://doi.org/10.1002/celc.201402432
[205] J.R.C. Salgado, V.A. Paganin, E.R. Gonzalez, M.F. Montemor, I. Tacchini, A. Anson, M.A. Salvador, P. Ferreira, F.M.L. Figueiredo, M.G.S. Ferreira, Characterization and performance evaluation of Pt-Ru electrocatalysts supported on different carbon materials for direct methanol fuel cells, Int. J. Hydrogen Energ. 38 (2013) 910-920. https://doi.org/10.1016/j.ijhydene.2012.10.079
[206] J.B. Joo, P. Kim, W. Kim, J. Yi, Preparation and application of mesocellular carbon foams to catalyst support in methanol electro-oxidation, Catal. Today. 131 (2008) 219-225. https://doi.org/10.1016/j.cattod.2007.10.086
[207] D. Morales-Acosta, F.J. Rodriguez-Varela, R. Benavides, Template-free synthesis of ordered mesoporous carbon: Application as support of highly active Pt nanoparticles for the oxidation of organic fuels, Int. J. Hydrogen Energ. 41 (2016) 3387-3398. https://doi.org/10.1016/j.ijhydene.2015.10.114
[208] S.Q. Song, K. Wang, Y.H. Liu, C.X. He, Y.R. Liang, R.W. Fu, D.C. Wu, Y. Wang, Highly ordered mesoporous carbons as the support for Pt catalysts towards alcohol electrooxidation: The combined effect of pore size and electrical conductivity, Int. J. Hydrogen Energ. 38 (2013) 1405-1412. https://doi.org/10.1016/j.ijhydene.2012.11.029
[209] L.R. Nan, W.B. Yue, Exceptional electrocatalytic activity and selectivity of platinum@nitrogen-doped mesoporous carbon nanospheres for alcohol oxidation, Acs Appl. Mater. Inter.10 (2018) 26213-26221. https://doi.org/10.1021/acsami.8b06347
[210] J.R.C. Salgado, F. Alcaide, G. Alvarez, L. Calvillo, M.J. Lazaro, E. Pastor, Pt-Ru electrocatalysts supported on ordered mesoporous carbon for direct methanol fuel cell, J. Power Sources. 195 (2010) 4022-4029. https://doi.org/10.1016/j.jpowsour.2010.01.001
[211] S. Sharma, B.G. Pollet, Support materials for PEMFC and DMFC electrocatalysts-A review, J. Power Sources. 208 (2012) 96-119. https://doi.org/10.1016/j.jpowsour.2012.02.011
[212] R. Ryoo, S.H. Joo, S. Jun, Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation, J. Phys. Chem. B. 103 (1999) 7743-7746. https://doi.org/10.1021/jp991673a
[213] R. Ryoo, S.H. Joo, M. Kruk, M. Jaroniec, Ordered mesoporous carbons, Adv. Mater. 13 (2001) 677-681. https://doi.org/10.1002/1521-4095(200105)13:9<677::AID-ADMA677>3.0.CO;2-C
[214] B. Kuppan, P. Selvam, Platinum-supported mesoporous carbon (Pt/CMK-3) as anodic catalyst for direct methanol fuel cell applications: The effect of preparation and deposition methods, Prog. Nat. Sci-Mater. 22 (2012) 616-624. https://doi.org/10.1016/j.pnsc.2012.11.005
[215] L.B. Kong, H. Li, J. Zhang, Y.C. Luo, L. Kang, Platinum catalyst on ordered mesoporous carbon with controlled morphology for methanol electrochemical oxidation, Appl. Surf. Sci. 256 (2010) 6688-6693. https://doi.org/10.1016/j.apsusc.2010.04.071
[216] Z.P. Sun, X.G. Zhang, Y.Y. Liang, H. Tong, R.L. Xue, S.D. Yang, H.L. Li, Ordered mesoporous carbons (OMCs) as supports of electrocatalysts for direct methanol fuel cells (DMFCs): Effect of the pore characteristics of OMCs on DMFCs, J. Electroanal. Chem. 633 (2009) 1-6. https://doi.org/10.1016/j.jelechem.2009.04.013
[217] W.F. Liu, X.P. Qin, X.F. Zhang, Z.G. Shao, B.L. Yi, Wormholelike mesoporous carbon supported PtRu catalysts toward methanol electrooxidation, J. Energy Chem. 26 (2017) 200-206. https://doi.org/10.1016/j.jechem.2016.08.003
