Textile Palm Fibers from Amazon Biome

Textile Palm Fibers from Amazon Biome

Lais Gonçalvez Andrade Pennas, Ivete Maria Cattani, Barbara Leonardi, Abdel-Fattah M. Seyam, Mohamad Midani, Amanda Sousa Monteiro, Julia Baruque-Ramos

download PDF

Abstract. There are several species of Amazon palm trees from which can be obtained: food and oils (fruits and seeds), medicinal products, construction material (logs and leaves), handicraft, textiles, etc. Taking in account textile fibers, three palm origins stand out: tucum (Astrocaryum chambira Burret), buriti (Mauritia flexuosa Mart.) and tururi (Manicaria saccifera Gaertn.). Tucum fibers, obtained from grown leaves, are used in the manufacture of fabrics, handicrafts, nets, yarns and fishing nets. Buriti presents multiple uses, especially for handicraft products. A soft fiber (“linen”) and another harder and rougher (“draff”) are removed from the young leaves of the buriti palm, both being used. Tururi is the sac that wraps the fruits of the Ubuçu palm tree. The material is constantly used by the Amazonian riverside population and by artisans for handicrafts, fashion items and other products for tourism. In a joint project of the North Carolina State University (USA) and University of São Paulo (Brazil), multilayer composite materials were developed and characterized in 3D structure with quite promising results in terms of resistance and aesthetic finish similar to wood. Thus, the traditional and innovative uses of native vegetable fibers are ways of valuing the regional product and preserving their respective ecosystems.

Keywords
textile, palm fibers, Amazonia, Brazil, tucum, buriti, tururi, composite

Published online 4/20/2019, 13 pages
Copyright © 2019 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: Lais Gonçalvez Andrade Pennas, Ivete Maria Cattani, Barbara Leonardi, Abdel-Fattah M. Seyam, Mohamad Midani, Amanda Sousa Monteiro, Julia Baruque-Ramos, Textile Palm Fibers from Amazon Biome, Materials Research Proceedings, Vol. 11, pp 262-274, 2019

DOI: https://doi.org/10.21741/9781644900178-22

The article was published as article 22 of the book By-Products of Palm Trees and Their Applications

