Enzymatic Biosensor for in vivo Applications

$20.00

Enzymatic Biosensor for in vivo Applications

Pedro Salazar, Miriam Martín, José Luis González–Mora

A large number of analytical devices have recently been developed for detecting biomarkers without the need for laboratory handling procedures. At present, there is a growing demand for developing minimal–or non–invasive implantable devices able to measure in real–time with high spatial resolution. Among the different approaches, implantable biosensors are the most common approach thanks to their high sensitivity and selectivity, the simplicity of starting materials and their cost-effectiveness because they can be easily miniaturized for the manufacture of implantable devices. This chapter reviews the main issues (sensitivity, selectivity, tolerance to fluctuations in oxygen levels, biocompatibility, long-term functional stability, etc.) involved in the design phase and the application of biosensors for in vivo monitoring of key molecules in health applications.

Keywords
Biosensor, in vivo, Enzyme, Amperometric Detection, Biocompatibility, Point–of–Care, Glucose, Lactate, Glutamate, Diabetes

Published online 3/25/2019, 28 pages

Citation: Pedro Salazar, Miriam Martín, José Luis González–Mora, Enzymatic Biosensor for in vivo Applications, Materials Research Foundations, Vol. 47, pp 289-316, 2019

DOI: https://doi.org/10.21741/9781644900130-8

Part of the book on Biosensors

References
[1] G. Luka, A. Ahmadi, H. Najjaran, E. Alocilja, M. DeRosa, K. Wolthers, A. Malki, H. Aziz, A. Althani, M. Hoorfar, Microfluidics integrated biosensors: a leading technology towards lab-on-a-chip and sensing applications, Sensors. 15 (2015) 30011–30031. https://doi.org/10.3390/s151229783
[2] J.P. Lafleur, A. Jönsson, S. Senkbeil, J.P. Kutter, Recent advances in lab-on-a-chip for biosensing applications, Biosens. Bioelectron. 76 (2016) 213–233. https://doi.org/10.1016/j.bios.2015.08.003
[3] J.-Y. Yoon, Lab-on-a-Chip Biosensors, in: Introd. to Biosens., Springer International Publishing, Cham, 2016: pp. 257–297. https://doi.org/10.1007/978-3-319-27413-3_14
[4] A. Malima, S. Siavoshi, T. Musacchio, J. Upponi, C. Yilmaz, S. Somu, W. Hartner, V. Torchilin, A. Busnaina, Highly sensitive microscale in vivo sensor enabled by electrophoretic assembly of nanoparticles for multiple biomarker detection, Lab Chip. 12 (2012) 4748. https://doi.org/10.1039/c2lc40580f
[5] X. Zhu, W. Liu, S. Shuang, M. Nair, C.-Z. Li, Intelligent tattoos, patches, and other wearable biosensors, in: Med. Biosens. Point Care Appl., Elsevier, 2017: pp. 133–150. https://doi.org/10.1016/B978-0-08-100072-4.00006-X
[6] D. Xu, X. Huang, J. Guo, X. Ma, Automatic smartphone-based microfluidic biosensor system at the point of care, Biosens. Bioelectron. 110 (2018) 78–88. https://doi.org/10.1016/j.bios.2018.03.018
[7] M. Zarei, Advances in point-of-care technologies for molecular diagnostics, Biosens. Bioelectron. 98 (2017) 494–506. https://doi.org/10.1016/j.bios.2017.07.024
[8] S. Kanchi, M.I. Sabela, P.S. Mdluli, Inamuddin, K. Bisetty, Smartphone based bioanalytical and diagnosis applications: A review., Biosens. Bioelectron. 102 (2018) 136–149. https://doi.org/10.1016/j.bios.2017.11.021
