Layered double Hydroxide Based Biosensors
Nadeem Baig, Azeem Rana
Layered double hydroxide is a unique layered material with numerous fascinating characteristics. The tunable composition, interlayer spaces, uniform distribution of cations, exchangeable anions and swelling characteristics make them extraordinary material. The desired LDH can be prepared through many routes with low-cost precursors. For biosensor fabrication, the LDH is also getting great attention due to its active sites, biocompatible environment, facile loading of the catalyst and enzyme stability. Moreover, the exchangeable anions also provide room for the entrance of other charged biomolecules Layered double hydroxide improved the biosensor sensitivity by pre-concentrating the analyte into the layers of the LDH. This book chapter focused on the properties of LDH, fabrication of LDH based biosensors and their electroanalytical applications for sensing of various analytes.
Keywords
Chemically Modified Electrodes, Clay, Biosensor Fabrication, Electrochemical Sensor, Biomolecule
Published online 3/25/2019, 26 pages
Citation: Nadeem Baig, Azeem Rana, Layered double Hydroxide Based Biosensors, Materials Research Foundations, Vol. 47, pp 131-156, 2019
DOI: https://doi.org/10.21741/9781644900130-4
Part of the book on Biosensors
References
[1] A.N. Kawde, N. Baig, M. Sajid, Graphite pencil electrodes as electrochemical sensors for environmental analysis: a review of features, developments, and applications, RSC Adv. 6 (2016) 91325–91340. https://doi.org/10.1039/C6RA17466C
[2] S. Kanchi, M.I. Sabela, P.S. Mdluli, Inamuddin, K. Bisetty, Smartphone based bioanalytical and diagnosis applications: A review., Biosens. Bioelectron. 102 (2018) 136–149. https://doi.org/10.1016/j.bios.2017.11.021
[3] J. Wang, Carbon-nanotube based electrochemical biosensors: A review, Electroanalysis. 17 (2005) 7–14. https://doi.org/10.1002/elan.200403113
[4] Y. Yue, G. Hu, M. Zheng, Y. Guo, J. Cao, S. Shao, A mesoporous carbon nanofiber-modified pyrolytic graphite electrode used for the simultaneous determination of dopamine, uric acid, and ascorbic acid, Carbon N. Y. 50 (2012) 107–114. https://doi.org/10.1016/j.carbon.2011.08.013
[5] N. Baig, A.-N. Kawde, A cost-effective disposable graphene-modified electrode decorated with alternating layers of Au NPs for the simultaneous detection of dopamine and uric acid in human urine, RSC Adv. 6 (2016) 80756–80765. https://doi.org/10.1039/C6RA10055D
[6] N. Baig, A.-N. Kawde, A novel, fast and cost effective graphene-modified graphite pencil electrode for trace quantification of l -tyrosine, Anal. Methods. 7 (2015) 9535–9541. https://doi.org/10.1039/C5AY01753J
[7] M. Gerard, A. Chaubey, B.D. Malhotra, Application of conducting polymers to biosensors, Biosens. Bioelectron. 17 (2002) 345–359. https://doi.org/10.1016/S0956-5663(01)00312-8
[8] Y. Wang, Y. Wu, J. Xie, X. Hu, Metal–organic framework modified carbon paste electrode for lead sensor, Sensors Actuators B Chem. 177 (2013) 1161–1166. https://doi.org/10.1016/j.snb.2012.12.048
[9] A.-N. Kawde, M. Aziz, N. Baig, Y. Temerk, A facile fabrication of platinum nanoparticle-modified graphite pencil electrode for highly sensitive detection of hydrogen peroxide, J. Electroanal. Chem. 740 (2015) 68–74. https://doi.org/10.1016/j.jelechem.2015.01.005