[218] F.J. Li, K.Y. Chan, H. Yung, C.Z. Yang, S.W. Ting, Uniform dispersion of 1: 1 PtRu nanoparticles in ordered mesoporous carbon for improved methanol oxidation, Phys. Chem. Chem. Phys. 15 (2013) 13570-13577. https://doi.org/10.1039/c3cp00153a
[219] D.S. Yuan, X.L. Yuan, W.J. Zou, F.L. Zeng, X.J. Huang, S.L. Zhou, Synthesis of graphitic mesoporous carbon from sucrose as a catalyst support for ethanol electro-oxidation, J. Mater. Chem. 22 (2012) 17820-17826. https://doi.org/10.1039/c2jm33658h
[220] M.H. Chen, Y.X. Jiang, S.R. Chen, R. Huang, J.L. Lin, S.P. Chen, S.G. Sun, Synthesis and durability of highly dispersed platinum nanoparticles supported on ordered mesoporous carbon and their electrocatalytic properties for ethanol oxidation, J. Phys. Chem. C. 114 (2010) 19055-19061. https://doi.org/10.1021/jp1091398
[221] Z.X. Yan, H. Meng, L. Shi, Z.H. Li, P.K. Shen, Synthesis of mesoporous hollow carbon hemispheres as highly efficient Pd electrocatalyst support for ethanol oxidation, Electrochem. Commun. 12 (2010) 689-692. https://doi.org/10.1016/j.elecom.2010.03.007
[222] M.A. Hogue, D.C. Higgins, F.M. Hassan, J.Y. Choi, M.D. Pritzker, Z.W. Chen, Tin oxide – mesoporous carbon composites as platinum catalyst supports for ethanol oxidation and oxygen reduction, Electrochim. Acta. 121 (2014) 421-427. https://doi.org/10.1016/j.electacta.2013.12.075
[223] A.Y. Lo, Y.C. Chung, W.H. Hung, Y.C. Hsu, C.M. Tseng, W.L. Zhang, F.K. Wang, C.Y. Lin, Pt20RuxSny nanoparticles dispersed on mesoporous carbon CMK-3 and their application in the oxidation of 2-carbon alcohols and fermentation effluent, Electrochim. Acta. 225 (2017) 207-214. https://doi.org/10.1016/j.electacta.2016.12.098
[224] S.K. Park, H. Lee, M.S. Choi, D.H. Suh, P. Nakhanivej, H.S. Park, Straightforward and controllable synthesis of heteroatom-doped carbon dots and nanoporous carbons for surface-confined energy and chemical storage, Energy Storage Mater. 12 (2018) 331-340. https://doi.org/10.1016/j.ensm.2017.10.008
[225] D.D. Zhu, L.J. Li, J.J. Cai, M. Jiang, J.B. Qi, X.B. Zhao, Nitrogen-doped porous carbons from bipyridine-based metal-organic frameworks: Electrocatalysis for oxygen reduction reaction and Pt-catalyst support for methanol electrooxidation, Carbon. 79 (2014) 544-553. https://doi.org/10.1016/j.carbon.2014.08.013
[226] Z.L. Liu, F.B. Su, X.H. Zhang, S.W. Tay, Preparation and characterization of PtRu nanoparticles supported on nitrogen-doped porous carbon for electrooxidation of methanol, Acs Appl. Mater. Inter. 3 (2011) 3824-3830. https://doi.org/10.1021/am2010515
[227] L.M. Zhang, Z.B. Wang, J.J. Zhang, X.L. Sui, L. Zhao, D.M. Gu, Honeycomb-like mesoporous nitrogen-doped carbon supported Pt catalyst for methanol electrooxidation, Carbon. 93 (2015) 1050-1058. https://doi.org/10.1016/j.carbon.2015.06.022
[228] Y.Q. Chang, F. Hong, J.X. Liu, M.S. Xie, Q.L. Zhang, C.X. He, H.B. Niu, J.H. Liu, Nitrogen/sulfur dual-doped mesoporous carbon with controllable morphology as a catalyst support for the methanol oxidation reaction, Carbon. 87 (2015) 424-433. https://doi.org/10.1016/j.carbon.2015.02.063
[229] H.J. Huang, G.L. Ye, S.B. Yang, H.L. Fei, C.S. Tiwary, Y.J. Gong, R. Vajtai, J.M. Tour, X. Wang, P.M. Ajayan, Nanosized Pt anchored onto 3D nitrogen-doped graphene nanoribbons towards efficient methanol electrooxidation, J. Mater. Chem. A. 3 (2015) 19696-19701. https://doi.org/10.1039/C5TA05372B