[9] L. Ryden, P.J. Grant, S.D. Anker, C. Berne, F. Cosentino, N. Danchin, C. Deaton, J. Escaned, H.-P. Hammes, H. Huikuri, M. Marre, N. Marx, L. Mellbin, J. Ostergren, C. Patrono, P. Seferovic, M.S. Uva, M.-R. Taskinen, M. Tendera, J. Tuomilehto, P. Valensi, J.L. Zamorano, ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD, Eur. Heart J. 35 (2014) 1824–1824. https://doi.org/10.1093/eurheartj/ehu076
[10] D. Bruen, C. Delaney, L. Florea, D. Diamond, Glucose sensing for diabetes monitoring: recent developments, Sensors. 17 (2017) 1866. https://doi.org/10.3390/s17081866
[11] P. Salazar, V. Rico, A.R. González-Elipe, Nickel/Copper Bilayer-modified Screen Printed Electrode for Glucose Determination in Flow Injection Analysis, Electroanalysis. 30 (2018) 187–193. https://doi.org/10.1002/elan.201700592
[12] V.R. and A.R.G. Pedro Salazar, Non−enzymatic glucose sensors based on nickel nanoporous thin films prepared by physical vapor deposition at oblique angles for beverage industry applications, J. Electrochem. Soc. 163 (2016) B704–B709. https://doi.org/10.1149/2.1241614jes
[13] G.S. Wilson, R. Gifford, Biosensors for real-time in vivo measurements, Biosens. Bioelectron. 20 (2005) 2388–2403. https://doi.org/10.1016/j.bios.2004.12.003
[14] E.-H. Yoo, S.-Y. Lee, Glucose biosensors: an overview of use in clinical practice, Sensors. 10 (2010) 4558–4576. https://doi.org/10.3390/s100504558
[15] V. Scognamiglio, Nanotechnology in glucose monitoring: Advances and challenges in the last 10 years, Biosens. Bioelectron. 47 (2013) 12–25. https://doi.org/10.1016/j.bios.2013.02.043
[16] J. Zhang, W. Hodge, C. Hutnick, X. Wang, Noninvasive diagnostic devices for diabetes through measuring tear glucose, J. Diabetes Sci. Technol. 5 (2011) 166–172. https://doi.org/10.1177/193229681100500123
[17] F. Ricci, F. Caprio, A. Poscia, F. Valgimigli, D. Messeri, E. Lepori, G. Dall’Oglio, G. Palleschi, D. Moscone, Toward continuous glucose monitoring with planar modified biosensors and microdialysis, Biosens. Bioelectron. 22 (2007) 2032–2039. https://doi.org/10.1016/j.bios.2006.08.041
[18] F. Ricci, D. Moscone, C.S. Tuta, G. Palleschi, A. Amine, A. Poscia, F. Valgimigli, D. Messeri, Novel planar glucose biosensors for continuous monitoring use, Biosens. Bioelectron. 20 (2005) 1993–2000. https://doi.org/10.1016/j.bios.2004.09.010
[19] A. Poscia, M. Mascini, D. Moscone, M. Luzzana, G. Caramenti, P. Cremonesi, F. Valgimigli, C. Bongiovanni, M. Varalli, A microdialysis technique for continuous subcutaneous glucose monitoring in diabetic patients (part 1), Biosens. Bioelectron. 18 (2003) 891–898. https://doi.org/10.1016/S0956-5663(02)00216-6
[20] F. Lucarelli, F. Ricci, F. Caprio, F. Valgimigli, C. Scuffi, D. Moscone, G. Palleschi, GlucoMen day continuous glucose monitoring system: a screening for enzymatic and electrochemical interferents, J. Diabetes Sci. Technol. 6 (2012) 1172–1181. https://doi.org/10.1177/193229681200600522
[21] H. Blauw, P. Keith-Hynes, R. Koops, J.H. DeVries, A review of safety and design requirements of the artificial pancreas, Ann. Biomed. Eng. 44 (2016) 3158–3172. https://doi.org/10.1007/s10439-016-1679-2
[22] S.C. Christiansen, A.L. Fougner, Ø. Stavdahl, K. Kölle, R. Ellingsen, S.M. Carlsen, A review of the current challenges associated with the development of an artificial pancreas by a double subcutaneous approach, diabetes Ther. 8 (2017) 489–506. https://doi.org/10.1007/s13300-017-0263-6