[10] Y. Cao, G. Li, X. Li, Graphene/layered double hydroxide nanocomposite: Properties, synthesis, and applications, Chem. Eng. J. 292 (2016) 207–223. https://doi.org/10.1016/j.cej.2016.01.114
[11] Y. Kuang, L. Zhao, S. Zhang, F. Zhang, M. Dong, S. Xu, Morphologies, preparations and applications of layered double hydroxide micro-/nanostructures, Materials (Basel). 3 (2010) 5220–5235. https://doi.org/10.3390/ma3125220
[12] G. Mishra, B. Dash, S. Pandey, Layered double hydroxides: A brief review from fundamentals to application as evolving biomaterials, Appl. Clay Sci. 153 (2018) 172–186. https://doi.org/10.1016/j.clay.2017.12.021
[13] N. Baig, M. Sajid, Applications of layered double hydroxides based electrochemical sensors for determination of environmental pollutants: A review, Trends Environ. Anal. Chem. 16 (2017) 1–15. https://doi.org/10.1016/j.teac.2017.10.003
[14] N. Mao, C.H. Zhou, D.S. Tong, W.H. Yu, C.X. Cynthia Lin, Exfoliation of layered double hydroxide solids into functional nanosheets, Appl. Clay Sci. 144 (2017) 60–78. https://doi.org/10.1016/j.clay.2017.04.021
[15] Q. Wang, D. Ohare, Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets, Chem. Rev. 112 (2012) 4124–4155. https://doi.org/10.1021/cr200434v
[16] K. Yan, G. Wu, W. Jin, Recent advances in the synthesis of layered, double-hydroxide-based materials and their applications in hydrogen and oxygen evolution, Energy Technol. 4 (2016) 354–368. https://doi.org/10.1002/ente.201500343
[17] M. Sarfraz, I. Shakir, Recent advances in layered double hydroxides as electrode materials for high-performance electrochemical energy storage devices, J. Energy Storage. 13 (2017) 103–122. https://doi.org/10.1016/j.est.2017.06.011
[18] A.R. González, Y.J.O. Asencios, E.M. Assaf, J.M. Assaf, Dry reforming of methane on Ni–Mg–Al nano-spheroid oxide catalysts prepared by the sol–gel method from hydrotalcite-like precursors, Appl. Surf. Sci. 280 (2013) 876–887. https://doi.org/10.1016/j.apsusc.2013.05.082
[19] X. Wu, Y. Du, X. An, X. Xie, Fabrication of NiFe layered double hydroxides using urea hydrolysis—Control of interlayer anion and investigation on their catalytic performance, Catal. Commun. 50 (2014) 44–48. https://doi.org/10.1016/j.catcom.2014.02.024
[20] F. Leroux, J.-P. Besse, Polymer interleaved layered double hydroxide: A new emerging class of nanocomposites, Chem. Mater. 13 (2001) 3507–3515. https://doi.org/10.1021/cm0110268
[21] M.R. Othman, N.M. Rasid, W.J.N. Fernando, Effects of thermal treatment on the micro-structures of co-precipitated and sol–gel synthesized (Mg–Al) hydrotalcites, Microporous Mesoporous Mater. 93 (2006) 23–28. https://doi.org/10.1016/j.micromeso.2006.02.007
[22] B. Habibi, F.F. Azhar, J. Fakkar, Z. Rezvani, Ni–Al/layered double hydroxide/Ag nanoparticle composite modified carbon-paste electrode as a renewable electrode and novel electrochemical sensor for hydrogen peroxide, Anal. Methods. 9 (2017) 1956–1964. https://doi.org/10.1039/C6AY03421G
[23] J. Zhou, M. Min, Y. Liu, J. Tang, W. Tang, Layered assembly of NiMn-layered double hydroxide on graphene oxide for enhanced non-enzymatic sugars and hydrogen peroxide detection, Sensors Actuators B Chem. 260 (2018) 408–417. https://doi.org/10.1016/j.snb.2018.01.072
