Electrochemical Nanobiosensors for Cancer Diagnosis

$20.00

Electrochemical Nanobiosensors for Cancer Diagnosis

Anu Bharti, Shilpa Rana, Nirmal Prabhakar

Modern lifestyle has invited many devastating diseases like cancer to mankind. Cancer has become a huge threat to the population and its diagnosis being expensive and time-consuming gives an indication of the need to develop cost-effective and reliable detection methods. This chapter focuses on various electrochemical nano biosensors established for the detection of commonly occurring cancers (lung, breast, prostate and colorectal). It has been divided into four major parts that emphasize the detailed biosensor fabrication strategies utilized for the detection of biomarkers related to particular cancer type. Recently developed electrochemical techniques based on different bio-recognition elements (antibody, enzyme, nucleic acid, aptamer, phage and lectin) and nanomaterials have been explored with their advantages and limitations.

Keywords
Electrochemical Biosensors, Lung Cancer, Breast Cancer, Prostate Cancer, Colorectal Cancer, Biomarkers

Published online 3/25/2019, 54 pages

Citation: Anu Bharti, Shilpa Rana, Nirmal Prabhakar, Electrochemical Nanobiosensors for Cancer Diagnosis, Materials Research Foundations, Vol. 47, pp 157-210, 2019

DOI: https://doi.org/10.21741/9781644900130-5

Part of the book on Biosensors

References
[1] L.A. Torre, R.L. Siegel, E.M. Ward, A. Jemal, Global cancer incidence and mortality rates and trends–an update, cancer epidemiol. Biomarkers Prev. 25 (2016) 16–27. https://doi.org/10.1158/1055-9965.EPI-15-0578
[2] R.L. Siegel, K.D. Miller, A. Jemal, Cancer statistics, CA. Cancer J. Clin. 68 (2018) 7–30. https://doi.org/10.3322/caac.21442
[3] B. Gupta, N. Kumar, Worldwide incidence, mortality and time trends for cancer of the oesophagus, Eur. J. Cancer Prev. 26 (2017) 107–118. https://doi.org/10.1097/CEJ.0000000000000249
[4] A. del Sol, R. Balling, L. Hood, D. Galas, Diseases as network perturbations, Curr. Opin. Biotechnol. 21 (2010) 566–571. https://doi.org/10.1016/j.copbio.2010.07.010
[5] S.K. Chatterjee, B.R. Zetter, Cancer biomarkers: knowing the present and predicting the future, Futur. Oncol. 1 (2005) 37–50. https://doi.org/10.1517/14796694.1.1.37
[6] S. Kumar, A. Mohan, R. Guleria, Biomarkers in cancer screening, research and detection: present and future: a review, Biomarkers. 11 (2006) 385–405. https://doi.org/10.1080/13547500600775011
[7] B. Jin, P. Wang, H. Mao, B. Hu, H. Zhang, Z. Cheng, Z. Wu, X. Bian, C. Jia, F. Jing, Q. Jin, J. Zhao, Multi-nanomaterial electrochemical biosensor based on label-free graphene for detecting cancer biomarkers, Biosens. Bioelectron. 55 (2014) 464–469. https://doi.org/10.1016/j.bios.2013.12.025
[8] V.S.P.K.S.A. Jayanthi, A.B. Das, U. Saxena, Recent advances in biosensor development for the detection of cancer biomarkers, Biosens. Bioelectron. 91 (2017) 15–23. https://doi.org/10.1016/j.bios.2016.12.014
[9] B. Bohunicky, S.A. Mousa, Biosensors: The new wave in cancer diagnosis, Nanotechnol. Sci. Appl. 4 (2011) 1–10. https://doi.org/10.2147/NSA.S13465
[10] R. Ranjan, E.N. Esimbekova, V.A. Kratasyuk, Rapid biosensing tools for cancer biomarkers, Biosens. Bioelectron. 87 (2017) 918–930. https://doi.org/10.1016/j.bios.2016.09.061
[11] S. Kanchi, M.I. Sabela, P.S. Mdluli, Inamuddin, K. Bisetty, Smartphone based bioanalytical and diagnosis applications: A review., Biosens. Bioelectron. 102 (2018) 136–149. https://doi.org/10.1016/j.bios.2017.11.021
[12] L. Wang, Q. Xiong, F. Xiao, H. Duan, 2D nanomaterials based electrochemical biosensors for cancer diagnosis, Biosens. Bioelectron. 89 (2017) 136–151. https://doi.org/10.1016/j.bios.2016.06.011
[13] S.N. Topkaya, M. Azimzadeh, M. Ozsoz, Electrochemical biosensors for cancer biomarkers detection: recent advances and challenges, Electroanalysis. 28 (2016) 1402–1419. https://doi.org/10.1002/elan.201501174
[14] N. Sohrabi, A. Valizadeh, S.M. Farkhani, A. Akbarzadeh, Basics of DNA biosensors and cancer diagnosis, Artif. Cells, Nanomedicine, Biotechnol. 44 (2016) 654–663. https://doi.org/10.3109/21691401.2014.976707
[15] M. Choudhary, A. Singh, S. Kaur, K. Arora, Enhancing lung cancer diagnosis: electrochemical simultaneous bianalyte immunosensing using carbon nanotubes–chitosan nanocomposite, Appl. Biochem. Biotechnol. 174 (2014) 1188–1200. https://doi.org/10.1007/s12010-014-1020-1
[16] K.K. Hussain, N.G. Gurudatt, T.A. Mir, Y.-B. Shim, Amperometric sensing of HIF1α expressed in cancer cells and the effect of hypoxic mimicking agents, Biosens. Bioelectron. 83 (2016) 312–318. https://doi.org/10.1016/j.bios.2016.04.068