[23] L.C. Clark, C. Lyons, Electrode systems for continuous monitoring in cardiovascular surgery, Ann. N. Y. Acad. Sci. 102 (2006) 29–45. https://doi.org/10.1111/j.1749-6632.1962.tb13623.x
[24] S J Updike, G P Hicks, The enzyme electrode, Nature. 214 (1967) 986–988
[25] G.G. Guilbault, G.J. Lubrano, An enzyme electrode for the amperometric determination of glucose, Anal. Chim. Acta. 64 (1973) 439–455. https://doi.org/10.1016/S0003-2670(01)82476-4
[26] C.A. Corcoran, G.A. Rechnitz, Cell-based biosensors, Trends Biotechnol. 3 (1985) 92–96. https://doi.org/10.1016/0167-7799(85)90091-5
[27] D.R. Thévenot, K. Toth, R.A. Durst, G.S. Wilson, Electrochemical biosensors: recommended definitions and classification1International Union of Pure and Applied Chemistry: Physical Chemistry Division, Commission I.7 (Biophysical Chemistry); Analytical Chemistry Division, Commission V.5 (Electroanalytical, Biosens. Bioelectron. 16 (2001) 121–131. https://doi.org/10.1016/S0956-5663(01)00115-4
[28] S.A. Ansari, Q. Husain, Potential applications of enzymes immobilized on/in nano materials: A review, Biotechnol. Adv. 30 (2012) 512–523. https://doi.org/10.1016/j.biotechadv.2011.09.005
[29] A. Sassolas, L.J. Blum, B.D. Leca-Bouvier, Immobilization strategies to develop enzymatic biosensors, Biotechnol. Adv. 30 (2012) 489–511. https://doi.org/10.1016/j.biotechadv.2011.09.003
[30] C.P. McMahon, R.D. O’Neill, Polymer−enzyme composite biosensor with high glutamate sensitivity and low oxygen dependence, Anal. Chem. 77 (2005) 1196–1199. https://doi.org/10.1021/ac048686r
[31] C.P. McMahon, G. Rocchitta, S.M. Kirwan, S.J. Killoran, P.A. Serra, J.P. Lowry, R.D. O’Neill, Oxygen tolerance of an implantable polymer/enzyme composite glutamate biosensor displaying polycation-enhanced substrate sensitivity, Biosens. Bioelectron. 22 (2007) 1466–1473. https://doi.org/10.1016/j.bios.2006.06.027
[32] R.D. O’Neill, G. Rocchitta, C.P. McMahon, P.A. Serra, J.P. Lowry, Designing sensitive and selective polymer/enzyme composite biosensors for brain monitoring in vivo, TrAC Trends Anal. Chem. 27 (2008) 78–88. https://doi.org/10.1016/j.trac.2007.11.008
[33] G. Rocchitta, A. Spanu, S. Babudieri, G. Latte, G. Madeddu, G. Galleri, S. Nuvoli, P. Bagella, M. Demartis, V. Fiore, R. Manetti, P. Serra, Enzyme biosensors for biomedical applications: strategies for safeguarding analytical performances in biological fluids, Sensors. 16 (2016) 780. https://doi.org/10.3390/s16060780
[34] G.S. Wilson, M. Ammam, In vivo biosensors, FEBS J. 274 (2007) 5452–5461. https://doi.org/10.1111/j.1742-4658.2007.06077.x
[35] C.P. McMahon, G. Rocchitta, P.A. Serra, S.M. Kirwan, J.P. Lowry, R.D. O’Neill, The efficiency of immobilised glutamate oxidase decreases with surface enzyme loading: an electrostatic effect, and reversal by a polycation significantly enhances biosensor sensitivity, Analyst. 131 (2006) 68–72. https://doi.org/10.1039/B511643K
[36] P. Salazar, M. Martín, R. Roche, R.D. O’Neill, J.L. González-Mora, Prussian Blue-modified microelectrodes for selective transduction in enzyme-based amperometric microbiosensors for in vivo neurochemical monitoring, Electrochim. Acta. 55 (2010) 6476–6484. https://doi.org/10.1016/j.electacta.2010.06.036