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References
[1] I. M. Cattani, Buriti fiber (Mauritia flexuosa Mart.): registration in local community (Barreirinhas-MA, Brazil), physicochemical characterization and study of impregnation with resins, MSc thesis, University of Sao Paulo (Brazil), 2016. https://doi.org/10.11606/d.100.2016.tde-29092016-100227
[2] V. Froes et al., Especies botanicas do artesanato, in: V. Froes (Ed.), Linha do Tucum: Artesanato da Amazonia, Instituto de Estudos da Cultura Amazonica, Rio de Janeiro, 2010, pp. 72-105. https://doi.org/10.18542/amazonica.v6i2.1875
[3] A. S. Monteiro et al., Tururi palm fibrous material (Manicaria saccifera Gaertn.) characterization. Green Materials 3-4 (2016) 120-131. https://doi.org/10.1680/jgrma.15.00024
[4] N. Nunes, Documentary “Linha do Tucum: a linha da lealdade”. Direction Noilton Nunes. Production Imagine Filmes. 2009. 50 min.
[5] L. A. G. Pennas, J. Baruque-Ramos, Tucum fiber: reflections about Amazonian biodiversity, traditional knowledge and sustainable fashion, in: 4th International Fashion and Design Congress (CIMODE 2018), CRC Press/Balkema, Boca Raton, 2018, in press.
[6] M. A. Goulart, Buriti Photography Catalog. State of Maranhao (Brazil), 2014.
[7] I. M. Cattani, J. Baruque-Ramos, Brazilian Buriti Palm Fiber (Mauritia flexuosa Mart.), in: R. Fangueiro, S. Rana (Eds.), Natural Fibres: Advances in Science and Technology Towards Industrial Applications. Springer Netherlands, Heidelberg, 2016, pp. 89-98. https://doi.org/10.1007/978-94-017-7515-1_7
[8] I. M. Cattani, Video “Fibra de Buriti: da folha ao produto – Artesanato e Design”. 2016. 3:57 min.
[9] A. S. Monteiro, Tururi (Manicaria saccifera Gaertn.): textile characterization, processes and handicraft techniques in Amazon local community (PA – Brazil), MSc thesis, University of Sao Paulo (Brazil), 2016. https://doi.org/10.11606/d.100.2016.tde-04082016-144047
[10] A. S. Monteiro, J. Baruque-Ramos, Amazonian Tururi Palm Fiber Material (Manicaria saccifera Gaertn.) in: R. Fangueiro, S. Rana (Eds.), Natural Fibres: Advances in Science and Technology Towards Industrial Applications. Springer Netherlands, Heidelberg, 2016, pp. 127-137. https://doi.org/10.1007/978-94-017-7515-1_10
[11] A. F. Seyam et al., Effect of structural parameters on the tensile properties of multilayer 3D composites from Tururi palm tree (Manicaria saccifera Gaertn) fibrous material. Composites Part B: Engineering 111 (2017) 17-26. https://doi.org/10.1016/j.compositesb.2016.11.040
[12] ABNT ISO 139:2005: Texteis – Atmosferas normais de condicionamento de ensaios (“Textiles – Standard atmospheres for conditioning tests”).
[13] ABNT NBR 13 538-1995: Material textil – Analise qualitativa (“Textile material – Qualitative analysis”).
[14] B.P. Saville, Physical testing of textiles, The Textile Institute Woodhead Publishing Ltd., Cambridge, 2007.
[15] E. R. Kaswell, Wellington Sears Handbook of Industrial Textiles, Massachusetts Institute of Technology (MIT) and Wellington Sears Company, Cambridge, 1963. https://doi.org/10.1201/9780203733905
[16] ASTM D 3 822-2001: Standard test method for tensile properties of single textile fibers.
[17] ABNT NBR 13041:1993: Naotecido – Determinaçao da resistencia a traçao e alongamento – Metodo de ensaio (“Nonwoven – Determination of tensile strength and elongation” – Test method”).
[18] ABNT NBR 12984:2000: Naotecido – Determinaçao da massa por unidade de area – Metodo de ensaio (“Nonwoven – Determination of mass per area unit – Test method”).
[19] ISO/TR 6741-4 -1987: Textiles – Fibres and yarns – Determination of commercial mass of consignments – Part 4: Values used for the commercial allowances and the commercial moisture regains. https://doi.org/10.3403/bsiso6741
[20] J. Bouchard et al., Quantification of residual polymeric families present in thermo-mechanical and chemically pretreated lignocellulosics via thermal analysis. Biomass 9(3) (1986) 161–171.
[21] Nicolet FT-IR User’s Guide. https://instrumentalanalysis.community.uaf.edu/files/2013/01/FT-IR_manual.pdf
[22] I. M. Cattani, J. Baruque-Ramos, Buriti palm fiber (Mauritia flexuosa Mart.): characterization and studies for its application in design products, Key Engineering Materials 668 (2016) 63-74. https://doi.org/10.4028/www.scientific.net/kem.668.63
[23] P. Ganan et al., I. Biological natural retting for determining the hierarchical structuration of banana fibers. Macromolecular Science 4 (2004) 978-983. https://doi.org/10.1002/mabi.200400041
[24] R. S. Blackburn, Biodegradable and sustainable fibres. CRC Press and Woodhead Publishing Ltd., Cambridge, 2005.
[25] N. Reddy, Y. Yang, Properties and potential applications of natural cellulose fibers from cornhusks. Green Chemistry 7 (2005) 190-195. https://doi.org/10.1039/b415102j
[26] K. G. Satyanarayana et al., Studies on lignocellulosic fibers of Brazil. Part I: Source, production, morphology, properties and applications. Composites Part A: Applied Science and Manufacturing 38(7) (2007) 1694-1709. https://doi.org/10.1016/j.compositesa.2007.02.006
[27] M. A. S. Spinace et al., Characterization of lignocellulosic curaua fibres.” Carbohydrate Polymers 77(1) (2009) 47-53. https://doi.org/10.1016/j.carbpol.2008.12.005
[28] N. Chand et al., SEM and strength characteristics of acetylated sisal fibre. Journal of materials science letters 8(11) (1989) 1307-1309. https://doi.org/10.1007/bf00721503
[29] A. Porras et al., Characterization of a novel natural cellulose fabric from Manicaria saccifera palm as possible reinforcement of composite materials. Composites Part B: Engineering 74 (2015) 66-73. https://doi.org/10.1016/j.compositesb.2014.12.033
[30] A. K. F. Oliveira, J. R. M. D’Almeida, Characterization of ubuçu (Manicaria saccifera) natural fiber mat. Polymers from Renewable Resources 5(1) (2014) 13. https://doi.org/10.1177/204124791400500102
[31] C. Duarte, Fabrication and characterization of polyester resin composite reinforced with fabric of tururi fiber extracted from palm ubuçu – Manicaria saccifera. MSc thesis, Federal University of Para (Brazil), 2011.

[32] M. Poletto et al., Native cellulose: structure, characterization and thermal properties. Materials 7(9) (2014) 6105-6119.
[33] L. Segal et al., An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Textile Research Journal 29(10) (1959) 786-794. https://doi.org/10.1177/004051755902901003
[34] B. H. Stuart, Infrared Spectroscopy, Kirk-Othmer Encyclopedia of Chemical Technology, John Wiley & Sons, Inc., New York, 2005. https://doi.org/10.1002/0471238961
[35] D. Ray, B. K. Sarkar, Characterization of alkali-treated jute fibers for physical and mechanical properties, Journal of Applied Polymer Science 80(7) (2001) 1013–1020. https://doi.org/10.1002/app.1184
[36] M. M. Houck, Identification of Textile Fibers, Woodhead Publishing, Cambridge, 2009.
[37] M. Midani et al., Effect of structural parameters on the impact properties of multilayer composites from tururi palm (Manicaria saccifera Gaertn.) fibrous material, Journal of Natural Fibers (2018) 1-14. https://doi.org/10.1080/15440478.2018.1491369