[17] P.J. Marangos, D.E. Schmechel, Neuron Specific Enolase, A clinically useful marker for neurons and neuroendocrine cells, Annu. Rev. Neurosci. 10 (1987) 269–295. https://doi.org/10.1146/annurev.ne.10.030187.001413
[18] H. Wang, H. Han, Z. Ma, Conductive hydrogel composed of 1,3,5-benzenetricarboxylic acid and Fe3+ used as enhanced electrochemical immunosensing substrate for tumor biomarker, Bioelectrochemistry. 114 (2017) 48–53. https://doi.org/10.1016/j.bioelechem.2016.12.006
[19] Z. Wei, J. Zhang, A. Zhang, Y. Wang, X. Cai, Electrochemical detecting lung cancer-associated antigen based on graphene-gold nanocomposite, molecules. 22 (2017) 392. https://doi.org/10.3390/molecules22030392
[20] Y. Dai, C.C. Liu, Detection of 17 β-estradiol in environmental samples and for health care using a single-use, cost effective biosensor based on differential pulse voltammetry (DPV), Biosensors. 7 (2017) 15–27. https://doi.org/10.3390/bios7020015
[21] E.B. Aydın, M.K. Sezgintürk, A sensitive and disposable electrochemical immunosensor for detection of SOX2, a biomarker of cancer, Talanta. 172 (2017) 162–170. https://doi.org/10.1016/j.talanta.2017.05.048
[22] Y. Fan, J. Liu, Y. Wang, J. Luo, H. Xu, S. Xu, X. Cai, A wireless point-of-care testing system for the detection of neuron-specific enolase with microfluidic paper-based analytical devices, Biosens. Bioelectron. 95 (2017) 60–66. https://doi.org/10.1016/j.bios.2017.04.003
[23] Q. Tian, Y. Wang, R. Deng, L. Lin, Y. Liu, J. Li, Carbon nanotube enhanced label-free detection of microRNAs based on hairpin probe triggered solid-phase rolling-circle amplification, Nanoscale. 7 (2015) 987–993. https://doi.org/10.1039/C4NR05243A
[24] S. Liu, W. Su, Z. Li, X. Ding, Electrochemical detection of lung cancer specific microRNAs using 3D DNA origami nanostructures, Biosens. Bioelectron. 71 (2015) 57–61. https://doi.org/10.1016/j.bios.2015.04.006
[25] X.-W. Xu, X.-H. Weng, C.-L. Wang, W.-W. Lin, A.-L. Liu, W. Chen, X.-H. Lin, Detection EGFR exon 19 status of lung cancer patients by DNA electrochemical biosensor, Biosens. Bioelectron. 80 (2016) 411–417. https://doi.org/10.1016/j.bios.2016.02.009
[26] S. Su, Y. Wu, D. Zhu, J. Chao, X. Liu, Y. Wan, Y. Su, X. Zuo, C. Fan, L. Wang, On-Electrode synthesis of shape-controlled hierarchical flower-like gold nanostructures for efficient interfacial DNA assembly and sensitive electrochemical sensing of microRNA, Small. 12 (2016) 3794–3801. https://doi.org/10.1002/smll.201601066
[27] D. Voccia, M. Sosnowska, F. Bettazzi, G. Roscigno, E. Fratini, V. De Franciscis, G. Condorelli, R. Chitta, F. D’Souza, W. Kutner, I. Palchetti, Direct determination of small RNAs using a biotinylated polythiophene impedimetric genosensor, Biosens. Bioelectron. 87 (2017) 1012–1019. https://doi.org/10.1016/j.bios.2016.09.058
[28] B. Bo, T. Zhang, Y. Jiang, H. Cui, P. Miao, Triple signal amplification strategy for ultrasensitive determination of miRNA based on duplex specific nuclease and bridge DNA–gold nanoparticles, Anal. Chem. 90 (2018) 2395–2400. https://doi.org/10.1021/acs.analchem.7b05447
[29] S. Liu, W. Su, Y. Li, L. Zhang, X. Ding, Manufacturing of an electrochemical biosensing platform based on hybrid DNA hydrogel: Taking lung cancer-specific miR-21 as an example, Biosens. Bioelectron. 103 (2018) 1–5. https://doi.org/10.1016/j.bios.2017.12.021
[30] M. Amouzadeh Tabrizi, M. Shamsipur, L. Farzin, A high sensitive electrochemical aptasensor for the determination of VEGF 165 in serum of lung cancer patient, Biosens. Bioelectron. 74 (2015) 764–769. https://doi.org/10.1016/j.bios.2015.07.032
[31] G.S. Zamay, T.N. Zamay, O.S. Kolovskaya, A. V. Krat, Y.E. Glazyrin, A. V. Dubinina, A.S. Zamay, Development of a biosensor for electrochemical detection of tumor-associated proteins in blood plasma of cancer patients by aptamers, Dokl. Biochem. Biophys. 466 (2016) 70–73. https://doi.org/10.1134/S1607672916010208
[32] M. Ahmed, L.G. Carrascosa, A.A. Ibn Sina, E.M. Zarate, D. Korbie, K. Ru, M.J.A. Shiddiky, P. Mainwaring, M. Trau, Detection of aberrant protein phosphorylation in cancer using direct gold-protein affinity interactions, Biosens. Bioelectron. 91 (2017) 8–14. https://doi.org/10.1016/j.bios.2016.12.012
[33] D. Pu, H. Liang, F. Wei, D. Akin, Z. Feng, Q. Yan, Y. Li, Y. Zhen, L. Xu, G. Dong, H. Wan, J. Dong, X. Qiu, C. Qin, D. Zhu, X. Wang, T. Sun, W. Zhang, C. Li, X. Tang, Y. Qiao, D.T.W. Wong, Q. Zhou, Evaluation of a novel saliva-based epidermal growth factor receptor mutation detection for lung cancer: A pilot study, Thorac. Cancer. 7 (2016) 428–436. https://doi.org/10.1111/1759-7714.12350
[34] M.H. Akhtar, T.A. Mir, N.G. Gurudatt, S. Chung, Y.-B. Shim, Sensitive NADH detection in a tumorigenic cell line using a nano-biosensor based on the organic complex formation, Biosens. Bioelectron. 85 (2016) 488–495. https://doi.org/10.1016/j.bios.2016.05.045