[37] J. Wang, Electrochemical glucose biosensors, Chem. Rev. 108 (2008) 814–825. https://doi.org/10.1021/cr068123a
[38] P. Salazar, M. Martín, R.D. O’Neill, R. Roche, J.L. González-Mora, Biosensors based on prussian blue modified carbon fibers electrodes for monitoring lactate in the extracellular space of brain tissue, Int. J. Electrochem. Sci. 7 (2012) 5910–5926
[39] G.J. Salazar P, Martín M, O’Neill RD, Lorenzo-Luis P, Roche R, Prussian blue and analogues: biosensing applications in health care, in: T. Ashutosh, A.N. Nordin (Eds.), Adv. Biomater. Biodevices, 2014: pp. 423–450
[40] P. Salazar, M. Martín, R.D. O’Neill, R. Roche, J.L. González-Mora, Surfactant-promoted Prussian Blue-modified carbon electrodes: Enhancement of electro-deposition step, stabilization, electrochemical properties and application to lactate microbiosensors for the neurosciences, Colloids Surfaces B Biointerfaces. 92 (2012) 180–189. https://doi.org/10.1016/j.colsurfb.2011.11.047
[41] S.B. Hall, E.A. Khudaish, A.L. Hart, Electrochemical oxidation of hydrogen peroxide at platinum electrodes. Part 1. An adsorption-controlled mechanism, Electrochim. Acta. 43 (1998) 579–588. https://doi.org/10.1016/S0013-4686(97)00125-4
[42] P. O’Connell, C. O’Sullivan, G. Guilbault, Electrochemical metallisation of carbon electrodes, Anal. Chim. Acta. 373 (1998) 261–270. https://doi.org/10.1016/S0003-2670(98)00414-0
[43] S. Domínguez-Domínguez, J. Arias-Pardilla, Á. Berenguer-Murcia, E. Morallón, D. Cazorla-Amorós, Electrochemical deposition of platinum nanoparticles on different carbon supports and conducting polymers, J. Appl. Electrochem. 38 (2008) 259–268. https://doi.org/10.1007/s10800-007-9435-9
[44] Eiichi Tamiya, I. Karube, Development of micro-biosensors for brain research, in: T. Yoshida, R.D. Tanner (Eds.), Bioprod. Bioprocesses 2, Springer-Verlag, 1991: pp. 169–175
[45] P. Salazar, M. Martín, R.D. O’Neill, J.L. González-Mora, Glutamate microbiosensors based on Prussian Blue modified carbon fiber electrodes for neuroscience applications: In-vitro characterization, Sensors Actuators B Chem. 235 (2016) 117–125. https://doi.org/10.1016/j.snb.2016.05.057
[46] A.A. Karyakin, Prussian blue and its analogues: electrochemistry and analytical applications, Electroanalysis. 13 (2001) 813–819
[47] P. Salazar, M. Martín, R. Roche, J.L. González–Mora, R.D. O’Neill, Microbiosensors for glucose based on Prussian Blue modified carbon fiber electrodes for in vivo monitoring in the central nervous system, Biosens. Bioelectron. 26 (2010) 748–753. https://doi.org/10.1016/j.bios.2010.06.045
[48] R. Roche, P. Salazar, M. Martín, F. Marcano, J.L. González-Mora, Simultaneous measurements of glucose, oxyhemoglobin and deoxyhemoglobin in exposed rat cortex, J. Neurosci. Methods. 202 (2011) 192–198. https://doi.org/10.1016/j.jneumeth.2011.07.003
[49] P. Salazar, M. Martín, R.D. O’Neill, R. Roche, J.L. González-Mora, Improvement and characterization of surfactant-modified Prussian blue screen-printed carbon electrodes for selective H2O2 detection at low applied potentials, J. Electroanal. Chem. 674 (2012) 48–56. https://doi.org/10.1016/j.jelechem.2012.04.005