[24] Y. Ma, Y. Wang, D. Xie, Y. Gu, H. Zhang, G. Wang, Y. Zhang, H. Zhao, P.K. Wong, NiFe-layered double hydroxide nanosheet arrays supported on carbon cloth for highly sensitive detection of nitrite, ACS Appl. Mater. Interfaces. 10 (2018) 6541–6551. https://doi.org/10.1021/acsami.7b16536
[25] D. Tonelli, E. Scavetta, M. Giorgetti, Layered-double-hydroxide-modified electrodes: electroanalytical applications, Anal. Bioanal. Chem. 405 (2013) 603–614. https://doi.org/10.1007/s00216-012-6586-2
[26] J.J. Bravo-Suárez, E.A. Páez-Mozo, S.T. Oyama, Review of the synthesis of layered double hydroxides: a thermodynamic approach, Quim. Nova. 27 (2004) 601–614. https://doi.org/10.1590/S0100-40422004000400015
[27] G. Fan, F. Li, D.G. Evans, X. Duan, Catalytic applications of layered double hydroxides: recent advances and perspectives, Chem. Soc. Rev. 43 (2014) 7040–7066. https://doi.org/10.1039/C4CS00160E
[28] J. Castillo, S. Gáspár, S. Leth, M. Niculescu, A. Mortari, I. Bontidean, V. Soukharev, S.A. Dorneanu, A.D. Ryabov, E. Csöregi, Biosensors for life quality – Design, development and applications, Sensors Actuators, B Chem. 102 (2004) 179–194. https://doi.org/10.1016/j.snb.2004.04.084
[29] C.R. Ispas, G. Crivat, S. Andreescu, Review: recent developments in enzyme-based biosensors for biomedical analysis, Anal. Lett. 45 (2012) 168–186. https://doi.org/10.1080/00032719.2011.633188
[30] I. Bazin, S.A. Tria, A. Hayat, J.-L. Marty, New biorecognition molecules in biosensors for the detection of toxins, Biosens. Bioelectron. 87 (2017) 285–298. https://doi.org/10.1016/j.bios.2016.06.083
[31] Q. Wang, D. O’Hare, Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets, Chem. Rev. 112 (2012) 4124–4155. https://doi.org/10.1021/cr200434v
[32] C. Mousty, V. Prévot, Hybrid and biohybrid layered double hydroxides for electrochemical analysis, Anal. Bioanal. Chem. 405 (2013) 3513–3523. https://doi.org/10.1007/s00216-013-6797-1
[33] Y. Zhao, F. Li, R. Zhang, D.G. Evans, X. Duan, Preparation of layered double-hydroxide nanomaterials with a uniform crystallite size using a new method involving separate nucleation and aging steps, Chem. Mater. 14 (2002) 4286–4291. https://doi.org/10.1021/cm020370h
[34] S.P. Newman, W. Jones, Synthesis, characterization and applications of layered double hydroxides containing organic guests, New J. Chem. 22 (1998) 105–115. https://doi.org/10.1039/a708319j
[35] J. He, M. Wei, B. Li, Y. Kang, D.G. Evans, X. Duan, Preparation of layered double hydroxides, Layer. Double Hydroxides. 119 (2006) 89–119. https://doi.org/10.1007/430_006
[36] D.G. Evans, X. Duan, Preparation of layered double hydroxides and their applications as additives in polymers, as precursors to magnetic materials and in biology and medicine, Chem. Commun. (2006) 485–496. https://doi.org/10.1039/B510313B
[37] D. Tonelli, E. Scavetta, M. Giorgetti, Layered-double-hydroxide-modified electrodes: Electroanalytical applications, Anal. Bioanal. Chem. 405 (2013) 603–614. https://doi.org/10.1007/s00216-012-6586-2
[38] F. Leroux, C. Taviot-Guého, Fine tuning between organic and inorganic host structure: new trends in layered double hydroxide hybrid assemblies, J. Mater. Chem. 15 (2005) 3628. https://doi.org/10.1039/b505014f
[39] M.-A. Thyveetil, P. V. Coveney, H.C. Greenwell, J.L. Suter, Computer simulation study of the structural stability and materials properties of dna-intercalated layered double hydroxides, J. Am. Chem. Soc. 130 (2008) 4742–4756. https://doi.org/10.1021/ja077679s