[35] J. Ferlay, I. Soerjomataram, R. Dikshit, S. Eser, C. Mathers, M. Rebelo, D.M. Parkin, D. Forman, F. Bray, Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012, Int. J. Cancer. 136 (2015) E359–E386. https://doi.org/10.1002/ijc.29210
[36] L.A. Torre, F. Bray, R.L. Siegel, J. Ferlay, J. Lortet-Tieulent, A. Jemal, Global cancer statistics, 2012, CA. Cancer J. Clin. 65 (2015) 87–108. https://doi.org/10.3322/caac.21262
[37] S. Mittal, H. Kaur, N. Gautam, A.K. Mantha, Biosensors for breast cancer diagnosis: A review of bioreceptors, biotransducers and signal amplification strategies, Biosens. Bioelectron. 88 (2017) 217–231. https://doi.org/10.1016/j.bios.2016.08.028
[38] J. Zhao, Y. Yan, L. Zhu, X. Li, G. Li, An amperometric biosensor for the detection of hydrogen peroxide released from human breast cancer cells, Biosens. Bioelectron. 41 (2013) 815–819. https://doi.org/10.1016/j.bios.2012.10.019
[39] H. Fan, Y. Zhang, D. Wu, H. Ma, X. Li, Y. Li, H. Wang, H. Li, B. Du, Q. Wei, Construction of label-free electrochemical immunosensor on mesoporous carbon nanospheres for breast cancer susceptibility gene, Anal. Chim. Acta. 770 (2013) 62–67. https://doi.org/10.1016/j.aca.2013.01.066
[40] S. Rauf, G.K. Mishra, J. Azhar, R.K. Mishra, K.Y. Goud, M.A.H. Nawaz, J.L. Marty, A. Hayat, Carboxylic group riched graphene oxide based disposable electrochemical immunosensor for cancer biomarker detection, Anal. Biochem. 545 (2018) 13–19. https://doi.org/10.1016/j.ab.2018.01.007
[41] H. Li, J. He, S. Li, A.P.F. Turner, Electrochemical immunosensor with N-doped graphene-modified electrode for label-free detection of the breast cancer biomarker CA 15-3, Biosens. Bioelectron. 43 (2013) 25–29. https://doi.org/10.1016/j.bios.2012.11.037
[42] M. Emami, M. Shamsipur, R. Saber, R. Irajirad, An electrochemical immunosensor for detection of a breast cancer biomarker based on antiHER2–iron oxide nanoparticle bioconjugates, Analyst. 139 (2014) 2858–2866. https://doi.org/10.1039/C4AN00183D
[43] R.C.B. Marques, S. Viswanathan, H.P.A. Nouws, C. Delerue-Matos, M.B. González-García, Electrochemical immunosensor for the analysis of the breast cancer biomarker HER2 ECD, Talanta. 129 (2014) 594–599. https://doi.org/10.1016/j.talanta.2014.06.035
[44] M. Shamsipur, M. Emami, L. Farzin, R. Saber, A sandwich-type electrochemical immunosensor based on in situ silver deposition for determination of serum level of HER2 in breast cancer patients, Biosens. Bioelectron. 103 (2018) 54–61. https://doi.org/10.1016/j.bios.2017.12.022
[45] X. Ren, T. Yan, S. Zhang, X. Zhang, P. Gao, D. Wu, B. Du, Q. Wei, Ultrasensitive dual amplification sandwich immunosensor for breast cancer susceptibility gene based on sheet materials, Analyst. 139 (2014) 3061–3068. https://doi.org/10.1039/C4AN00099D
[46] M. Amouzadeh Tabrizi, M. Shamsipur, R. Saber, S. Sarkar, N. Zolfaghari, An ultrasensitive sandwich-type electrochemical immunosensor for the determination of SKBR-3 breast cancer cell using rGO-TPA/FeHCF nano labeled Anti-HCT as a signal tag, Sensors Actuators B Chem. 243 (2017) 823–830. https://doi.org/10.1016/j.snb.2016.12.061
[47] F. Mouffouk, S. Aouabdi, E. Al-Hetlani, H. Serrai, T. Alrefae, L. Leo Chen, New generation of electrochemical immunoassay based on polymeric nanoparticles for early detection of breast cancer, Int. J. Nanomedicine. Volume 12 (2017) 3037–3047. https://doi.org/10.2147/IJN.S127086
[48] S. Carvajal, S.N. Fera, A.L. Jones, T.A. Baldo, I.M. Mosa, J.F. Rusling, C.E. Krause, Disposable inkjet-printed electrochemical platform for detection of clinically relevant HER-2 breast cancer biomarker, Biosens. Bioelectron. 104 (2018) 158–162. https://doi.org/10.1016/j.bios.2018.01.003
[49] A. Benvidi, A.D. Firouzabadi, S.M. Moshtaghiun, M. Mazloum-Ardakani, M.D. Tezerjani, Ultrasensitive DNA sensor based on gold nanoparticles/reduced graphene oxide/glassy carbon electrode, Anal. Biochem. 484 (2015) 24–30. https://doi.org/10.1016/j.ab.2015.05.009
[50] A.A. Saeed, J.L.A. Sánchez, C.K. O’Sullivan, M.N. Abbas, DNA biosensors based on gold nanoparticles-modified graphene oxide for the detection of breast cancer biomarkers for early diagnosis, Bioelectrochemistry. 118 (2017) 91–99. https://doi.org/10.1016/j.bioelechem.2017.07.002
[51] Y. Wang, X. Huang, H. Li, L. Guo, Sensitive impedimetric DNA biosensor based on (Nb,V) codoped TiO2 for breast cancer susceptible gene detection, Mater. Sci. Eng. C. 77 (2017) 867–873. https://doi.org/10.1016/j.msec.2017.03.260
[52] A. Benvidi, S. Jahanbani, Self-assembled monolayer of SH-DNA strand on a magnetic bar carbon paste electrode modified with Fe3O4 @Ag nanoparticles for detection of breast cancer mutation, J. Electroanal. Chem. 768 (2016) 47–54. https://doi.org/10.1016/j.jelechem.2016.02.038