[230] F.B. Su, Z.Q. Tian, C.K. Poh, Z. Wang, S.H. Lim, Z.L. Liu, J.Y. Lin, Pt Nanoparticles supported on nitrogen-doped porous carbon nanospheres as an electrocatalyst for fuel cells, Chem. Mater. 22 (2010) 832-839. https://doi.org/10.1021/cm901542w
[231] B. Xiong, Y.K. Zhou, Y.Y. Zhao, J. Wang, X. Chen, R. O’Hayre, Z.P. Shao, The use of nitrogen-doped graphene supporting Pt nanoparticles as a catalyst for methanol electrocatalytic oxidation, Carbon. 52 (2013) 181-192. https://doi.org/10.1016/j.carbon.2012.09.019
[232] X. Zhang, N. Hao, X.Y. Dong, S.B. Chen, Z. Zhou, Y. Zhang, K. Wang, One-pot hydrothermal synthesis of platinum nanoparticle-decorated three-dimensional nitrogen-doped graphene aerogel as a highly efficient electrocatalyst for methanol oxidation, Rsc Adv. 6 (2016) 69973-69976. https://doi.org/10.1039/C6RA12562J
[233] L. Zhao, X.L. Sui, J.Z. Li, J.J. Zhang, L.M. Zhang, G.S. Huang, Z.B. Wang, Supramolecular assembly promoted synthesis of three-dimensional nitrogen doped graphene frameworks as efficient electrocatalyst for oxygen reduction reaction and methanol electrooxidation, Appl. Catal B-Environ. 231 (2018) 224-233. https://doi.org/10.1016/j.apcatb.2018.03.020
[234] L. Zhao, X.L. Sui, J.L. Li, J.J. Zhang, L.M. Zhang, Z.B. Wang, Ultra-fine Pt nanoparticles supported on 3D porous N-doped graphene aerogel as a promising electro-catalyst for methanol electrooxidation, Catal. Commun. 86 (2016) 46-50. https://doi.org/10.1016/j.catcom.2016.08.011
[235] L.M. Zhang, X.L. Sui, L. Zhao, J.J. Zhang, D.M. Gu, Z.B. Wang, Nitrogen-doped carbon nanotubes for high-performance platinum-based catalysts in methanol oxidation reaction, Carbon. 108 (2016) 561-567. https://doi.org/10.1016/j.carbon.2016.07.059
[236] S.Y. Wang, T. Cochell, A. Manthiram, Boron-doped carbon nanotube-supported Pt nanoparticles with improved CO tolerance for methanol electro-oxidation, Phys. Chem. Chem. Phys. 14 (2012) 13910-13913. https://doi.org/10.1039/c2cp42414b
[237] Z.W. Liu, Q.Q. Shi, F. Peng, H.J. Wang, R.F. Zhang, H. Yu, Pt supported on phosphorus-doped carbon nanotube as an anode catalyst for direct methanol fuel cells, Electrochem. Commun. 16 (2012) 73-76. https://doi.org/10.1016/j.elecom.2011.11.033
[238] J.J. Fan, Y.J. Fan, R.X. Wang, S. Xiang, H.G. Tang, S.G. Sun, A novel strategy for the synthesis of sulfur-doped carbon nanotubes as a highly efficient Pt catalyst support toward the methanol oxidation reaction, J. Mater. Chem. A. 5 (2017) 19467-19475. https://doi.org/10.1039/C7TA05102F
[239] X.M. Ning, Y.H. Li, B.Q. Dong, H.J. Wang, H. Yu, F. Peng, Y.H. Yang, Electron transfer dependent catalysis of Pt on N-doped carbon nanotubes: Effects of synthesis method on metal-support interaction, J. Catal. 348 (2017) 100-109. https://doi.org/10.1016/j.jcat.2017.02.011
[240] H.Y. Du, C.H. Wang, H.C. Hsu, S.T. Chang, U.S. Chen, S.C. Yen, L.C. Chen, H.C. Shih, K.H. Chen, Controlled platinum nanoparticles uniformly dispersed on nitrogen-doped carbon nanotubes for methanol oxidation, Diam. Relat. Mater. 17 (2008) 535-541. https://doi.org/10.1016/j.diamond.2008.01.116
[241] Y.R. Sun, C.Y. Du, M.C. An, L. Du, Q. Tan, C.T. Liu, Y.Z. Gao, G.P. Yin, Boron-doped graphene as promising support for platinum catalyst with superior activity towards the methanol electrooxidation reaction, J. Power Sources. 300 (2015) 245-253. https://doi.org/10.1016/j.jpowsour.2015.09.046
