Theranostic Application of Nanoparticulated System: Present and Future Prospects

$20.00

Theranostic Application of Nanoparticulated System: Present and Future Prospects

Rout George Kerry, Sabuj Sahoo, Gitishree Das, Jayanta Kumar Patra

Nano particulated systems are biocompatible materials or devices, engineered with a purpose to deliverer desired bioactive compounds to a targeted location without inducing any secondary reactions or side-effects. The diversified ability of this bioengineered molecule to breach the biological barriers to reach the targeted location in the biological system uplifts its other versatile nature of active distribution. Furthermore, its negligible toxicity and biodegradability has resulted in making it a unique candidate for its purpose as nanoparticulated system. These nano-based systems are currently exploited in conjugation to a heterogeneous array of bioactive natural phytochemicals or synthetic compounds as a therapy against various diseases or disorders. Some diseases or disorders include obesity, diabetes, liver fibrosis, cardiovascular disorders, neurodegenerative disorders, cancers of various forms and microbial infections. Despite of the ability of these nano-based systems to be a novel therapy against a number of diseases and disorders their utilization and commercialization is restrained. This procrastination could be relinquished if pertinent mechanisms of their molecular interactions are properly acknowledged. Henceforth the objective of the present paper is to provide an overview of the types of nano carriers employed in diversified nano particulated systems based on their theranostic application, beneficial as well as deleterious impacts, present status and future prospects.

Keywords
Nanocarriers, Bioconjugation, Biodistribution, Biocompatible, Diagnostics, Drug Delivery, Functionalize

Published online 3/25/2019, 48 pages

Citation: Rout George Kerry, Sabuj Sahoo, Gitishree Das, Jayanta Kumar Patra, Theranostic Application of Nanoparticulated System: Present and Future Prospects, Materials Research Foundations, Vol. 47, pp 241-288, 2019

DOI: https://doi.org/10.21741/9781644900130-7

Part of the book on Biosensors

References
[1] M. Faraday, Experimental relations of gold (and other metals) to light, Phil. Trans. Roy. Soc. Lond. 147 (1857) 145-181. https://doi.org/10.1098/rstl.1857.0011
[2] B. Bodaiah, M.U. Kiranmayi, P. Sudhakar, A.R. Varma, K. Bhushanam, Insecticidal activity of green synthesized silver nanoparticles, Int. J. Recent Sci. Res. 7 (2016) 10652-10656.
[3] T. Cerna, T. Eckschlager, M. Stiborova, Targeted nanoparticles-a promising opportunity in cancer therapy-Review, J. Metallomics. Nanotechnol. 4 (2016) 6-11.
[4] T.C. Prathna, L. Mathew, N. Chandrasekaran, M.R. Ashok, A. Mukherjee, Biomimetic synthesis of nanoparticles: Science, technology & applicability, in (Ed.) M. Amitava, Biomimetics Learning from Nature (2010) 1-21.
[5] M. Bala, V. Arya, Biological synthesis of silver anoparticles from aqueous extract of endophytic fungus Aspergillus fumigatus and its antibacterial action, Int. J. Nanomater. Biostruct. 3 (2013) 37-41.
[6] R. Singh, S.K. Sahu, M. Thangaraj, Biosynthesis of silver nanoparticles by marine invertebrate (polychaete) and assessment of its efficacy against human pathogens, J. Nanoparticles 2014 (2014) 1-7. https://doi.org/10.1155/2014/718240
[7] W.H. Suh, K.S. Suslick, G.D. Stucky, Y.H. Suh, Nanotechnology, nanotoxicology, and neuroscience, Prog. Neurobiol. 87 (2009) 133-170. https://doi.org/10.1016/j.pneurobio.2008.09.009
[8] F. Fontana, D. Liu, J. Hirvonen, H.A. Santos, Delivery of therapeutics with nanoparticles: What’s new in cancer immunotherapy? WIREs Nanomed. Nanobiotechnol. 9 (2017) 1-26.
[9] C. Saraiva, C. Praça, R. Ferreira, T. Santos, L. Ferreira, L. Bernardino, Nanoparticle mediated brain drug delivery: Overcoming blood-brain barrier to treat neurodegenerative diseases, J. Control Release 235 (2016) 34-47. https://doi.org/10.1016/j.jconrel.2016.05.044
[10] K. Kadota, A. Senda, H. Tagishi, J.O. Ayorinde, Y. Tozuka, Evaluation of highly branched cyclic dextrin in inhalable particles of combined antibiotics for the pulmonary delivery of anti-tuberculosis drugs, Int. J. Pharm. 517 (2017) 8-18. https://doi.org/10.1016/j.ijpharm.2016.11.060
[11] H.R. Lakkireddy, M. Urmann, M. Besenius, U. Werner, T. Haack, P. Brun, J. Alié, B. Illel, L. Hortala, R. Vogel, D. Bazile, Oral delivery of diabetes peptides-comparing standard formulations incorporating functional excipients and nanotechnologies in the translational context, Adv. Drug Deliv. Rev. 106 (2016) 196-222. https://doi.org/10.1016/j.addr.2016.02.011
[12] D.B. Vieira, L.F. Gamarra, Advances in the use of nano carriers for cancer diagnosis and treatment, Einstein (Sao Paulo) 14 (2016) 99-103. https://doi.org/10.1590/S1679-45082016RB3475
[13] M.J. Haney, N.L. Klyachko, Y. Zhao, R. Gupta, E.G. Plotnikova, Z. He, T. Patel, A. Piroyan, M. Sokolsky, A.V. Kabanov, E.V. Batrakova, Exosomes as drug delivery vehicles for Parkinson’s disease therapy, J. Control. Release. 207 (2015) 18-30. https://doi.org/10.1016/j.jconrel.2015.03.033
[14] L.C.G.E.I. Moreno, E. Puerta, J.E. Suárez-Santiago, N.S. Santos-Magalhães, M.J. Ramirez, J.M. Irache, Effect of the oral administration of nanoencapsulated quercetin on a mouse model of Alzheimer’s disease, Int. J. Pharm. 517 (2017) 50-57. https://doi.org/10.1016/j.ijpharm.2016.11.061
[15] M.M. Wen, N. El-Salamouni, W.M. El-Refaie, H.A. Hazzah, M.M. Ali, G. Tosi, R.M. Farid, M.J. Blanco-Prieto, N. Billa, A.S. Hanafy, Nanotechnology-based drug delivery systems for Alzheimer’s disease management: technical, industrial and clinical challenges, J. Control. Release. 245 (2017) 95-107. https://doi.org/10.1016/j.jconrel.2016.11.025
[16] Y.E. Choonara, P. Kumar, G. Modi, V. Pillay, Improving drug delivery technology for treating neurodegenerative diseases, Expert. Opin. Drug Deliv. 13 (2016) 1029-43. https://doi.org/10.1517/17425247.2016.1162152
[17] C. Englert, A.K. Trutzschler, M. Raasch, T. Bus, P. Borchers, A.S. Mosig, A. Traeger, U.S. Schubert, Crossing the blood-brain barrier: Glutathione-conjugated poly (ethyleneimine) for gene delivery, J. Control Release. 241 (2016) 1-14. https://doi.org/10.1016/j.jconrel.2016.08.039
[18] J.Y. Yhee, J. Im, R.S. Nho. Advanced therapeutic strategies for chronic lung disease using nanoparticle-based drug delivery, J. Clin. Med. 5 (2016) E82. doi: 10.3390/jcm5090082. https://doi.org/10.3390/jcm5090082
[19] S. Ranjita, A. Loaye, M. Khalil, Present status of nanoparticle research for treatment of tuberculosis, J. Pharm. Pharm. Sci.14 (2011) 100-116. https://doi.org/10.18433/J3M59P
[20] N. Singh, R. Singh, An introduction to the approaches of novel drug delivery systems for acquired immune deficiency syndrome (AIDS), J. AIDS HIV Infections 1 (2016) 1-14.