[53] L. Chen, X. Liu, C. Chen, Impedimetric biosensor modified with hydrophilic material of tannic acid/polyethylene glycol and dopamine-assisted deposition for detection of breast cancer-related BRCA1 gene, J. Electroanal. Chem. 791 (2017) 204–210. https://doi.org/10.1016/j.jelechem.2017.03.001
[54] W. Wang, X. Fan, S. Xu, J.J. Davis, X. Luo, Low fouling label-free DNA sensor based on polyethylene glycols decorated with gold nanoparticles for the detection of breast cancer biomarkers, Biosens. Bioelectron. 71 (2015) 51–56. https://doi.org/10.1016/j.bios.2015.04.018
[55] M. Cui, Y. Wang, H. Wang, Y. Wu, X. Luo, A label-free electrochemical DNA biosensor for breast cancer marker BRCA1 based on self-assembled antifouling peptide monolayer, Sensors Actuators B Chem. 244 (2017) 742–749. https://doi.org/10.1016/j.snb.2017.01.060
[56] T. Kilic, S.N. Topkaya, D. Ozkan Ariksoysal, M. Ozsoz, P. Ballar, Y. Erac, O. Gozen, Electrochemical based detection of microRNA, mir21 in breast cancer cells, Biosens. Bioelectron. 38 (2012) 195–201. https://doi.org/10.1016/j.bios.2012.05.031
[57] C.-Y. Hong, X. Chen, T. Liu, J. Li, H.-H. Yang, J.-H. Chen, G.-N. Chen, Ultrasensitive electrochemical detection of cancer-associated circulating microRNA in serum samples based on DNA concatamers, Biosens. Bioelectron. 50 (2013) 132–136. https://doi.org/10.1016/j.bios.2013.06.040
[58] A.R. Cardoso, F.T.C. Moreira, R. Fernandes, M.G.F. Sales, Novel and simple electrochemical biosensor monitoring attomolar levels of miRNA-155 in breast cancer, Biosens. Bioelectron. 80 (2016) 621–630. https://doi.org/10.1016/j.bios.2016.02.035
[59] R.M. Torrente-Rodríguez, S. Campuzano, E. López-Hernández, V.R.-V. Montiel, R. Barderas, R. Granados, J.M. Sánchez-Puelles, J.M. Pingarrón, Simultaneous detection of two breast cancer-related miRNAs in tumor tissues using p19-based disposable amperometric magnetobiosensing platforms, Biosens. Bioelectron. 66 (2015) 385–391. https://doi.org/10.1016/j.bios.2014.11.047
[60] H.-A. Rafiee-Pour, M. Behpour, M. Keshavarz, A novel label-free electrochemical miRNA biosensor using methylene blue as redox indicator: application to breast cancer biomarker miRNA-21, Biosens. Bioelectron. 77 (2016) 202–207. https://doi.org/10.1016/j.bios.2015.09.025
[61] L. Ribovski, V. Zucolotto, B.C. Janegitz, A label-free electrochemical DNA sensor to identify breast cancer susceptibility, Microchem. J. 133 (2017) 37–42. https://doi.org/10.1016/j.microc.2017.03.011
[62] L. Tian, K. Qian, J. Qi, Q. Liu, C. Yao, W. Song, Y. Wang, Gold nanoparticles superlattices assembly for electrochemical biosensor detection of microRNA-21, Biosens. Bioelectron. 99 (2018) 564–570. https://doi.org/10.1016/j.bios.2017.08.035
[63] J.A. Ribeiro, C.M. Pereira, A.F. Silva, M.G.F. Sales, Disposable electrochemical detection of breast cancer tumour marker CA 15-3 using poly(Toluidine Blue) as imprinted polymer receptor, Biosens. Bioelectron. 109 (2018) 246–254. https://doi.org/10.1016/j.bios.2018.03.011
[64] C. V. Uliana, C.R. Peverari, A.S. Afonso, M.R. Cominetti, R.C. Faria, Fully disposable microfluidic electrochemical device for detection of estrogen receptor alpha breast cancer biomarker, Biosens. Bioelectron. 99 (2018) 156–162. https://doi.org/10.1016/j.bios.2017.07.043
[65] Q. Sheng, N. Cheng, W. Bai, J. Zheng, Ultrasensitive electrochemical detection of breast cancer cells based on DNA-rolling-circle-amplification-directed enzyme-catalyzed polymerization, Chem. Commun. 51 (2015) 2114–2117. https://doi.org/10.1039/C4CC08954E
[66] S. Cai, M. Chen, M. Liu, W. He, Z. Liu, D. Wu, Y. Xia, H. Yang, J. Chen, A signal amplification electrochemical aptasensor for the detection of breast cancer cell via free-running DNA walker, Biosens. Bioelectron. 85 (2016) 184–189. https://doi.org/10.1016/j.bios.2016.05.003
[67] M. Yan, G. Sun, F. Liu, J. Lu, J. Yu, X. Song, An aptasensor for sensitive detection of human breast cancer cells by using porous GO/Au composites and porous PtFe alloy as effective sensing platform and signal amplification labels, Anal. Chim. Acta. 798 (2013) 33–39. https://doi.org/10.1016/j.aca.2013.08.046
[68] M. Su, H. Liu, L. Ge, Y. Wang, S. Ge, J. Yu, M. Yan, Aptamer-Based electrochemiluminescent detection of MCF-7 cancer cells based on carbon quantum dots coated mesoporous silica nanoparticles, Electrochim. Acta. 146 (2014) 262–269. https://doi.org/10.1016/j.electacta.2014.08.129
[69] X. Chen, Q. Zhang, C. Qian, N. Hao, L. Xu, C. Yao, Electrochemical aptasensor for mucin 1 based on dual signal amplification of poly(o-phenylenediamine) carrier and functionalized carbon nanotubes tracing tag, Biosens. Bioelectron. 64 (2015) 485–492. https://doi.org/10.1016/j.bios.2014.09.052