[50] P. Salazar, R.D. O’Neill, M. Martín, R. Roche, J.L. González-Mora, Amperometric glucose microbiosensor based on a Prussian Blue modified carbon fiber electrode for physiological applications, Sensors Actuators B Chem. 152 (2011) 137–143. https://doi.org/10.1016/j.snb.2010.11.056
[51] S. Vaddiraju, I. Tomazos, D.J. Burgess, F.C. Jain, F. Papadimitrakopoulos, Emerging synergy between nanotechnology and implantable biosensors: A review, Biosens. Bioelectron. 25 (2010) 1553–1565. https://doi.org/10.1016/j.bios.2009.12.001
[52] S.S. Vaddiraju, H. Singh, D.J. Burgess, F.C. Jain, F. Papadimitrakopoulos, Enhanced glucose sensor linearity using poly(vinyl alcohol) hydrogels, J. Diabetes Sci. Technol. 3 (2009) 863–874. https://doi.org/10.1177/193229680900300434
[53] P. D’Orazio, Biosensors in clinical chemistry, Clin. Chim. Acta. 334 (2003) 41–69. https://doi.org/10.1016/S0009-8981(03)00241-9
[54] P. D’Orazio, Biosensors in clinical chemistry -2011 update, Clin. Chim. Acta. 412 (2011) 1749–1761. https://doi.org/10.1016/j.cca.2011.06.025
[55] G. Calia, P. Monti, S. Marceddu, M.A. Dettori, D. Fabbri, S. Jaoua, R.D. O’Neill, P.A. Serra, G. Delogu, Q. Migheli, Electropolymerized phenol derivatives as permselective polymers for biosensor applications, Analyst. 140 (2015) 3607–3615. https://doi.org/10.1039/C5AN00363F
[56] S.A. Rothwell, R.D. O’Neill, Effects of applied potential on the mass of non-conducting poly(ortho-phenylenediamine) electro-deposited on EQCM electrodes: comparison with biosensor selectivity parameters, Phys. Chem. Chem. Phys. 13 (2011) 5413. https://doi.org/10.1039/c0cp02341h
[57] S.A. Rothwell, C.P. McMahon, R.D. O’Neill, Effects of polymerization potential on the permselectivity of poly(o-phenylenediamine) coatings deposited on Pt–Ir electrodes for biosensor applications, Electrochim. Acta. 55 (2010) 1051–1060. https://doi.org/10.1016/j.electacta.2009.09.069
[58] W.H. Oldenziel, G. Dijkstra, T.I.F.H. Cremers, B.H.C. Westerink, In vivo monitoring of extracellular glutamate in the brain with a microsensor, Brain Res. 1118 (2006) 34–42. https://doi.org/10.1016/j.brainres.2006.08.015
[59] W.H. Oldenziel, M. van der Zeyden, G. Dijkstra, W.E.J.M. Ghijsen, H. Karst, T.I.F.H. Cremers, B.H.C. Westerink, Monitoring extracellular glutamate in hippocampal slices with a microsensor, J. Neurosci. Methods. 160 (2007) 37–44. https://doi.org/10.1016/j.jneumeth.2006.08.003
[60] J. Castillo, S. Gáspár, S. Leth, M. Niculescu, A. Mortari, I. Bontidean, V. Soukharev, S.A. Dorneanu, A.D. Ryabov, E. Csöregi, Biosensors for life quality – design, development and applications, Sensors Actuators, B Chem. 102 (2004) 179–194. https://doi.org/10.1016/j.snb.2004.04.084
[61] J.J. Mitala, A.C. Michael, Improving the performance of electrochemical microsensors based on enzymes entrapped in a redox hydrogel, Anal. Chim. Acta. 556 (2006) 326–332. https://doi.org/10.1016/j.aca.2005.09.053
[62] M. Cano, J. Luis Ávila, M. Mayén, M.L. Mena, J. Pingarrón, R. Rodríguez-Amaro, A new, third generation, PVC/TTF–TCNQ composite amperometric biosensor for glucose determination, J. Electroanal. Chem. 615 (2008) 69–74. https://doi.org/10.1016/j.jelechem.2007.11.032
[63] G. Sánchez-Obrero, M. Cano, J.L. Ávila, M. Mayén, M.L. Mena, J.M. Pingarrón, R. Rodríguez-Amaro, A gold nanoparticle-modified PVC/TTF-TCNQ composite amperometric biosensor for glucose determination, J. Electroanal. Chem. 634 (2009) 59–63. https://doi.org/10.1016/j.jelechem.2009.07.017