[21] P.I. Siafaka, N.U. Okur, E. Karavas, D.N. Bikiaris, Surface modified multifunctional and stimuli responsive nanoparticles for drug targeting: Current status and uses, Int.J. Mol. Sci.17 (2016) E1440. doi: 10.3390/ijms17091440. https://doi.org/10.3390/ijms17091440
[22] S. Gupta, R. Bansal, S. Gupta, N. Jindal, A. Jindal, Nanocarriers and nanoparticles for skin care and dermatological treatments, Indian Dermatol Online J. 4 (2013) 267-272. https://doi.org/10.4103/2229-5178.120635
[23] A. Nasir, A. Kausar, A. Younus, A review on preparation, properties and applications of polymeric nanoparticle-based materials, Polymer-Plastics Tech. 54 (2015) 325-341. https://doi.org/10.1080/03602559.2014.958780
[24] K.S. Kavitha, S. Baker, D. Rakshith, H.U. Kavitha, H.C.Y. Rao, B.P. Harini, S. Satish, Plants as green source towards synthesis of nanoparticles, Int. Res. J. Bio. Sci. 2 (2013) 66-76.
[25] A. Watermann, J. Brieger, Mesoporous silica nanoparticles as drug delivery vehicles in cancer, Nanomaterials 7 (2017) E189. doi: 10.3390/nano7070189. https://doi.org/10.3390/nano7070189
[26] W. Wei, C. Xu, H. Wu, Magnetic iron oxide nanoparticles mediated gene therapy for breast cancer – an in vitro study, J. Huazhong Univ. Sci. Technol. Med. Sci. 26 (2006) 728-30. https://doi.org/10.1007/s11596-006-0628-y
[27] M.V. Yigit, D. Mazumdar, Y. Lu, MRI detection of thrombin with aptamer functionalized superparamagnetic ironoxide nanoparticles, Bioconjug.Chem.19 (2008) 412-7. https://doi.org/10.1021/bc7003928
[28] X.H. Pengm, X. Qian, H. Mao, A.Y. Wang, Z.G. Chen, S. Nie, Targeted magnetic iron oxide nanoparticles for tumorimaging and therapy, Int. J. Nanomed. 3 (2008) 311-21.
[29] B. Chertok, B.A. Moffat, A.E. David, F. Yu, C. Bergemann, B.D. Ross, Iron oxide nanoparticles as a drug delivery vehicle for MRI monitored magnetic targeting of brain tumors, Biomaterials 29 (2008) 487-96. https://doi.org/10.1016/j.biomaterials.2007.08.050
[30] G. Weimuller, M. Zeisberger, K.M. Krishnan, Size-dependant heating rates of iron oxide nanoparticles for magnetic fluid hyperthermia, J. Magn. Magn. Mater. 321 (2009) 1947-50. https://doi.org/10.1016/j.jmmm.2008.12.017
[31] G.K. Rout, H.S. Shin, S. Gouda, S. Sahoo, G. DaS, L.F. Fraceto, J.K. Patra, Current advances in nanocarriers for biomedical research and their applications, Artificial Cells, Nanomedicine, and Biotechnology 2018, doi.org/10.1080/21691401.2018.1478843. https://doi.org/10.1080/21691401.2018.1478843
[32] S. Ahmed, M. Ahmad, B.L. Swami, S. Ikram, A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise, J. Adv. Res.7 (2016) 17-28. https://doi.org/10.1016/j.jare.2015.02.007
[33] D. Cabuzu, A. Cirja, R. Puiu, A.M. Grumezescu, Biomedical applications of gold nanoparticles, Curr. Top Med. Chem.15 (2015) 1605-1613. https://doi.org/10.2174/1568026615666150414144750
[34] N.O. Mahmoodi, A. Ghavidast, N. Amirmahani, A comparative study on the nanoparticles for improved drug delivery systems, J. Photochem. Photobio.162 (2016) 681-693. https://doi.org/10.1016/j.jphotobiol.2016.07.037
[35] S. Bhattacharyya, R.A. Kudgus, R. Bhattacharya, P. Mukherjee, Inorganic nanoparticles in cancer therapy, Pharma. Res.28 (2011) 237-259. https://doi.org/10.1007/s11095-010-0318-0
[36] D.Y. Reddy, D. Dhachinamoorthi, K.B. Chandrasekhar, A brief review on polymeric nanoparticles for drug delivery and targeting, J. Med. Pharma. Innov.2 (2015) 19-32.
[37] C. Carbone, S. Cupri, A. Leonardi, G. Puglisi, R. Pignatello, Lipid-based nanocarriers for drug delivery and targeting: A patent survey of methods of production and characterization, Pharma. Patent Analyst 2 (2013) 665-677. https://doi.org/10.4155/ppa.13.43
[38] E. Abbasi, S.F. Aval, A. Akbarzadeh, M. Milani, H.T. Nasrabadi, S.W. Joo, Y. Hanifehpour, K. Nejati-Koshki, R. Pashaei-Asl, Dendrimers: synthesis, applications, and properties, Nanoscale Res. Lett. 9 (2014) 247. doi: 10.1186/1556-276X-9-247. https://doi.org/10.1186/1556-276X-9-247
[39] I.F. Uchegbu, S.O. Vyas, Non-ionic surfactant based vesicles (Niosomes) in drug delivery, Int. J. Pharmaceu. 172 (1998) 33-70. https://doi.org/10.1016/S0378-5173(98)00169-0
[40] I.F. Uchegbu, A.T. Florence, Non-ionic surfactant vesicles (Niosomes): physical and pharmaceutical chemistry, Adv. Colloid. Interface. Sci. 58 (1995) 1-55. https://doi.org/10.1016/0001-8686(95)00242-I
[41] A.S. Magdum, Y.R. Hundekar, R.M. Chimkode, Niosomes: A promising vesicular drug delivery system for tuberculosis, Indo-Am. J. Pharma. Sci. 4 (2017) 2710- 23.