[40] F. Karim, A.N.M. Fakhruddin, Recent advances in the development of biosensor for phenol: a review, Rev. Environ. Sci. Bio/Technology. 11 (2012) 261–274. https://doi.org/10.1007/s11157-012-9268-9
[41] Y. Zhang, J. Shen, H. Li, L. Wang, D. Cao, X. Feng, Y. Liu, Y. Ma, L. Wang, Recent progress on graphene-based electrochemical biosensors, Chem. Rec. 16 (2016) 273–294. https://doi.org/10.1002/tcr.201500236
[42] H. Kaur, R. Kumar, J.N. Babu, S. Mittal, Advances in arsenic biosensor development – A comprehensive review, Biosens. Bioelectron. 63 (2015) 533–545. https://doi.org/10.1016/j.bios.2014.08.003
[43] S. Gupta, C.N. Murthy, C.R. Prabha, Recent advances in carbon nanotube based electrochemical biosensors, Int. J. Biol. Macromol. 108 (2018) 687–703. https://doi.org/10.1016/j.ijbiomac.2017.12.038
[44] D. Shan, S. Cosnier, C. Mousty, Layered double hydroxides : An attractive material for electrochemical biosensor design, Anal. Chem. 75 (2003) 3872–3879
[45] B. Saifullah, M.Z.B. Hussein, Inorganic nanolayers: structure, preparation, and biomedical applications., Int. J. Nanomedicine. 10 (2015) 5609–33. https://doi.org/10.2147/IJN.S72330
[46] X. Guo, F. Zhang, D.G. Evans, X. Duan, Layered double hydroxide films: synthesis, properties and applications, Chem. Commun. 46 (2010) 5197. https://doi.org/10.1039/c0cc00313a
[47] L. Cui, H. Yin, J. Dong, H. Fan, T. Liu, P. Ju, S. Ai, A mimic peroxidase biosensor based on calcined layered double hydroxide for detection of H2O2, Biosens. Bioelectron. 26 (2011) 3278–3283. https://doi.org/10.1016/J.BIOS.2010.12.043
[48] A. Soussou, I. Gammoudi, F. Morote, A. Kalboussi, T. Cohen-Bouhacina, C. Grauby-Heywang, Z.M. Baccar, Efficient immobilization of tyrosinase enzyme on layered double hydroxide hybrid nanomaterials for electrochemical detection of polyphenols, IEEE Sens. J. 17 (2017) 4340–4348. https://doi.org/10.1109/JSEN.2017.2709342
[49] M. Halma, B. Doumèche, L. Hecquet, V. Prévot, C. Mousty, F. Charmantray, Thiamine biosensor based on oxidative trapping of enzyme-substrate intermediate, Biosens. Bioelectron. 87 (2017) 850–857. https://doi.org/10.1016/j.bios.2016.09.049
[50] E. Scavetta, L. Guadagnini, A. Mignani, D. Tonelli, Anti-interferent properties of oxidized nickel based on layered double hydroxide in glucose amperometric biosensors, Electroanalysis. 20 (2008) 2199–2204. https://doi.org/10.1002/elan.200804310
[51] A. Soussou, I. Gammoudi, A. Kalboussi, C. Grauby-Heywang, T. Cohen-Bouhacina, Z.M. Baccar, Hydrocalumite thin films for polyphenol biosensor elaboration, IEEE Trans. Nanobioscience. 16 (2017) 650–655. https://doi.org/10.1109/TNB.2017.2736781
[52] C. Mousty, C. Forano, S. Fleutot, J.C. Dupin, Electrochemical study of anionic ferrocene derivatives intercalated in layered double hydroxides: Application to glucose amperometric biosensors, Electroanalysis. 21 (2009) 399–408. https://doi.org/10.1002/elan.200804407
[53] A.-N. Kawde, M.A. Aziz, M. El-Zohri, N. Baig, N. Odewunmi, cathodized gold nanoparticle-modified graphite pencil electrode for non-enzymatic sensitive voltammetric detection of glucose, Electroanalysis. 29 (2017) 1214–1221. https://doi.org/10.1002/elan.201600709