[64] F. Ricci, G. Palleschi, Sensor and biosensor preparation, optimisation and applications of Prussian Blue modified electrodes, Biosens. Bioelectron. 21 (2005) 389–407. https://doi.org/10.1016/j.bios.2004.12.001
[65] A. Karyakin, E. Karyakina, L. Gorton, Prussian-Blue-based amperometric biosensors in flow-injection analysis, Talanta. 43 (1996) 1597–1606. https://doi.org/10.1016/0039-9140(96)01909-1
[66] D. Moscone, D. D’Ottavi, D. Compagnone, G. Palleschi, A. Amine, Construction and analytical characterization of prussian blue-based carbon paste electrodes and their assembly as oxidase enzyme sensors, Anal. Chem. 73 (2001) 2529–2535. https://doi.org/10.1021/ac001245x
[67] B.D. Malhotra, M.A. Ali, Nanostructured biomaterials for in vivo biosensors, in: Nanomater. Biosens., 2018: pp. 183–219. https://doi.org/10.1016/B978-0-323-44923-6.00007-8
[68] S. Kumar, W. Ahlawat, R. Kumar, N. Dilbaghi, Graphene, carbon nanotubes, zinc oxide and gold as elite nanomaterials for fabrication of biosensors for healthcare, Biosens. Bioelectron. 70 (2015) 498–503. https://doi.org/10.1016/j.bios.2015.03.062
[69] S.C. Ray, N.R. Jana, Application of carbon-based nanomaterials as biosensor, in: Carbon Nanomater. Biol. Med. Appl., Elsevier, 2017: pp. 87–127. https://doi.org/10.1016/B978-0-323-47906-6.00003-5
[70] G. Maduraiveeran, M. Sasidharan, V. Ganesan, Electrochemical sensor and biosensor platforms based on advanced nanomaterials for biological and biomedical applications, Biosens. Bioelectron. 103 (2018) 113–129. https://doi.org/10.1016/j.bios.2017.12.031
[71] F. Wang, S. Liu, M. Lin, X. Chen, S. Lin, X. Du, H. Li, H. Ye, B. Qiu, Z. Lin, L. Guo, G. Chen, Colorimetric detection of microcystin-LR based on disassembly of orient-aggregated gold nanoparticle dimers, Biosens. Bioelectron. 68 (2015) 475–480. https://doi.org/10.1016/j.bios.2015.01.037
[72] N. Wisniewski, M. Reichert, Methods for reducing biosensor membrane biofouling, Colloids Surfaces B Biointerfaces. 18 (2000) 197–219. https://doi.org/10.1016/S0927-7765(99)00148-4
[73] M. Martin, R.D. O’Neill, J.L. Gonzalez-Mora, P. Salazar, The use of fluorocarbons to mitigate the oxygen dependence of glucose microbiosensors for neuroscience applications, J. Electrochem. Soc. 161 (2014) H689–H695. https://doi.org/10.1149/2.1071410jes
[74] J. Wang, L. Fang, Oxygen rich oxidase enzyme electrodes for operation in oxygen-free solutions, J. Am. Chem. Soc. 120 (1998) 1048–1050 ST–Oxygen rich oxidase enzyme electro
[75] Y. Fang, Y. Ni, G. Zhang, C. Mao, X. Huang, J. Shen, Biocompatibility of CS–PPy nanocomposites and their application to glucose biosensor, Bioelectrochemistry. 88 (2012) 1–7. https://doi.org/10.1016/j.bioelechem.2012.05.006
[76] C. Sun, L. Gao, D. Wang, M. Zhang, Y. Liu, Z. Geng, W. Xu, F. Liu, H. Bian, Biocompatible polypyrrole-block copolymer-gold nanoparticles platform for determination of inosine monophosphate with bi-enzyme biosensor, Sensors Actuators B Chem. 230 (2016) 521–527. https://doi.org/10.1016/j.snb.2016.02.111
[77] C. Menti, M. Beltrami, A.L. Possan, S.T. Martins, J.A.P. Henriques, A.D. Santos, F.P. Missell, M. Roesch-Ely, Biocompatibility and degradation of gold-covered magneto-elastic biosensors exposed to cell culture, Colloids Surfaces B Biointerfaces. 143 (2016) 111–117. https://doi.org/10.1016/j.colsurfb.2016.03.034