[42] U. Butt, A. ElShaer, L.A.S. Snyder, A.A. Al-Kinani, A. Le Gresley, R.G. Alany, Fatty acid based microemulsions to combat ophthalmia neonatorum caused by Neisseria gonorrhoeae and Staphylococcus aureus, Nanomaterials 8 (2018) E51. https://doi.org/10.3390/nano8010051
[43] X. Yu, I. Trase, M. Ren, K. Duval, X. Guo, Z. Chen, Design of nanoparticle-based carriers for targeted drug delivery, J. Nanomater 2016 doi.org/10.1155/2016/1087250. https://doi.org/10.1155/2016/1087250
[44] N. Mishra, P. Pant, A. Porwal, J. Jaiswal, Md. S Samad, S. Tiwari, Targeted drug delivery: A review, Am. J. Pharm. Tech. Res. 6 (2016). DOI: 10.21276/ajptr https://doi.org/10.21276/ajptr
[45] S. Gholizadeh, E.M. Dolman, R. Wieriks, R.W. Sparidans, W.E. Hennink, R.J. Kok, Anti-GD2 immunoliposomes for targeted delivery of the survivin inhibitor sepantronium bromide (YM155) to neuroblastoma tumor cells, Pharm. Res. 35 (2018) 85. doi: 10.1007/s11095-018-2373-x. https://doi.org/10.1007/s11095-018-2373-x
[46] L.Y. Chou, K. Ming, W.C. Chan, Strategies for the intracellular delivery of nanoparticles, Chem. Soc. Rev.40 (2011) 233-245. https://doi.org/10.1039/C0CS00003E
[47] C. Azevedo, M.H. Macedo, B. Sarmento, Strategies for the enhanced intracellular delivery of nanomaterials, Drug Discov. Today 23 (2018) 944-959. https://doi.org/10.1016/j.drudis.2017.08.011
[48] E. Ruoslahti, S.N. Bhatia, M.J. Sailor, Targeting of drugs and nanoparticles to tumors, J. Cell. Bio.188 (2010) 759-768. https://doi.org/10.1083/jcb.200910104
[49] N. Bertrand, J. Wu, X. Xu, N. Kamaly, O.C. Farokhzad, Cancer Nanotechnology: The impact of passive and active targeting in the era of modern cancer biology, Adv. Drug Deliv. Rev. 66 (2014) 2-25. https://doi.org/10.1016/j.addr.2013.11.009
[50] C. Foster, A. Watson, J. Kaplinsky, N. Kamaly, Improved targeting of cancers with nanotherapeutics, Methods Mol. Biol. 1530 (2017) 13-37. https://doi.org/10.1007/978-1-4939-6646-2_2
[51] X. Huang, P.K. Jain, I.H. El-Sayed, M.A. El-Sayed, Plasmonic photothermal therapy (PPTT) using gold nanoparticles, Lasers Med. Sci.23 (2008) 217-28. https://doi.org/10.1007/s10103-007-0470-x
[52] N.J. Song, S.H. Chang, D.Y. Li, C.J. Villanueva, K.W. Park, Induction of thermogenic adipocytes: molecular targets and thermogenic small molecules, Exp. Mol. Med. 49 (2017) 353. doi: 10.1038/emm.2017.70. https://doi.org/10.1038/emm.2017.70
[53] S. Sharifi, S. Daghighi, M.M. Motazacker, B. Badlou, B. Sanjabi, A. Akbarkhanzadeh, A.T. Rowshani, S. Laurent, M.P. Peppelenbosch, F. Rezaee, Superparamagnetic iron oxide nanoparticles alter expression of obesity and T2D-associated risk genes in human adipocytes, Sci. Rep. 3 (2013) doi: 10.1038/srep02173. https://doi.org/10.1038/srep02173
[54] A. Rocca, S. Moscato, F. Ronca, S. Nitti, V. Mattoli, M. Giorgi, G.Ciofani, Pilot in vivo investigation of cerium oxide nanoparticles as a novel anti-obesity pharmaceutical formulation, Nanomedicine11 (2015) 1725-34.
[55] J.H. Lee, J.C. Kim, Effect of cubic phase nanoparticle on obesity-suppressing efficacy of herbal extracts, Biotechnol. Bioprocess. Eng. 20 (2015) 1005-1015. https://doi.org/10.1007/s12257-015-0417-1
[56] C. Jiang, M.A. Cano-Vega, F. Yue, L. Kuang, N. Narayanan, G. Uzunalli, M.P. Merkel, S. Kuang, M. Deng, Dibenzazepine-loaded nanoparticles induce local browning of white adipose tissue to counteract obesity, Mol. Ther. 25 (2017) 1718-1729. https://doi.org/10.1016/j.ymthe.2017.05.020
[57] L. Li, G. Jiang, W. Yu, D. Liu, H. Chen, Y. Liu, Z. Tong, X. Kong, J. Yao, Preparation of chitosan-based multifunctional nanocarriers overcoming multiple barriers for oral delivery of insulin, Mater. Sci. Eng. C Mater. Biol. Appl.70 (2017) 278-286. https://doi.org/10.1016/j.msec.2016.08.083
[58] M. Lopes, N. Shrestha, A. Correia, M.A. Shahbazi, B. Sarmento, J. Hirvonen, F. Veiga, R. Seiça, A. Ribeiro, H.A. Santos. Dual chitosan/albumin-coated alginate/dextran sulfate nanoparticles for enhanced oral delivery of insulin, J. Control Release 232 (2016) 29-41. https://doi.org/10.1016/j.jconrel.2016.04.012
[59] Y. Xiao, X. Wang, B. Wang, X. Liu, X. Xu, R. Tang, Long-term effect of biomineralized insulin nanoparticles on type 2 diabetes treatment, Theranostics, 7 (2017) 4301-4312. https://doi.org/10.7150/thno.21450
[60] A. Ahad, M. Raish, A. Ahmad, F.I. Al-Jenoobi, A.M. Al-Mohizea, Eprosartan mesylate loaded bilosomes as potential nano-carriers against diabetic nephropathy in streptozotocin-induced diabetic rats, Eur. J. Pharm. Sci.111 (2018) 409-417. https://doi.org/10.1016/j.ejps.2017.10.012
[61] J. Myerson, L. He, G. Lanza, D. Tollefsen, S. Wickline, Thrombin-inhibiting perfluorocarbon nanoparticles provide a novel strategy for treatment and magnetic resonance imaging of acute thrombosis, J. Thromb. Haemost. 9 (2011) 1292-1300. https://doi.org/10.1111/j.1538-7836.2011.04339.x
[62] N. Tsukie, K. Nakano, T. Matoba, S. Masuda, E. Iwata, M. Miyagawa, G. Zhao, W. Meng, J. Kishimoto, K. Sunagawa, K. Egashira, Pitavastatin-incorporated nanoparticle eluting stents attenuate in-stent stenosis without delayed endothelial healing effects in a porcine coronary artery model, J. Atheroscler. Thromb. 20 (2013) 32-45. https://doi.org/10.5551/jat.13862
[63] G. Fredman,N. Kamaly, S. Spolitu, J. Milton, D. Ghorpade, R. Chiasson, G. Kuriakose, M. Perretti, O. Farokzhad, I. Tabas, Targeted nanoparticles containing the proresolving peptide Ac2-26 protect against advanced atherosclerosis in hypercholesterolemic mice, Sci. Transl. Med. 18 (2015) doi: 10.1126/scitranslmed.aaa1065. https://doi.org/10.1126/scitranslmed.aaa1065
[64] S.S. El Shaer, T.A. Salaheldin, N.M. Saied, S.M. Abdelazim. In vivo ameliorative effect of cerium oxide nanoparticles in isoproterenol-induced cardiac toxicity, Exp. Toxicol.Pathol. 69 (2017) 435-441. https://doi.org/10.1016/j.etp.2017.03.001
[65] C.R. Bonepally, S.J. Gandey, K. Bommineni, K.M. Gottumukkala, J. Aukunuru, Preparation, characterisation and in vivo evaluation of silybin nanoparticles for the treatment of liver fibrosis, Trop. J. Pharm. Res. 12 (2013) 1-6. https://doi.org/10.4314/tjpr.v12i1.1
[66] D. Oró, T. Yudina, G. Fernández-Varo, E. Casals, V. Reichenbach, G. Casals, B. González de la Presa, S. Sandalinas, S. Carvajal, V. Puntes, W. Jiménez, Cerium oxide nanoparticles reduce steatosis, portal hypertension and display anti-inflammatory properties in rats with liver fibrosis, J. Hepatol. 64 (2016) 691-8. https://doi.org/10.1016/j.jhep.2015.10.020