[54] T. Zhan, Z. Tan, X. Wang, W. Hou, Hemoglobin immobilized in g-C3N4 nanoparticle decorated 3D graphene-LDH network: Direct electrochemistry and electrocatalysis to trichloroacetic acid, Sensors Actuators B Chem. 255 (2018) 149–158. https://doi.org/10.1016/J.SNB.2017.08.048
[55] J. Han, X. Xu, X. Rao, M. Wei, D.G. Evans, X. Duan, Layer-by-layer assembly of layered double hydroxide/cobalt phthalocyanine ultrathin film and its application for sensors, J. Mater. Chem. 21 (2011) 2126–2130. https://doi.org/10.1039/C0JM02430A
[56] X. Kong, X. Rao, J. Han, M. Wei, X. Duan, Layer-by-layer assembly of bi-protein/layered double hydroxide ultrathin film and its electrocatalytic behavior for catechol, Biosens. Bioelectron. 26 (2010) 549–554. https://doi.org/10.1016/J.BIOS.2010.07.045
[57] L. Qiao, Y. Guo, X. Sun, Y. Jiao, X. Wang, Electrochemical immunosensor with NiAl-layered double hydroxide/graphene nanocomposites and hollow gold nanospheres double-assisted signal amplification, Bioprocess Biosyst. Eng. 38 (2015) 1455–1468. https://doi.org/10.1007/s00449-015-1388-5
[58] V. Prevot, C. Forano, A. Khenifi, B. Ballarin, E. Scavetta, C. Mousty, A templated electrosynthesis of macroporous NiAl layered double hydroxides thin films, Chem. Commun. 47 (2011) 1761–1763. https://doi.org/10.1039/C0CC04255B
[59] M. Darder, M. López-Blanco, P. Aranda, F. Leroux, E. Ruiz-Hitzky, Bio-nanocomposites based on layered double hydroxides, Chem. Mater. 17 (2005) 1969–1977. https://doi.org/10.1021/cm0483240
[60] J. Labuda, M. Hudáková, Hexacyanoferrate-anion exchanger-modified carbon paste electrodes, Electroanalysis. 9 (1997) 239–242. https://doi.org/10.1002/elan.1140090310
[61] E. Han, D. Shan, H. Xue, S. Cosnier, Hybrid material based on chitosan and layered double hydroxides: Characterization and application to the design of amperometric phenol biosensor, Biomacromolecules. 8 (2007) 971–975. https://doi.org/10.1021/bm060897d
[62] P. Mehrotra, Biosensors and their applications – A review., J. Oral Biol. Craniofacial Res. 6 (2016) 153–9. https://doi.org/10.1016/j.jobcr.2015.12.002
[63] J. Ali, J. Najeeb, M. Asim Ali, M. Farhan Aslam, A. Raza, Biosensors: Their fundamentals, designs, types and most recent impactful applications: A Review, J. Biosens. Bioelectron. 08 (2017) 1–9. https://doi.org/10.4172/2155-6210.1000235
[64] A.A. Parwaz Khan, A. Khan, A.M. Asiri, Graphene and graphene oxide polymer composite for biosensors applications, in: Electr. Conduct. Polym. Polym. Compos., Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2018: pp. 93–112. https://doi.org/10.1002/9783527807918.ch5
[65] B. Bhushan, Biosensors: surface structures and materials., Philos. Trans. A. Math. Phys. Eng. Sci. 370 (2012) 2267–8. https://doi.org/10.1098/rsta.2012.0011
[66] C. Mousty, O. Kaftan, V. Prevot, C. Forano, Sensors and Actuators B : Chemical Alkaline phosphatase biosensors based on layered double hydroxides matrices : Role of LDH composition, Sensors Actuators B Chem. 133 (2008) 442–448. https://doi.org/10.1016/j.snb.2008.03.001
[67] M. Colombari, B. Ballarin, I. Carpani, L. Guadagnini, A. Mignani, E. Scavetta, D. Tonelli, Glucose biosensors based on electrodes modified with ferrocene derivatives intercalated into Mg/Al layered double hydroxides, Electroanalysis. 19 (2007) 2321–2327. https://doi.org/10.1002/elan.200703985