[70] X. Zhu, J. Yang, M. Liu, Y. Wu, Z. Shen, G. Li, Sensitive detection of human breast cancer cells based on aptamer–cell–aptamer sandwich architecture, Anal. Chim. Acta. 764 (2013) 59–63. https://doi.org/10.1016/j.aca.2012.12.024
[71] K. Wang, M.-Q. He, F.-H. Zhai, R.-H. He, Y.-L. Yu, A novel electrochemical biosensor based on polyadenine modified aptamer for label-free and ultrasensitive detection of human breast cancer cells, Talanta. 166 (2017) 87–92. https://doi.org/10.1016/j.talanta.2017.01.052
[72] L. Tian, J. Qi, K. Qian, O. Oderinde, Q. Liu, C. Yao, W. Song, Y. Wang, Copper (II) oxide nanozyme based electrochemical cytosensor for high sensitive detection of circulating tumor cells in breast cancer, J. Electroanal. Chem. 812 (2018) 1–9. https://doi.org/10.1016/j.jelechem.2017.12.012
[73] T.S.C.R. Rebelo, C.M. Pereira, M.G.F. Sales, J.P. Noronha, J. Costa-Rodrigues, F. Silva, M.H. Fernandes, Sarcosine oxidase composite screen-printed electrode for sarcosine determination in biological samples, Anal. Chim. Acta. 850 (2014) 26–32. https://doi.org/10.1016/j.aca.2014.08.005
[74] V. Narwal, P. Kumar, P. Joon, C.S. Pundir, Fabrication of an amperometric sarcosine biosensor based on sarcosine oxidase/chitosan/CuNPs/c-MWCNT/Au electrode for detection of prostate cancer, Enzyme Microb. Technol. 113 (2018) 44–51. https://doi.org/10.1016/j.enzmictec.2018.02.010
[75] A. Salimi, B. Kavosi, F. Fathi, R. Hallaj, Highly sensitive immunosensing of prostate-specific antigen based on ionic liquid–carbon nanotubes modified electrode: Application as cancer biomarker for prostatebiopsies, Biosens. Bioelectron. 42 (2013) 439–446. https://doi.org/10.1016/j.bios.2012.10.053
[76] H.V. Tran, B. Piro, S. Reisberg, L. Huy Nguyen, T. Dung Nguyen, H.T. Duc, M.C. Pham, An electrochemical ELISA-like immunosensor for miRNAs detection based on screen-printed gold electrodes modified with reduced graphene oxide and carbon nanotubes, Biosens. Bioelectron. 62 (2014) 25–30. https://doi.org/10.1016/j.bios.2014.06.014
[77] B. Zhang, B. Liu, G. Chen, D. Tang, Redox and catalysis ‘all-in-one’ infinite coordination polymer for electrochemical immunosensor of tumor markers, Biosens. Bioelectron. 64 (2015) 6–12. https://doi.org/10.1016/j.bios.2014.08.024
[78] W. Hong, S. Lee, E. Jae Kim, M. Lee, Y. Cho, A reusable electrochemical immunosensor fabricated using a temperature-responsive polymer for cancer biomarker proteins, Biosens. Bioelectron. 78 (2016) 181–186. https://doi.org/10.1016/j.bios.2015.11.040
[79] G.G. Gutiérrez-Zúñiga, J.L. Hernández-López, Sensitivity improvement of a sandwich-type ELISA immunosensor for the detection of different prostate-specific antigen isoforms in human serum using electrochemical impedance spectroscopy and an ordered and hierarchically organized interfacial supramolecu, Anal. Chim. Acta. 902 (2016) 97–106. https://doi.org/10.1016/j.aca.2015.10.042
[80] L. Li, J. Xu, X. Zheng, C. Ma, X. Song, S. Ge, J. Yu, M. Yan, Growth of gold-manganese oxide nanostructures on a 3D origami device for glucose-oxidase label based electrochemical immunosensor, Biosens. Bioelectron. 61 (2014) 76–82. https://doi.org/10.1016/j.bios.2014.05.012
[81] M. Pal, R. Khan, Graphene oxide layer decorated gold nanoparticles based immunosensor for the detection of prostate cancer risk factor, Anal. Biochem. 536 (2017) 51–58. https://doi.org/10.1016/j.ab.2017.08.001
[82] M.S. Khan, K. Dighe, Z. Wang, I. Srivastava, E. Daza, A.S. Schwartz-Dual, J. Ghannam, S.K. Misra, D. Pan, Detection of prostate specific antigen (PSA) in human saliva using an ultra-sensitive nanocomposite of graphene nanoplatelets with diblock- co -polymers and Au electrodes, Analyst. 143 (2018) 1094–1103. https://doi.org/10.1039/C7AN01932G
[83] N. Blel, N. Fourati, M. Souiri, C. Zerrouki, A. Omezzine, A. Bouslama, A. Othmane, Ultrasensitive electrochemical sensors for psa detection: related surface functionalization strategies, Curr. Top. Med. Chem. 17 (2017). https://doi.org/10.2174/1568026617666170821152757
[84] H.D. Jang, S.K. Kim, H. Chang, J.-W. Choi, 3D label-free prostate specific antigen (PSA) immunosensor based on graphene–gold composites, Biosens. Bioelectron. 63 (2015) 546–551. https://doi.org/10.1016/j.bios.2014.08.008
[85] G. Sun, L. Zhang, Y. Zhang, H. Yang, C. Ma, S. Ge, M. Yan, J. Yu, X. Song, Multiplexed enzyme-free electrochemical immunosensor based on ZnO nanorods modified reduced graphene oxide-paper electrode and silver deposition-induced signal amplification strategy, Biosens. Bioelectron. 71 (2015) 30–36. https://doi.org/10.1016/j.bios.2015.04.007