[67] R. Bansal, B. Nagórniewicz, G. Storm, J. Prakash, Relaxin-coated superparamagnetic iron oxide nanoparticles as a novel theranostic approach for the diagnosis and treatment of liver fibrosis, J. Hepatol. 66 (2017) S43. doi.org/10.1016/S0168-8278(17)30348-3. https://doi.org/10.1016/S0168-8278(17)30348-3
[68] J. Wang, W. Pan, Y. Wang, W. Lei, B. Feng, C. Du, X.J. Wang, Enhanced efficacy of curcumin with phosphatidylserine-decorated nanoparticles in the treatment of hepatic fibrosis, Drug Deliv. 25 (2018) 1-11. https://doi.org/10.1080/10717544.2017.1399301
[69] R. Gui, Y. Wang, J. Sun, Embedding fluorescent mesoporous silica nanoparticles into biocompatible nanogels for tumor cell imaging andthermo/pH-sensitive in vitro drug release, Colloids Surf. B Biointerfaces116 (2014) 518-525. https://doi.org/10.1016/j.colsurfb.2014.01.044
[70] B. Chen, X.Y. He, X.Q. Yi, R.X. Zhuo, S.X. Cheng, Dual-peptide-functionalized albumin-based nanoparticles with pH dependent self-assembly behavior for drug delivery, ACS Appl. Mater. Interfaces 7 (2015) 15148-15153. https://doi.org/10.1021/acsami.5b03866
[71] A. Razzazan, F. Atyabi, B. Kazemi, R. Dinarvand, In vivo drug delivery of gemcitabine with PEGylated single-walled carbon nanotubes, Mater. Sci. Eng. C Mater. Biol. Appl. 62 (2016) 614-25. https://doi.org/10.1016/j.msec.2016.01.076
[72] T. Ganbold, G. Gerile, H. Xiao, H. Baigude, Efficient in vivo siRNA delivery by stabilized d-peptide-based lipid nanoparticles, RSC Advances 7 (2017) 8823-8831. https://doi.org/10.1039/C6RA25862J
[73] S. Gao, H. Tian, Z. Xing, D. Zhang, Y. Guo, Z. Guo, X. Zhu, X. Chen, A non-viral suicide gene delivery system traversing the blood brain barrier for non-invasive glioma targeting treatment, J. Control Release 243 (2016) 357-369. https://doi.org/10.1016/j.jconrel.2016.10.027
[74] G. Tokajuk, K. Niemirowicz, P. Deptuła, E. Piktel, M. Cieśluk, A.Z. Wilczewska, J.R. Dąbrowski, R. Bucki, Use of magnetic nanoparticles as a drug delivery system to improve chlorhexidine antimicrobial activity, Int. J. Nanomedicine, 12 (2017) 7833-7846. https://doi.org/10.2147/IJN.S140661
[75] Y. Zhang, R.J. Liang, J.J. Xu, L.F. Shen, J.Q. Gao, X.P. Wang, N.N. Wang, D. Shou, Y. Hu, Efficient induction of antimicrobial activity with vancomycin nanoparticle-loaded poly(trimethylene carbonate) localized drug delivery system, Int. J. Nanomed.12 (2017) 1201-1214. https://doi.org/10.2147/IJN.S127715
[76] C.M.J. Hu, W.S. Chang, Z.S. Fang, Y.T, Chen, W.L. Wang, H.H. Tsai, L.L. Chueh, T. Takano, T. Hohdatsu, H.W. Chen, Nanoparticulate vacuolar ATPase blocker exhibits potent host targeted antiviral activity against feline coronavirus, Sci. Rep.7 (2017) 13043. https://doi.org/10.1038/s41598-017-13316-0
[77] A. Belgamwar, S. Khan, P. Yeole, Intranasal chitosan-g-HPβCD nanoparticles of efavirenz for the CNS targeting, Artif, Cells Nanomed, Biotechnol,46 (2018) 374-386. https://doi.org/10.1080/21691401.2017.1313266
[78] C.F. Semenkovich, Insulin resistance and atherosclerosis, J. Clin. Invest.116 (2006) 1813-1822. https://doi.org/10.1172/JCI29024
[79] F. Louwen, A. Ritter, N.N. Kreis, J. Yuan, Insight into the development of obesity: functional alterations of adipose‐derived mesenchymal stem cells, Obesity Reviews, 19 (2018) 888-904. https://doi.org/10.1111/obr.12679
[80] EldawAbdellati, Nanotechnology in Elevation of the worldwide impact of obesity and obesity-related diseases: potential roles in human health and disease, J. Diabetes Sci. Technol. 5 (2011) 1005-1008. https://doi.org/10.1177/193229681100500424
[81] Y. Xue, X. Xu, X.Q. Zhang, O.C. Farokhzad, R. Langer R. Preventing diet-induced obesity in mice by adipose tissue transformation and angiogenesis using targeted nanoparticles, Proc. Natl. Acad. Sci. USA. 113 (2016) 5552-5557. https://doi.org/10.1073/pnas.1603840113
[82] J. Weiss, P. Takhistov, D.J. McClements, Functional materials in food nanotechnology. J. Food Sci. 71 (2006), doi.org/10.1111/j.1750-3841.2006.00195.x. https://doi.org/10.1111/j.1750-3841.2006.00195.x
[83] H. Maeda, M. Hosokawa, T. Sashima, K. Funayama, K. Miyashita, Fucoxanthin from edible seaweed, Undaria pinnatifida, shows antiobesity effect through UCP1 expression in white adipose tissues, Biochem. Bioph. Res. Comunn. 332 (2005) 392-397. https://doi.org/10.1016/j.bbrc.2005.05.002
[84] H. Maeda, M. Hosokawa,T. Sashima, K. Murakami-Funayama, K. Miyashita, Anti-obesity and anti-diabetic effects of fucoxanthin on diet-induced obesity conditions in a murine mode, Mol. Med. Rep., 2 (2009) 897-902. https://doi.org/10.3892/mmr_00000189
[85] Z. Luo, L. Ma, Z. Zhao, H. He, D. Yang, X. Feng, S. Ma, X. Chen, T. Zhu, T. Cao,D. Liu, B. Nilius, Y. Huang, Z. Yan, Z. Zhu, TRPV1 activation improves exercise endurance and energy metabolism through PGC-1 alpha upregulation in mice, Cell Res, 22 (2012) 551-564. https://doi.org/10.1038/cr.2011.205
[86] Z. Zhang, H. Zhang, B. Li, X. Meng, J. Wang, Y. Zhang, S. Yao, Q. Ma, L. Jin, J. Yang, W. Wang, G. Ning, Berberine activates thermogenesis in white and brown adipose tissue, Nat. Commun. 5 (2014) 5493. doi: 10.1038/ncomms6493. https://doi.org/10.1038/ncomms6493
[87] Y. Song, Y. Li, Q. Xu, Z. Liu, Mesoporous silica nanoparticles for stimuli-responsive controlled drug delivery: advances, challenges and outlook, Int. J. Nanomed. 12 (2017) 87-110. https://doi.org/10.2147/IJN.S117495
[88] K.E. Wellen, G.S. Hotamisligil, Inflammation, stress and diabetes, J. Clin. Invest, 115 (2005) 1111-1119. https://doi.org/10.1172/JCI25102
[89] M.A. Atkinson, G.S. Eisenbarth, A.W. Michels, Type 1 diabetes, Lancet, 383 (2014) 69-82. https://doi.org/10.1016/S0140-6736(13)60591-7
[90] M.A. Atkinson, The pathogenesis and natural history of type 1 diabetes,Cold Spring Harb Perspect Med, 2 (2012) doi: 10.1101/cshperspect.a007641. https://doi.org/10.1101/cshperspect.a007641
[91] M. Van-Lummel, A. Zaldumbide, B.O. Roep, Changing faces, unmasking the beta-cell: post-translational modification of antigens in type 1 diabetes, Curr. Opin. Endocrinol Diabetes Obes., 20 (2013) 299-306. https://doi.org/10.1097/MED.0b013e3283631417
[92] F.X. Mauvais, J. Diana, P. Van Endert, Beta cell antigens in type-1 diabetes: triggers in pathogenesis and therapeutic targets, F1000Res, Faculty Rev. 5 (2016) 728. https://doi.org/10.12688/f1000research.7411.1
[93] Y. Zhao, B. Krishnamurthy, Z.U. Mollah, T.W. Kay, H.E. Thomas, NF-kB in type-1 diabetes, Inflamm Allergy Drug Targets, 10(2011) 208-217. https://doi.org/10.2174/187152811795564046
[94] C. Limbert, Type 1 diabetes – an auto-inflammatory disease: a new concept, new therapeutical strategies, J. Transl. Med. 10 (2012). doi: 10.1101/cshperspect.a007641. https://doi.org/10.1101/cshperspect.a007641