[78] Y. Onuki, U. Bhardwaj, F. Papadimitrakopoulos, D.J. Burgess, A review of the biocompatibility of implantable devices: current challenges to overcome foreign body response, J. Diabetes Sci. Technol. 2 (2008) 1003–1015. https://doi.org/10.1177/193229680800200610
[79] Y. Wang, S. Vaddiraju, B. Gu, F. Papadimitrakopoulos, D.J. Burgess, Foreign body reaction to implantable biosensors, J. Diabetes Sci. Technol. 9 (2015) 966–977. https://doi.org/10.1177/1932296815601869
[80] R.D. O’Neill, J.P. Lowry, On the significance of brain extracellular uric acid detected with in-vivo monitoring techniques: a review, Behav. Brain Res. 71 (1995) 33–49. https://doi.org/10.1016/0166-4328(95)00035-6
[81] A. Duff, R.D. O’Neill, Effect of probe size on the concentration of brain extracellular uric acid monitored with carbon paste electrodes, J. Neurochem. 62 (1994) 1496–1502. https://doi.org/10.1046/j.1471-4159.1994.62041496.x
[82] J.M. Morais, F. Papadimitrakopoulos, D.J. Burgess, Biomaterials/tissue interactions: possible solutions to overcome foreign body response, AAPS J. 12 (2010) 188–196. https://doi.org/10.1208/s12248-010-9175-3
[83] Y. Liu, K. Ai, L. Lu, Polydopamine and its derivative materials: synthesis and promising applications in energy, environmental, and biomedical fields, Chem. Rev. 114 (2014) 5057–5115. https://doi.org/10.1021/cr400407a
[84] Y.H. Ding, M. Floren, W. Tan, Mussel-inspired polydopamine for bio-surface functionalization, Biosurface and Biotribology. 2 (2016) 121–136. https://doi.org/10.1016/j.bsbt.2016.11.001
[85] M.E. Lynge, P. Schattling, B. Städler, Recent developments in poly(dopamine)-based coatings for biomedical applications, Nanomedicine. 10 (2015) 2725–2742. https://doi.org/10.2217/nnm.15.89
[86] M. Liu, G. Zeng, K. Wang, Q. Wan, L. Tao, X. Zhang, Y. Wei, Recent developments in polydopamine: an emerging soft matter for surface modification and biomedical applications, Nanoscale. 8 (2016) 16819–16840. https://doi.org/10.1039/C5NR09078D
[87] M. Martín, P. Salazar, R. Álvarez, A. Palmero, C. López-Santos, J.L. González-Mora, A.R. González-Elipe, Cholesterol biosensing with a polydopamine-modified nanostructured platinum electrode prepared by oblique angle physical vacuum deposition, Sensors Actuators B Chem. 240 (2017) 37–45. https://doi.org/10.1016/j.snb.2016.08.092
[88] M. Martín, P. Salazar, S. Campuzano, R. Villalonga, J.M. Pingarrón, J.L. González-Mora, Amperometric magnetobiosensors using poly(dopamine)-modified Fe 3 O 4 magnetic nanoparticles for the detection of phenolic compounds, Anal. Methods. 7 (2015) 8801–8808. https://doi.org/10.1039/C5AY01996F
[89] M. Martín, P. Salazar, C. Jiménez, M. Lecuona, M.J. Ramos, J. Ode, J. Alcoba, R. Roche, R. Villalonga, S. Campuzano, J.M. Pingarrón, J.L. González-Mora, Rapid Legionella pneumophila determination based on a disposable core–shell Fe 3 O 4 @poly(dopamine) magnetic nanoparticles immunoplatform, Anal. Chim. Acta. 887 (2015) 51–58. https://doi.org/10.1016/j.aca.2015.05.048
[90] X. Liu, J. Cao, H. Li, J. Li, Q. Jin, K. Ren, J. Ji, Mussel-inspired polydopamine: a biocompatible and ultrastable coating for nanoparticles in vivo, ACS Nano. 7 (2013) 9384–9395. https://doi.org/10.1021/nn404117j