[242] M.M. Li, Q.G. Jiang, M.M. Yan, Y.J. Wei, J.B. Zong, J.F. Zhang, Y.P. Wu, H.J. Huang, Three-dimensional boron- and nitrogen-Codoped graphene aerogel-supported Pt nanoparticles as highly active electrocatalysts for methanol oxidation reaction, Acs Sustain. Chem. Eng. 6 (2018) 6644-6653. https://doi.org/10.1021/acssuschemeng.8b00425
[243] V. Deerattrakul, P. Puengampholsrisook, W. Limphirat, P. Kongkachuichay, Characterization of supported Cu-Zn/graphene aerogel catalyst for direct CO2 hydrogenation to methanol: Effect of hydrothermal temperature on graphene aerogel synthesis, Catal. Today. 314 (2018) 154-163. https://doi.org/10.1016/j.cattod.2017.12.010
[244] D.X. Yu, A.J. Wang, L.L. He, J.H. Yuan, L. Wu, J.R. Chen, J.J. Feng, Facile synthesis of uniform AuPd@Pd nanocrystals supported on three-dimensional porous N-doped reduced graphene oxide hydrogels as highly active catalyst for methanol oxidation reaction, Electrochim. Acta. 213 (2016) 565-573. https://doi.org/10.1016/j.electacta.2016.07.141
[245] J. Wang, R. Huang, Y.J. Zhang, J.Y. Diao, J.Y. Zhang, H.Y. Liu, D.S. Su, Nitrogen-doped carbon nanotubes as bifunctional catalysts with enhanced catalytic performance for selective oxidation of ethanol, Carbon. 111 (2017) 519-528. https://doi.org/10.1016/j.carbon.2016.10.038
[246] H.L. Yang, X.Y. Zhang, H. Zou, Z.N. Yu, S.W. Li, J.H. Sun, S.D. Chen, J. Jin, J.T. Ma, Palladium nanoparticles anchored on three-dimensional nitrogen-doped carbon nanotubes as a robust electrocatalyst for ethanol oxidation, Acs Sustain. Chem. Eng. 6 (2018) 7918-7923. https://doi.org/10.1021/acssuschemeng.8b01157
[247] H. Wang, Y.J. Ma, W.Z. Lv, S. Ji, J.L. Key, R.F. Wang, Platinum-tin nanowires anchored on a nitrogen-doped nanotube composite embedded with iron/iron carbide particles as an ethanol oxidation electrocatalyst, J. Electrochem. Soc. 162 (2015) H79-H85. https://doi.org/10.1149/2.1031501jes
[248] J.C.M. Silva, I.C. de Freitas, A.O. Neto, E.V. Spinace, V.A. Ribeiro, Palladium nanoparticles supported on phosphorus-doped carbon for ethanol electro-oxidation in alkaline media, Ionics. 24 (2018) 1111-1119. https://doi.org/10.1007/s11581-017-2257-9
[249] J.G. Yu, M.M. Jia, T.M. Dai, F.M. Qin, Y.N. Zhao, Nitrogen-doped graphene supporting PtSn nanoparticles with a tunable microstructure to enhance the activity and stability for ethanol oxidation, J. Solid State. Electr. 21 (2017) 967-974. https://doi.org/10.1007/s10008-016-3449-3
[250] M. Boulaghi, H.G. Taleghani, M.S. Lashkenari, M. Ghorbani, Platinum-palladium nanoparticles-loaded on N-doped graphene oxide/polypyrrole framework as a high performance electrode in ethanol oxidation reaction, Int. J. Hydrogen Energ. 43 (2018) 15164-15175. https://doi.org/10.1016/j.ijhydene.2018.06.092
[251] H. Xu, B. Yan, K. Zhang, J. Wang, S.M. Li, C.Q. Wang, Y. Shiraishi, Y.K. Du, P. Yang, Ultrasonic-assisted synthesis of N-doped graphene-supported binary PdAu nanoflowers for enhanced electro-oxidation of ethylene glycol and glycerol, Electrochim. Acta. 245 (2017) 219-228. https://doi.org/10.1016/j.electacta.2017.05.146
[252] Y. Yang, W. Wang, Y.Q. Liu, F.X. Wang, D. Chai, Z.Q. Lei, Pd nanoparticles supported on phenanthroline modified carbon as high active electrocatalyst for ethylene glycol oxidation, Electrochim. Acta. 154 (2015) 1-8. https://doi.org/10.1016/j.electacta.2014.12.072