[95] H.E. Hohmeier, V.V. Tran, C.B. Newgard, Inflammatory mechanisms in diabetes: lessons from the β-cell, Int. J. Obesity 27 (2003) S12-S16. https://doi.org/10.1038/sj.ijo.0802493
[96] A.R. Saltiel, J.E. Pessin, Insulin signaling pathways in time and space, Trends Cell Bio. 12 (2002) 65-71. https://doi.org/10.1016/S0962-8924(01)02207-3
[97] A.J. King, The use of animal models in diabetes research, Br. J. Pharmacol.166 (2012) 877-894. https://doi.org/10.1111/j.1476-5381.2012.01911.x
[98] M.S. Alhadramy, Diabetes and oral therapies: A review of oral therapies for diabetes mellitus, Journal of Taibah University Medical Sciences 11 (2016) 317-329. https://doi.org/10.1016/j.jtumed.2016.02.001
[99] R. Gupta, Diabetes treatment by nanotechnology, J. Biotechnol.Biomater.7 (2017) 268. https://doi.org/10.4172/2155-952X.1000268
[100] J. Sheng, L. Han, J. Qin, G. Ru, R. Li, L. Wu, D. Cui, P. Yang, Y. He, J. Wang, N-trimethyl chitosan chloride-coated PLGA nanoparticles overcoming multiple barriers to oral insulin absorption, ACS. Appl. Mater. Interfaces. 7 (2015) 15430-41. https://doi.org/10.1021/acsami.5b03555
[101] Y. Shi, X. Sun, L. Zhang, K. Sun, K. Li, Y. Li, Q. Zhang, Fc-modified exenatide-loaded nanoparticles for oral delivery to improve hypoglycemic effects in mice, Sci. Rep. 8 (2018) 726. https://doi.org/10.1038/s41598-018-19170-y
[102] S.G. Chrysant, A new paradigm in the treatment of the cardiovascular disease continuum: focus on prevention, Hippokratia 15 (2011) 7-11.
[103] J. Stewart, G. Manmathan, P. Wilkinson, Primary prevention of cardiovascular disease: A review of contemporary guidance and literature, JRSM Cardiovasc. Dis. 6 (2017). doi: 10.1177/2048004016687211. https://doi.org/10.1177/2048004016687211
[104] W. Jiang, H. Liu, Nanocomposites for bone repair and osteointegration with soft tissues, (Ed) H. Liu, Nanocomposites musculoskelet Tissue Regeneration (2016) 241-257.
[105] J.W. Cassidy, Nanotechnology in the regeneration of complex tissues, Bone Tissue Regen. Insights 5 (2014) 25-35. https://doi.org/10.4137/BTRI.S12331
[106] N. Hao, L. Li, F. Tang, Roles of particle size, shape and surface chemistry of mesoporous silica nanomaterials on biological systems, Int. Mater. Rev.62 (2017) 57-77. https://doi.org/10.1080/09506608.2016.1190118
[107] R. Duivenvoorden, J. Tang, D.P. Cormode, A.J. Mieszawska, D. Izquierdo-Garcia, C. Ozcan, M.J. Otten, N. Zaidi, M.E. Lobatto, S.M. van Rijs, B. Priem, E.L. Kuan, C. Martel, B. Hewing, H. Sager, M. Nahrendorf, G.J. Randolph, E.S. Stroes, V. Fuster, E.A. Fisher, Z.A. Fayad, W.J. Mulder, A statin-loaded reconstituted high-density lipoprotein nanoparticle inhibits atherosclerotic plaque inflammation, Nat Commun. 5 (2014) 3065. doi: 10.1038/ncomms4065. https://doi.org/10.1038/ncomms4065
[108] S. Ahadian, S. Yamada, J. Ramón-Azcón, M. Estili, X. Liang, K. Nakajima, H. Shiku, A. Khademhosseini, T. Matsue, Hybrid hydrogel-aligned carbon nanotube scaffolds to enhance cardiac differentiation of embryoid bodies, Acta. Biomater.31 (2016) 134-143. https://doi.org/10.1016/j.actbio.2015.11.047
[109] S. Ahadian, L.D. Huyer, M. Estili, B. Yee, N. Smith, Z. Xu, Y. Sun, M. Radisic, Moldable elastomeric polyester-carbon nanotube scaffolds for cardiac tissue engineering, Acta. Biomater. 52 (2017) 81-91. https://doi.org/10.1016/j.actbio.2016.12.009
[110] H.A. Afdhal, D. Nunes, Evaluation of liver fibrosis: A concise review, Am. J. Gastroenterol. 99 (2004) 1160-74. https://doi.org/10.1111/j.1572-0241.2004.30110.x
[111] R.G. Wells, Cellular Sources of Extracellular Matrix in Hepatic Fibrosis, Clin. liver dis. 12 (2008) 759-768. https://doi.org/10.1016/j.cld.2008.07.008
[112] E. Arriazu, M. Ruiz de Galarreta, F.J. Cubero, M. Varela-Rey, M.P. Pérez de Obanos, T.M. Leung, A. Lopategi, A. Benedicto, I. Abraham-Enachescu, N. Nieto, Extracellular matrix and liver disease. Antioxid. Redox. Signal 21 (2014) 1078-1097. https://doi.org/10.1089/ars.2013.5697
[113] R. Anty, M. Lemoine, Liver fibrogenesis and metabolic factors, Clin. Res. Hepatol.Gastroenterol.35 (2011) S10-20. https://doi.org/10.1016/S2210-7401(11)70003-1
[114] K. Bettermann, T. Hohensee, J. Haybaeck, Steatosis and steatohepatitis: Complex disorders, Int. J. Mol. Sci.15 (2014) 9924-9944. https://doi.org/10.3390/ijms15069924
[115] P. Sorrentino, L. Terracciano, S. D’Angelo, U. Ferbo, A. Bracigliano, R. Vecchione, Predicting fibrosis worsening in obese patients with NASH through parenchymal fibronectin, HOMA-IR, and hypertension, Am. J. Gastroenterol. 105 (2010) 336-44. https://doi.org/10.1038/ajg.2009.587
[116] R. Bataller, D.A. Brenner, Hepatic stellate cells as a target for the treatment of liver fibrosis, Semin Liver Dis. 21 (2001) 437-51. https://doi.org/10.1055/s-2001-17558
[117] S.P. Surendran, R.G. Thomas, M.J. Moon, Y.Y. Jeong, Nanoparticles for the treatment of liver fibrosis, Int. J. Nanomed. 12 (2017) 6997-7006. https://doi.org/10.2147/IJN.S145951
[118] V.G. Giby, T.A. Ajith, Role of adipokines and peroxisome proliferator-activated receptors in nonalcoholic fatty liver disease, World J. Hepatol. 6 (2014) 570-579. https://doi.org/10.4254/wjh.v6.i8.570
[119] D.R. Nelson, Z. Tu, C. Soldevila-Pico, M. Abdelmalek, H. Zhu, Y.L. Xu, R. Cabrera, C. Liu, G.L. Davis, Long-term interleukin 10 therapy in chronic hepatitis C patients has a proviral and anti-inflammatory effect, Hepatology 38 (2003) 859-68. https://doi.org/10.1002/hep.1840380412
[120] D. Tripathi, G. Therapondos, H.F. Lui, N. Johnston, D.J. Webb, P.C. Hayes, Chronic administration of losartan, an angiotensin II receptor antagonist, is not effective in reducing portal pressure in patients with preascitic cirrhosis, Am. J. Gastroenterol. 99 (2004) 390-4. https://doi.org/10.1111/j.1572-0241.2004.04051.x
[121] P.J. Pockros, L. Jeffers, N. Afdhal, Z.D. Goodman, D. Nelson, R.G. Gish, K.R. Reddy, R. Reindollar, M. Rodriguez-Torres, S. Sullivan, L.M. Blatt, S. Faris-Young, Final results of a double-blind, placebo-controlled trial of the antifibrotic efficacy of interferon-gamma1b in chronic hepatitis C patients with advanced fibrosis or cirrhosis, Hepatology 45 (2007) 569-78. https://doi.org/10.1002/hep.21561
[122] D.M. Mosser, J.P. Edwards, Exploring the full spectrum of macrophage activation, Nat. Rev. Immunol. 8 (2008) 958-69. https://doi.org/10.1038/nri2448
[123] M. Bartneck, K.T. Warzecha, F. Tacke, Therapeutic targeting of liver inflammation and fibrosis by nanomedicine, Hepatobiliary Surg. Nutr.3 (2014) 364-376.