[68] Y. Xu, X. Liu, Y. Ding, L. Luo, Y. Wang, Y. Zhang, Y. Xu, Preparation and electrochemical investigation of a nano-structured material Ni2+ / MgFe layered double hydroxide as a glucose biosensor, Appl. Clay Sci. 52 (2011) 322–327. https://doi.org/10.1016/j.clay.2011.03.011
[69] F. Charmantray, V. Hélaine, A. Làsikovà, B. Legeret, L. Hecquet, Chemoenzymatic synthesis of l-tyrosine derivative for a transketolase assay, Tetrahedron Lett. 49 (2008) 3229–3233. https://doi.org/10.1016/J.TETLET.2008.03.099
[70] M.S.-P. Lopez, F. Charmantray, V. Helaine, L. Hecquet, C. Mousty, Electrochemical detection of transketolase activity using a tyrosinase biosensor, Biosens. Bioelectron. 26 (2010) 139–143. https://doi.org/10.1016/j.bios.2010.05.023
[71] A. Soussou, I. Gammoudi, F. Moroté, M. Mathelié-Guinlet, A. Kalboussi, Z.M. Baccar, T. Cohen-Bouhacina, C. Grauby-Heywang, Amperometric polyphenol biosensor based on tyrosinase immobilization on coal layered double hydroxide thins films, Procedia Eng. 168 (2016) 1131–1134. https://doi.org/10.1016/J.PROENG.2016.11.371
[72] W. Sun, Y. Guo, Y. Lu, A. Hu, F. Shi, T. Li, Z. Sun, Electrochemical biosensor based on graphene, Mg2Al layered double hydroxide and hemoglobin composite, Electrochim. Acta. 91 (2013) 130–136. https://doi.org/10.1016/J.ELECTACTA.2012.12.088
[73] Masanori Sono, Mark P. Roach, and Eric D. Coulter, J.H. Dawson, Heme-Containing Oxygenases, (1996). https://doi.org/10.1021/CR9500500
[74] J. Ishii, J. Wang, H. Naruse, S. Taga, M. Kinoshita, H. Kurokawa, M. Iwase, T. Kondo, M. Nomura, Y. Nagamura, Y. Watanabe, H. Hishida, T. Tanaka, K. Kawamura, Serum concentrations of myoglobin vs human heart-type cytoplasmic fatty acid-binding protein in early detection of acute myocardial infarction, Clin. Chem. 43 (1997)
[75] P. Brancaccio, G. Lippi, N. Maffulli, Biochemical markers of muscular damage, Clin. Chem. Lab. Med. 48 (2010) 757–67. https://doi.org/10.1515/CCLM.2010.179
[76] J. Yoon, T. Lee, B. Bapurao G., J. Jo, B.-K. Oh, J.-W. Choi, Electrochemical H2O2 biosensor composed of myoglobin on MoS2 nanoparticle-graphene oxide hybrid structure, Biosens. Bioelectron. 93 (2017) 14–20. https://doi.org/10.1016/J.BIOS.2016.11.064
[77] C. Ruan, T. Li, Q. Niu, M. Lu, J. Lou, W. Gao, W. Sun, Electrochemical myoglobin biosensor based on graphene–ionic liquid–chitosan bionanocomposites: Direct electrochemistry and electrocatalysis, Electrochim. Acta. 64 (2012) 183–189. https://doi.org/10.1016/J.ELECTACTA.2012.01.005
[78] A.T.E. Vilian, V. Veeramani, S.-M. Chen, R. Madhu, C.H. Kwak, Y.S. Huh, Y.-K. Han, Immobilization of myoglobin on Au nanoparticle-decorated carbon nanotube/polytyramine composite as a mediator-free H2O2 and nitrite biosensor, Sci. Rep. 5 (2016) 18390. https://doi.org/10.1038/srep18390
[79] J. Lou, Y. Lu, T. Zhan, Y. Guo, W. Sun, C. Ruan, Application of an ionic liquid-functionalized Mg2Al layered double hydroxide for the electrochemical myoglobin biosensor, Ionics (Kiel). 20 (2014) 1471–1479. https://doi.org/10.1007/s11581-014-1088-1
[80] M. Hüttemann, P. Pecina, M. Rainbolt, T.H. Sanderson, V.E. Kagan, L. Samavati, J.W. Doan, I. Lee, The multiple functions of cytochrome c and their regulation in life and death decisions of the mammalian cell: From respiration to apoptosis., Mitochondrion. 11 (2011) 369–81. https://doi.org/10.1016/j.mito.2011.01.010