[86] H.V. Tran, B. Piro, S. Reisberg, L.D. Tran, H.T. Duc, M.C. Pham, Label-free and reagentless electrochemical detection of microRNAs using a conducting polymer nanostructured by carbon nanotubes: Application to prostate cancer biomarker miR-141, Biosens. Bioelectron. 49 (2013) 164–169. https://doi.org/10.1016/j.bios.2013.05.007
[87] M. Sharafeldin, G.W. Bishop, S. Bhakta, A. El-Sawy, S.L. Suib, J.F. Rusling, Fe 3 O 4 nanoparticles on graphene oxide sheets for isolation and ultrasensitive amperometric detection of cancer biomarker proteins, Biosens. Bioelectron. 91 (2017) 359–366. https://doi.org/10.1016/j.bios.2016.12.052
[88] L.-H. Pan, S.-H. Kuo, T.-Y. Lin, C.-W. Lin, P.-Y. Fang, H.-W. Yang, An electrochemical biosensor to simultaneously detect VEGF and PSA for early prostate cancer diagnosis based on graphene oxide/ssDNA/PLLA nanoparticles, Biosens. Bioelectron. 89 (2017) 598–605. https://doi.org/10.1016/j.bios.2016.01.077
[89] M.-S. Wu, Z. Liu, H.-W. Shi, H.-Y. Chen, J.-J. Xu, Visual Electrochemiluminescence Detection of Cancer Biomarkers on a Closed Bipolar Electrode Array Chip, Anal. Chem. 87 (2015) 530–537. https://doi.org/10.1021/ac502989f
[90] N. Gao, B. Ling, Z. Gao, L. Wang, H. Chen, Near-infrared-emitting NaYF4:Yb,Tm/Mn upconverting nanoparticle/gold nanorod electrochemiluminescence resonance energy transfer system for sensitive prostate-specific antigen detection, Anal. Bioanal. Chem. 409 (2017) 2675–2683. https://doi.org/10.1007/s00216-017-0212-2
[91] H. Ma, X. Li, T. Yan, Y. Li, Y. Zhang, D. Wu, Q. Wei, B. Du, Electrochemiluminescent immunosensing of prostate-specific antigen based on silver nanoparticles-doped Pb (II) metal-organic framework, Biosens. Bioelectron. 79 (2016) 379–385. https://doi.org/10.1016/j.bios.2015.12.080
[92] T.S.C.R. Rebelo, J.P. Noronha, M. Galésio, H. Santos, M. Diniz, M.G.F. Sales, M.H. Fernandes, J. Costa-Rodrigues, Testing the variability of PSA expression by different human prostate cancer cell lines by means of a new potentiometric device employing molecularly antibody assembled on graphene surface, Mater. Sci. Eng. C. 59 (2016) 1069–1078. https://doi.org/10.1016/j.msec.2015.11.032
[93] P.M.S. Silva, A.L.R. Lima, B.V.M. Silva, L.C.B.B. Coelho, R.F. Dutra, M.T.S. Correia, Cratylia mollis lectin nanoelectrode for differential diagnostic of prostate cancer and benign prostatic hyperplasia based on label-free detection, Biosens. Bioelectron. 85 (2016) 171–177. https://doi.org/10.1016/j.bios.2016.05.004
[94] D. Pihíková, Š. Belicky, P. Kasák, T. Bertok, J. Tkac, Sensitive detection and glycoprofiling of a prostate specific antigen using impedimetric assays, Analyst. 141 (2016) 1044–1051. https://doi.org/10.1039/C5AN02322J
[95] D. Pihikova, P. Kasak, P. Kubanikova, R. Sokol, J. Tkac, Aberrant sialylation of a prostate-specific antigen: Electrochemical label-free glycoprofiling in prostate cancer serum samples, Anal. Chim. Acta. 934 (2016) 72–79. https://doi.org/10.1016/j.aca.2016.06.043
[96] D. Pihikova, Z. Pakanova, M. Nemcovic, P. Barath, S. Belicky, T. Bertok, P. Kasak, J. Mucha, J. Tkac, Sweet characterisation of prostate specific antigen using electrochemical lectin-based immunosensor assay and MALDI TOF/TOF analysis: Focus on sialic acid, Proteomics. 16 (2016) 3085–3095. https://doi.org/10.1002/pmic.201500463
[97] K. Ren, J. Wu, F. Yan, H. Ju, Ratiometric electrochemical proximity assay for sensitive one-step protein detection, Sci. Rep. 4 (2015) 4360. https://doi.org/10.1038/srep04360
[98] K. Ren, J. Wu, F. Yan, Y. Zhang, H. Ju, Immunoreaction-triggered DNA assembly for one-step sensitive ratiometric electrochemical biosensing of protein biomarker, Biosens. Bioelectron. 66 (2015) 345–349. https://doi.org/10.1016/j.bios.2014.11.046
[99] S. Lee, H. Jo, J. Her, H.Y. Lee, C. Ban, Ultrasensitive electrochemical detection of engrailed-2 based on homeodomain-specific DNA probe recognition for the diagnosis of prostate cancer, Biosens. Bioelectron. 66 (2015) 32–38. https://doi.org/10.1016/j.bios.2014.11.003
[100] A. Saheb, S. Patterson, M. Josowicz, Probing for DNA methylation with a voltammetric DNA detector, Analyst. 139 (2014) 786–792. https://doi.org/10.1039/C3AN02154H
[101] Y. Chang, Y. Zhuo, Y. Chai, R. Yuan, Host–guest recognition-assisted electrochemical release: its reusable sensing application based on DNA cross configuration-fueled target cycling and strand displacement reaction amplification, Anal. Chem. 89 (2017) 8266–8272. https://doi.org/10.1021/acs.analchem.7b01272
[102] P. Jolly, V. Tamboli, R.L. Harniman, P. Estrela, C.J. Allender, J.L. Bowen, Aptamer–MIP hybrid receptor for highly sensitive electrochemical detection of prostate specific antigen, Biosens. Bioelectron. 75 (2016) 188–195. https://doi.org/10.1016/j.bios.2015.08.043