[124] S.H. Zhang, K.M. Wen, W. Wu, W.Y. Li, J.N. Zhao, Efficacy of HGF carried by ultrasound microbubble-cationic nano-liposomes complex for treating hepatic fibrosis in a bile duct ligation rat model, and its relationship with the diffusion-weighted MRI parameters, Clin. Res. Hepatol. Gastroenterol. 37 (2013) 602-607. https://doi.org/10.1016/j.clinre.2013.05.011
[125] R.G Thomas, M.J. Moon, J.H. Kim, J.H. Lee, Y.Y. Jeong, Effectiveness of losartan-loaded hyaluronic acid (HA) micelles for the reduction of advanced hepatic fibrosis in C3H/HeN mice model, PLOS ONE 10 (2015) doi.org/10.1371/journal.pone.0145512. https://doi.org/10.1371/journal.pone.0145512
[126] American Cancer Society, cancer treatment & survivorship facts & figures 2016-2017, 2016: 1-40.
[127] WHO cancer fact sheet 2017 france, world health organization.
[128] K.M. Debatin, Apoptosis pathways in cancer and cancer therapy, Cancer Immunol Immunother. 53 (2004) 153-9. https://doi.org/10.1007/s00262-003-0474-8
[129] A. Gross, J.M. McDonnell, S.J. Korsmeyer, BCL-2 family members and the mitochondria in apoptosis, Genes Dev.13 (1999) 1899-1911. https://doi.org/10.1101/gad.13.15.1899
[130] Y.Q. Xiao, K. Malcolm, G.S. Worthen, S. Gardai, W.P. Schiemann, V.A. Fadok, D.L. Bratton, P.M. Henson, Cross-talk between ERK and p38 MAPK mediates selective suppression of pro-inflammatory cytokines by transforming growth factor-β, J. Bio. Chem. 277 (2002) 14884-14893.
[131] K.N. Kropp, S. Maurer, K. Rothfelder, B.J. Schmied,K.L. Clar, M. Schmidt, B. Strunz, H.G. Kopp, A. Steinle, F. Grünebach, S.M. Rittig, H.R. Salih, D. Dörfel, The novel deubiquitinase inhibitor b-AP15 induces direct and NK cell-mediated antitumor effects in human mantle cell lymphoma. Cancer Immunol. Immunother. 67 (2018) 935-947. https://doi.org/10.1007/s00262-018-2151-y
[132] Q. Yue, G. Gao, G. Zou, H. Yu, X. Zheng, Natural products as adjunctive treatment for pancreatic cancer: Recent trends and advancements, Bio. Med. Res. Int. (2017) 2017. doi.org/10.1155/2017/8412508 https://doi.org/10.1155/2017/8412508
[133] A.S. Narang, D.S. Desai, Anticancer drug development unique aspects of pharmaceutical development. Lu Y, Mahato RI (eds.), Pharmaceutical perspectives of cancer therapeutics, Springer-Verlag New York, 694 (2009) 31.
[134] K. Sikora, The impact of future technology on cancer care, Clin. Med.2 (2002) 560-568. https://doi.org/10.7861/clinmedicine.2-6-560
[135] N.R. Jabir, S. Tabrez, G.M. Ashraf, S. Shakil, G.A. Damanhouri, M.A. Kamal, Nanotechnology-based approaches in anticancer research, Int. J. Nanomedicine 7 (2012) 4391-4408.
[136] R Ranganathan, S Madanmohan, A Kesavan, G Baskar, YR Krishnamoorthy, R Santosham, D Ponraju, SK Rayala, G Venkatraman, Nanomedicine: towards development of patient-friendly drug-delivery systems for oncological applications, Int. J. Nanomedicine 7 (2012) 1043-1060.
[137] S. Saxena, P. Caroni, Selective neuronal vulnerability in neurodegenerative diseases: from stressor thresholds to degeneration, Neuron 71 (2011) 38-48. https://doi.org/10.1016/j.neuron.2011.06.031
[138] A.D. Gitler, P. Dhillon, J. Shorter, Neurodegenerative disease: models, mechanisms, and a new hope, Dis. Model Mech. 10 (2017) 499-502. https://doi.org/10.1242/dmm.030205
[139] A. Xie, J. Gao, L. Xu, D. Meng, Shared mechanisms of neurodegeneration in Alzheimer’s disease and Parkinson’s disease, Biomed. Res. Int. 2014 (2014). doi: 10.1155/2014/648740. https://doi.org/10.1155/2014/648740
[140] G. Soursou, A. Alexiou, G.M. Ashraf, A.A. Siyal, G. Mushtaq, M.A. Kamal, Applications of nanotechnology in diagnostics and therapeutics of Alzheimer’s and Parkinson’s disease, Curr. Drug Metab. 16 (2015) 705-712. https://doi.org/10.2174/138920021608151107125049
[141] J. Wen, K. Yang, Y. Xu, H. Li, F. Liu, S. Sun, Construction of a triple-stimuli responsive system based on cerium oxide coated mesoporous silica nanoparticles Sci. Rep. 6 (2016) doi.org/10.1038/srep38931 https://doi.org/10.1038/srep38931
[142] C. Spuch, O. Saida, C. Navarro, Advances in the treatment of neurodegenerative disorders employing nanoparticles, Recent Pat. Drug Deliv. Formul. 6 (2012) 2-18. https://doi.org/10.2174/187221112799219125
[143] K.M. Jaruszewski, R.S. Omtri, K.K. Kandimalla, Role of nanotechnology in the diagnosis and treatment of Alzheimer’s disease, Curr. Adv. Med. Appl. Nanotechnol. 18 (2012) 107-124. https://doi.org/10.2174/978160805131111201010107
[144] G. Karthivashan, P. Ganesan, S. Park, J. Kim, D. Choi, Therapeutics strategies and nano-drug delivery applications in management of ageing Alzheimer’s disease, Drug Delivery 25 (2018) 307-320. https://doi.org/10.1080/10717544.2018.1428243
[145] D. Hadavi, A.A. Poot, Biomaterials for the treatment of Alzheimer’s disease, Front Bioeng. Biotechnol. 4 (2016). doi: 10.3389/fbioe.2016.00049. https://doi.org/10.3389/fbioe.2016.00049
[146] R.L. Jayaraj, V. Chandramohan, E. Namasivayam, Nanomedicine for Parkinson disease: current status and future perspective, Int. J. Pharm. Bio. Sci.4 (2013) 692-704.
[147] D. Martinez-Fong, M.J. Bannon, L. Trudeau, J.A. Gonzalez-Barrios, M.L. Arango Rodriguez, N.G. Hernandez-Chan, D. Reyes-Corona, J. Armendariz-Borunda, I. Navarro-Quiroga, NTS-Polyplex: a potential nanocarrier for neurotrophic therapy of Parkinson’s disease, Nanomedicine: NBM 8 (2012) 1052-1069. https://doi.org/10.1016/j.nano.2012.02.009
[148] A.R. Esteves, D.M. Arduino, D.F.F Silva, C.R. Oliveira, S.M. Cardoso, Mitochondrial dysfunction: the road to alpha-synuclein oligomerization in PD, Parkinsons Disease (2011) doi.org/10.4061/2011/693761. https://doi.org/10.4061/2011/693761
[149] X. Yi, Y. Wu, G. Tan, P. Yu, L. Zhou, Z. Zhou, J. Chen, Z. Wang, J. Pang, C. Ning, Palladium nanoparticles entrapped in a self-supporting nanoporous gold wire as sensitive dopamine biosensor, Sci. Rep.7 (2017). https://doi.org/10.1038/s41598-017-07909-y
[150] S. Mohammadi, M. Nikkhah, S. Hosseinkhani, Investigation of the effects of carbon-based nanomaterials on A53T alpha-synucleinaggregation using a whole-cell recombinant biosensor, Int. J. Nanomedicine 12 (2017) 8831-8840. https://doi.org/10.2147/IJN.S144764
[151] M.M. Migliore, R. Ortiz, S. Dye, R.B. Campbell, M.M. Amiji, B.L. Waszczak, Neurotrophic and neuroprotective efficacy of intranasal GDNF in a rat model of Parkinson’s disease, Neuroscience 274 (2014) 11-23. https://doi.org/10.1016/j.neuroscience.2014.05.019
[152] E. Barcia, L. Boeva, L. Garcia-Garcia, K. Slowing, A. Fernandez-Carballido, Y. Casanova, S. Negro, Nanotechnology-based drug delivery of ropinirole for Parkinson’s disease, Drug Delivery 24 (2017) 1112-1123. https://doi.org/10.1080/10717544.2017.1359862
[153] H. Zazo, C.I. Colino, J.M. Lanao, Current applications of nanoparticles in infectious diseases, J. Control Release 224 (2016) 86-102. https://doi.org/10.1016/j.jconrel.2016.01.008
[154] P. Sendi, R.A. Proctor, Staphylococcus aureus as an intracellular pathogen: the role of small colony variants, Trends Microbiol. 17 (2009) 54-58. https://doi.org/10.1016/j.tim.2008.11.004
[155] G.M. Soliman, Nanoparticles as safe and effective delivery systems of antifungal agents: Achievements and challenges, Int. J. Pharm. 523 (2017) 15-32. https://doi.org/10.1016/j.ijpharm.2017.03.019
[156] L. Singh, H.G. Kruger, G.E.M. Maguire, T. Govender, R. Parboosing, The role of nanotechnology in the treatment of viral infections, Ther. Adv. Infectious Dis.4 (2017) 105-131. https://doi.org/10.1177/2049936117713593
[157] T. Yokota, Kinds of antimicrobial agents and their mode of actions, Nihon Rinsho 55 (1997) 1155-60.
[158] E. De Clercq, Antiviral drugs in current clinical use, J. Clin.Virol.30 (2004)115-133. https://doi.org/10.1016/j.jcv.2004.02.009
[159] M. Gajendiran, P. Balashanmugam, P.T. Kalaichelvan, S. Balasubramanian, Multi-drug delivery of tuberculosis drugs by π-back bonded gold nanoparticles with multiblock copolyesters.Mater. Res. Express 3 (2016). DOI:10.1088/2053-1591/3/6/065401. https://doi.org/10.1088/2053-1591/3/6/065401
[160] J. Costa-Gouveia, E. Pancani, S. Jouny, A. Machelart, V. Delorme, G. Salzano, R. Iantomasi, C. Piveteau, C.J. Queval, O.R. Song, M. Flipo, B. Deprez, J.P. Saint-André, J. Hureaux, L. Majlessi, N. Willand, A. Baulard, P. Brodin, R. Gref, Combination therapy for tuberculosis treatment: pulmonary administration of ethionamide and booster co-loaded nanoparticles. Sci. Rep. 7 (2017) 5390. https://doi.org/10.1038/s41598-017-05453-3
[161] N. Xu, J. Gu, Y. Zhu, H. Wen, Q. Ren, J. Chen, Efficacy of intravenous amphotericin B-polybutylcyanoacrylate nanoparticles against cryptococcal meningitis in mice, Int. J. Nanomedicine 6 (2011) 905-913. https://doi.org/10.2147/IJN.S17503
[162] U. Roy, V. Drozd, A. Durygin, J. Rodriguez, P. Barber, V. Atluri, X. Liu, T.G. Voss, S. Saxena, M. Nair, Characterization of nanodiamond-based anti-HIV drug delivery to the brain, Sci. Rep. 8 (2018). https://doi.org/10.1038/s41598-017-16703-9
[163] S. Ojha, B. Kumar. A review on nanotechnology based innovations in diagnosis and treatment of multiple sclerosis, J. Cellular Immunother. 4 (2018) 56-64. https://doi.org/10.1016/j.jocit.2017.12.001
[164] R.J. Mannix, S. Kumar, F. Cassiola, M. Montoya-Zavala, E. Feinstein , M. Prentiss, D.E. Ingber, Nanomagnetic actuation of receptor-mediated signal transduction, Nat. Nanotechnol.3 (2008) 36-40. https://doi.org/10.1038/nnano.2007.418
[165] D. Yang, W.P. Wong, Small but Mighty: Nanoparticles Probe Cellular Signaling PathwayS, Dev.Cell.37 (2016) 397-398. https://doi.org/10.1016/j.devcel.2016.05.021
[166] D. Seo, K.M. Southard, J.W. Kim, H.J. Lee, J. Farlow, J.U. Lee, D.B. Litt, T. Haas, A.P. Alivisatos, J. Cheon, Z.J. Gartner, Y.W. Jun, A mechanogenetic toolkit for interrogating cell signaling in space and time, Cell165 (2016) 1507-1518. https://doi.org/10.1016/j.cell.2016.04.045
[167] S.H. Hassanpour, M. Dehghani, Review of cancer from perspective of molecular, J. Cancer Res. Practice 4 (2017) 127-129. https://doi.org/10.1016/j.jcrpr.2017.07.001
[168] A. Pavlopoulou, Da Spandidos, I. Michalopoulos, Human cancer databases, Oncol. Rep.33 (2015) 3-18. https://doi.org/10.3892/or.2014.3579
[169] B. Li, Q. Li, J. Mo, H. Dai, Drug-loaded polymeric nanoparticles for cancer stem cell targeting, Front Pharmacol. 8 (2017). doi: 10.3389/fphar.2017.00051. https://doi.org/10.3389/fphar.2017.00051
[170] B. Viswanath, S. Kim, Influence of nanotoxicity on human health and environment: The alternative strategies. de Voogt P. (Ed.) Reviews of environmental contamination and toxicology, 242 (2016) 61-104.