[103] A. Rahi, N. Sattarahmady, H. Heli, Label-free electrochemical aptasensing of the human prostate-specific antigen using gold nanospears, Talanta. 156–157 (2016) 218–224. https://doi.org/10.1016/j.talanta.2016.05.029
[104] M. Souada, B. Piro, S. Reisberg, G. Anquetin, V. Noël, M.C. Pham, Label-free electrochemical detection of prostate-specific antigen based on nucleic acid aptamer, Biosens. Bioelectron. 68 (2015) 49–54. https://doi.org/10.1016/j.bios.2014.12.033
[105] E. Heydari-Bafrooei, N.S. Shamszadeh, Electrochemical bioassay development for ultrasensitive aptasensing of prostate specific antigen, Biosens. Bioelectron. 91 (2017) 284–292. https://doi.org/10.1016/j.bios.2016.12.048
[106] G. Sun, Y. Zhang, Q. Kong, X. Zheng, J. Yu, X. Song, CuO-induced signal amplification strategy for multiplexed photoelectrochemical immunosensing using CdS sensitized ZnO nanotubes arrays as photoactive material and AuPd alloy nanoparticles as electron sink, Biosens. Bioelectron. 66 (2015) 565–571. https://doi.org/10.1016/j.bios.2014.12.020
[107] Z. Yang, B. Kasprzyk-Hordern, S. Goggins, C.G. Frost, P. Estrela, A novel immobilization strategy for electrochemical detection of cancer biomarkers: DNA-directed immobilization of aptamer sensors for sensitive detection of prostate specific antigens, Analyst. 140 (2015) 2628–2633. https://doi.org/10.1039/C4AN02277G
[108] I. Tzouvadaki, P. Jolly, X. Lu, S. Ingebrandt, G. de Micheli, P. Estrela, S. Carrara, Label-free ultrasensitive memristive aptasensor, Nano Lett. 16 (2016) 4472–4476. https://doi.org/10.1021/acs.nanolett.6b01648
[109] K. Settu, J.-T. Liu, C.-J. Chen, J.-Z. Tsai, Development of carbon−graphene-based aptamer biosensor for EN2 protein detection, Anal. Biochem. 534 (2017) 99–107. https://doi.org/10.1016/j.ab.2017.07.012
[110] B.P. Crulhas, A.E. Karpik, F.K. Delella, G.R. Castro, V.A. Pedrosa, Electrochemical aptamer-based biosensor developed to monitor PSA and VEGF released by prostate cancer cells, Anal. Bioanal. Chem. 409 (2017) 6771–6780. https://doi.org/10.1007/s00216-017-0630-1
[111] K. Mohan, K.C. Donavan, J.A. Arter, R.M. Penner, G.A. Weiss, Sub-nanomolar Detection of prostate-specific membrane antigen in synthetic urine by synergistic, dual-ligand phage, J. Am. Chem. Soc. 135 (2013) 7761–7767. https://doi.org/10.1021/ja4028082
[112] M.S. Chiriacò, E. Primiceri, A. Montanaro, F. de Feo, L. Leone, R. Rinaldi, G. Maruccio, On-chip screening for prostate cancer: an EIS microfluidic platform for contemporary detection of free and total PSA, Analyst. 138 (2013) 5404. https://doi.org/10.1039/c3an00911d
[113] Y. Uludag, F. Narter, E. Sağlam, G. Köktürk, M.Y. Gök, M. Akgün, S. Barut, S. Budak, An integrated lab-on-a-chip-based electrochemical biosensor for rapid and sensitive detection of cancer biomarkers, Anal. Bioanal. Chem. 408 (2016) 7775–7783. https://doi.org/10.1007/s00216-016-9879-z
[114] R.M. Mohamadi, I. Ivanov, J. Stojcic, R.K. Nam, E.H. Sargent, S.O. Kelley, Sample-to-answer isolation and mrna profiling of circulating tumor cells, Anal. Chem. 87 (2015) 6258–6264. https://doi.org/10.1021/acs.analchem.5b01019
[115] M. Moscovici, A. Bhimji, S.O. Kelley, Rapid and specific electrochemical detection of prostate cancer cells using an aperture sensor array, Lab Chip. 13 (2013) 940. https://doi.org/10.1039/c2lc41049d
[116] T. Xu, Y. Song, W. Gao, T. Wu, L.-P. Xu, X. Zhang, S. Wang, Superwettable electrochemical biosensor toward detection of cancer biomarkers, ACS Sensors. 3 (2018) 72–78. https://doi.org/10.1021/acssensors.7b00868
[117] F. Haggar, R. Boushey, Colorectal cancer epidemiology: incidence, mortality, survival, and risk factors, Clin. Colon Rectal Surg. 22 (2009) 191–197. https://doi.org/10.1055/s-0029-1242458
[118] G. Zarkavelis, Current and future biomarkers in colorectal cancer, Ann. Gastroenterol. (2017). https://doi.org/10.20524/aog.2017.0191
[119] G. Lech, Colorectal cancer tumour markers and biomarkers: Recent therapeutic advances, World J. Gastroenterol. 22 (2016) 1745. https://doi.org/10.3748/wjg.v22.i5.1745
[120] T. Tanaka, M. Tanaka, T. Tanaka, R. Ishigamori, Biomarkers for colorectal cancer, Int. J. Mol. Sci. 11 (2010) 3209–3225. https://doi.org/10.3390/ijms11093209
[121] X. Gu, Z. She, T. Ma, S. Tian, H.-B. Kraatz, Electrochemical detection of carcinoembryonic antigen, Biosens. Bioelectron. 102 (2018) 610–616. https://doi.org/10.1016/j.bios.2017.12.014
[122] H. Shu, W. Wen, H. Xiong, X. Zhang, S. Wang, Novel electrochemical aptamer biosensor based on gold nanoparticles signal amplification for the detection of carcinoembryonic antigen, Electrochem. Commun. 37 (2013) 15–19. https://doi.org/10.1016/j.elecom.2013.09.018