[171] Y.W. Huang, M. Cambre, H.J. Lee, The Toxicity of nanoparticles depends on multiple molecular and physicochemical mechanisms, Int. J. Mol. Sci.18 (2017) 2702. https://doi.org/10.3390/ijms18122702
[172] P.P. Fu, Q. Xia, H.M. Hwang, P.C. Ray, H. Yu, Mechanisms of nanotoxicity: Generation of reactive oxygen species, J. Food Drug Anal.22 (2014) 64-75. https://doi.org/10.1016/j.jfda.2014.01.005
[173] C.A. Jimenez-Cruz, S. Kang, R. Zhou, Large scale molecular simulations of nanotoxicity. WIREs Syst. Biol. Med. 6 (2014) 329-343. https://doi.org/10.1002/wsbm.1271
[174] A. Elsaesser, C.V. Howard, Toxicology of nanoparticles, Adv. Drug Deliv.Rev.64 (2012) 129-37. https://doi.org/10.1016/j.addr.2011.09.001
[175] N. Yanamala, V.E. Kagan, A.A. Shvedova, Molecular modeling in structural nano-toxicology: Interactions of nano-particles with nano-machinery of cells, Adv. Drug Deliv. Rev. 65 (2013) 2070-2077. https://doi.org/10.1016/j.addr.2013.05.005
[176] E. Bressan, V. Vindigni, L. Ferroni, W. Cairns, C. Gardin, C. Rigo, B. Zavan, M Stocchero, Silver Nanoparticles and Mitochondrial Interaction, Int. J. Dentistry. (2013) 2013 1-8. https://doi.org/10.1155/2013/312747
[177] D. McShan, P.C. Ray, H. Yu, Molecular toxicity mechanism of nanosilver, J. Food Drug Anal. 22 (2014) 116-127. https://doi.org/10.1016/j.jfda.2014.01.010
[178] J.P. Ryman-Rasmussen, E.W. Tewksbury, O.R. Moss, M.F. Cesta, B.A. Wong , J.C. Bonner, Inhaled multiwalled carbon nanotubes potentiate airway fibrosis in murine allergic asthma, Am. J. Respir. Cell. Mol. Boil., 40 (2009) doi.org/10.1165/rcmb.2008-0276OC. https://doi.org/10.1165/rcmb.2008-0276OC
[179] J.M. Caster, A.N. Patel, T. Zhang, A. Wang, Investigational nanomedicines in 2016: a review of nanotherapeutics currently undergoing clinical trials, Wiley Interdiscip. Rev. Nanomed.Nanobiotechnol. 9 (2017). doi: 10.1002/wnan.
[180] C.L. Ventola, Progress in Nanomedicine: Approved and investigational nanodrugs, Pharm. Ther. 42 (2017) 742-755.
[181] A.C. Anselmo, S. Mitragotri, Nanoparticles in the clinic, Bioengg. Translational Med.1 (2016) 10-29. https://doi.org/10.1002/btm2.10003
[182] O. Veiseh, B.C. Tang, K.A. Whitehead, D.G. Anderson, R. Langer, Managing diabetes with nanomedicine: challenges and opportunities, Nat. Rev. Drug Discov. 14 (2015) 45-57. https://doi.org/10.1038/nrd4477
[183] F. Khaja, D. Jayawardena, A. Kuzmis, H. Önyüksel, Targeted sterically stabilized phospholipid siRNA nanomedicine for hepatic and renal fibrosis, Nanomaterials 6 (2016). doi: 10.3390/nano6010008. https://doi.org/10.3390/nano6010008
[184] X. Li, T. Kuznetsova, N. Cauwenberghs, M. Wheeler, H. Maecker, J.C. Wu, F. Haddad, H. Dai, Autoantibody profiling on a plasmonic nano-gold chip for the early detection of hypertensive heart disease, Proc. Natl. Acad. Sci. USA 114 (2017) 7089-7094. https://doi.org/10.1073/pnas.1621457114
[185] J.I. Hare, T. Lammers, M.B. Ashford, S. Puri, G. Storm, S.T. Barry, Challenges and strategies in anti-cancer nanomedicine development: An industry perspective, Adv. Drug Deliv. Rev. 108 (2017) 25-38. https://doi.org/10.1016/j.addr.2016.04.025
[186] S. Donnellan, V. Stone, H. Johnston, M. Giardiello, A. Owen, S. Rannard, G. Aljayyoussi, B. Swift, L. Tran, C. Watkins, K. Stevenson, Intracellular delivery of nano-formulated antituberculosis drugs enhances bactericidal activity, J. Interdiscip.Nanomed.2 (2017) 146-156. https://doi.org/10.1002/jin2.27
[187] www.cancer.gov/sites/nano/research/plan.
[188] T. Date, V. Nimbalkar, J. Kamat, A. Mittal, R.I. Mahato, D. Chitkara, Lipid-polymer hybrid nanocarriers for delivering cancer therapeutics, J. Control Release 271 (2018) 60-73. https://doi.org/10.1016/j.jconrel.2017.12.016
[189] J. Wang, S. Yang, C. Li, Y. Miao, L. Zhu, C. Mao, M. Yang, Nucleation and assembly of silica into protein-based nanocomposites as effective anticancer drug carriers using self-assembled silk protein nanostructures as biotemplates, ACS Appl. Mater. Interfaces 9(2017) 22259-22267. https://doi.org/10.1021/acsami.7b05664
[190] Z. Li, E. Ye, David, R Lakshminarayanan, X.J. Loh, Recent advances of using hybrid nanocarriers in remotely controlled therapeutic delivery, Small 12 (2016) 4782-4806. https://doi.org/10.1002/smll.201601129
[191] A. Khalid, A.N. Mitropoulos, B. Marelli, S. Tomljenovic-Hanic, F.G. Omenetto, Doxorubicin loaded nanodiamond-silk spheres for fluorescence tracking and controlled drug release, Biomed. Opt. Express.7 (2016) 132-147. https://doi.org/10.1364/BOE.7.000132
[192] M.S. Purdey, P.K. Capon, B.J. Pullen, P. Reineck, N. Schwarz, P.J. Psaltis, S.J. Nicholls, B.C. Gibson, A.D. Abell, An organic fluorophore-nanodiamond hybrid sensor for photostable imaging and orthogonal, on-demand biosensing, Sci. Rep.7 (2017) doi.org/10.1038/s41598-017-15772-0 https://doi.org/10.1038/s41598-017-15772-0
[193] L. Cao, Y. Liang, F. Zhao, X. Zhao, Z. Chen, Chelerythrine and Fe3O4 loaded multi-walled carbon nanotubes for targeted cancer therapy, J. Biomed.Nanotech.12 (2016) 1312-1322. https://doi.org/10.1166/jbn.2016.2280
[194] Z. Heger, H. Polanska, S. Krizkova, J. Balvan, M. Raudenska, S. Dostalova, A. Moulick, M. Masarik, V. Adam, Co-delivery of VP-16 and Bcl-2-targeted antisense on PEG-grafted oMWCNTs for synergistic in vitro anti-cancer effects in non-small and small cell lung cancer, Colloids Surf. B Biointerfaces. 150 (2017) 131-140. https://doi.org/10.1016/j.colsurfb.2016.11.023