[123] H. Zeng, D.A.Y. Agyapong, C. Li, R. Zhao, H. Yang, C. Wu, Y. Jiang, Y. Liu, A carcinoembryonic antigen optoelectronic immunosensor based on thiol-derivative-nanogold labeled anti-CEA antibody nanomaterial and gold modified ITO, Sensors Actuators B Chem. 221 (2015) 22–27. https://doi.org/10.1016/j.snb.2015.06.062
[124] L. Zhao, C. Li, H. Qi, Q. Gao, C. Zhang, Electrochemical lectin-based biosensor array for detection and discrimination of carcinoembryonic antigen using dual amplification of gold nanoparticles and horseradish peroxidase, Sensors Actuators B Chem. 235 (2016) 575–582. https://doi.org/10.1016/j.snb.2016.05.136
[125] Y. Li, Y. Chen, D. Deng, L. Luo, H. He, Z. Wang, Water-dispersible graphene/amphiphilic pyrene derivative nanocomposite: High AuNPs loading capacity for CEA electrochemical immunosensing, Sensors Actuators B Chem. 248 (2017) 966–972. https://doi.org/10.1016/j.snb.2017.02.138
[126] S.X. Lee, H.N. Lim, I. Ibrahim, A. Jamil, A. Pandikumar, N.M. Huang, Horseradish peroxidase-labeled silver/reduced graphene oxide thin film-modified screen-printed electrode for detection of carcinoembryonic antigen, Biosens. Bioelectron. 89 (2017) 673–680. https://doi.org/10.1016/j.bios.2015.12.030
[127] B. Situ, N. Cao, B. Li, Q. Liu, L. Lin, Z. Dai, X. Zou, Z. Cai, Q. Wang, X. Yan, L. Zheng, Sensitive electrochemical analysis of BRAF V600E mutation based on an amplification-refractory mutation system coupled with multienzyme functionalized Fe3O4/Au nanoparticles, Biosens. Bioelectron. 43 (2013) 257–263. https://doi.org/10.1016/j.bios.2012.12.021
[128] S.Y. Hwang, I.J. Seo, S.Y. Lee, Y. Ahn, Microfluidic multiplex biochip based on a point-of-care electrochemical detection system for matrix metalloproteinases, J. Electroanal. Chem. 756 (2015) 118–123. https://doi.org/10.1016/j.jelechem.2015.08.015
[129] L. Truta, M. Sales, Sol-gel chemistry in biosensing devices of electrical transduction: application to CEA cancer biomarker, Curr. Top. Med. Chem. 15 (2015) 256–261. https://doi.org/10.2174/1568026614666141229113318
[130] B. Zhang, C. Ding, Displacement-type amperometric immunosensing platform for sensitive determination of tumour markers, Biosens. Bioelectron. 82 (2016) 112–118. https://doi.org/10.1016/j.bios.2016.03.053
[131] M. Garranzo-Asensio, A. Guzman-Aranguez, C. Povés, M.J. Fernández-Aceñero, R.M. Torrente-Rodríguez, V. Ruiz-Valdepeñas Montiel, G. Domínguez, L.S. Frutos, N. Rodríguez, M. Villalba, J.M. Pingarrón, S. Campuzano, R. Barderas, Toward liquid biopsy: determination of the humoral immune response in cancer patients using halotag fusion protein-modified electrochemical bioplatforms, Anal. Chem. 88 (2016) 12339–12345. https://doi.org/10.1021/acs.analchem.6b03526
[132] M. Aydın, E.B. Aydın, M.K. Sezgintürk, A disposable immunosensor using ITO based electrode modified by a star-shaped polymer for analysis of tumor suppressor protein p53 in human serum, Biosens. Bioelectron. 107 (2018) 1–9. https://doi.org/10.1016/j.bios.2018.02.017
[133] J.M. Lim, M.Y. Ryu, J.W. Yun, T.J. Park, J.P. Park, Electrochemical peptide sensor for diagnosing adenoma-carcinoma transition in colon cancer, Biosens. Bioelectron. 98 (2017) 330–337. https://doi.org/10.1016/j.bios.2017.07.013
[134] S. Chung, P. Chandra, J.P. Koo, Y.-B. Shim, Development of a bifunctional nanobiosensor for screening and detection of chemokine ligand in colorectal cancer cell line, Biosens. Bioelectron. 100 (2018) 396–403. https://doi.org/10.1016/j.bios.2017.09.031
[135] K.-J. Feng, Y.-H. Yang, Z.-J. Wang, J.-H. Jiang, G.-L. Shen, R.-Q. Yu, A nano-porous CeO2/Chitosan composite film as the immobilization matrix for colorectal cancer DNA sequence-selective electrochemical biosensor, Talanta. 70 (2006) 561–565. https://doi.org/10.1016/j.talanta.2006.01.009
[136] X. Wang, G. Shu, C. Gao, Y. Yang, Q. Xu, M. Tang, Electrochemical biosensor based on functional composite nanofibers for detection of K-ras gene via multiple signal amplification strategy, Anal. Biochem. 466 (2014) 51–58. https://doi.org/10.1016/j.ab.2014.08.023
[137] M. Raji, G. Amoabediny, P. Tajik, M. Hosseini, E. Ghafar-Zadeh, An Apta-Biosensor for Colon Cancer Diagnostics, Sensors. 15 (2015) 22291–22303. https://doi.org/10.3390/s150922291
[138] M. Ahmadzadeh-Raji, E. Ghafar-Zadeh, G. Amoabediny, An optically-transparent aptamer-based detection system for colon cancer applications using gold nanoparticles electrodeposited on indium tin oxide, Sensors. 16 (2016) 1071. https://doi.org/10.3390/s16071071
[139] A.B. Hashkavayi, J.B. Raoof, R. Ojani, S. Kavoosian, Ultrasensitive electrochemical aptasensor based on sandwich architecture for selective label-free detection of colorectal cancer (CT26) cells, Biosens. Bioelectron. 92 (2017) 630–637. https://doi.org/10.1016/j.bios.2016.10.042