[81] Y.-L.P. Ow, D.R. Green, Z. Hao, T.W. Mak, Cytochrome c: functions beyond respiration, Nat. Rev. Mol. Cell Biol. 9 (2008) 532–542. https://doi.org/10.1038/nrm2434
[82] S. Zaidi, M.I. Hassan, A. Islam, F. Ahmad, The role of key residues in structure, function, and stability of cytochrome-c, Cell. Mol. Life Sci. 71 (2014) 229–255. https://doi.org/10.1007/s00018-013-1341-1
[83] E. Pashai, G. Najafpour Darzi, M. Jahanshahi, F. Yazdian, M. Rahimnejad, An electrochemical nitric oxide biosensor based on immobilized cytochrome c on a chitosan-gold nanocomposite modified gold electrode, Int. J. Biol. Macromol. 108 (2018) 250–258. https://doi.org/10.1016/J.IJBIOMAC.2017.11.157
[84] Y. Haldorai, S.-K. Hwang, A.-I. Gopalan, Y.S. Huh, Y.-K. Han, W. Voit, G. Sai-Anand, K.-P. Lee, Direct electrochemistry of cytochrome c immobilized on titanium nitride/multi-walled carbon nanotube composite for amperometric nitrite biosensor, Biosens. Bioelectron. 79 (2016) 543–552. https://doi.org/10.1016/J.BIOS.2015.12.054
[85] M. Eguílaz, C.J. Venegas, A. Gutiérrez, G.A. Rivas, S. Bollo, Carbon nanotubes non-covalently functionalized with cytochrome c: A new bioanalytical platform for building bienzymatic biosensors, Microchem. J. 128 (2016) 161–165. https://doi.org/10.1016/J.MICROC.2016.04.018
[86] H. Yin, Y. Zhou, T. Liu, L. Cui, S. Ai, Y. Qiu, L. Zhu, Amperometric nitrite biosensor based on a gold electrode modified with cytochrome c on Nafion and Cu-Mg-Al layered double hydroxides, Microchim. Acta. 171 (2010) 385–392. https://doi.org/10.1007/s00604-010-0444-8
[87] N.C. Veitch, Horseradish peroxidase: A modern view of a classic enzyme, Phytochemistry. 65 (2004) 249–259. https://doi.org/10.1016/j.phytochem.2003.10.022
[88] C. Regalado, B.E. García-Almendárez, M.A. Duarte-Vázquez, Biotechnological applications of peroxidases, Phytochem. Rev. 3 (2004) 243–256. https://doi.org/10.1023/B:PHYT.0000047797.81958.69
[89] X. Chen, C. Fu, Y. Wang, W. Yang, D.G. Evans, Direct electrochemistry and electrocatalysis based on a film of horseradish peroxidase intercalated into Ni–Al layered double hydroxide nanosheets, Biosens. Bioelectron. 24 (2008) 356–361. https://doi.org/10.1016/J.BIOS.2008.04.007
[90] S.-N. Ding, D. Shan, T. Zhang, Y.-Z. Dou, Performance-enhanced cholesterol biosensor based on biocomposite system: Layered double hydroxides-chitosan, J. Electroanal. Chem. 659 (2011) 1–5. https://doi.org/10.1016/J.JELECHEM.2011.04.003
[91] L. Fernández, I. Ledezma, C. Borrás, L.A. Martínez, H. Carrero, Horseradish peroxidase modified electrode based on a film of Co–Al layered double hydroxide modified with sodium dodecylbenzenesulfonate for determination of 2-chlorophenol, Sensors Actuators B Chem. 182 (2013) 625–632. https://doi.org/10.1016/J.SNB.2013.02.109
[92] Y. Wang, Z. Wang, Y. Rui, M. Li, Horseradish peroxidase immobilization on carbon nanodots/CoFe layered double hydroxides: Direct electrochemistry and hydrogen peroxide sensing., Biosens. Bioelectron. 64 (2015) 57–62. https://doi.org/10.1016/j.bios.2014.08.054
[93] S. Hidouri, Z.M. Baccar, H. Abdelmelek, T. Noguer, J.-L. Marty, M. Campàs, Structural and functional characterisation of a biohybrid material based on acetylcholinesterase and layered double hydroxides, Talanta. 85 (2011) 1882–1887. https://doi.org/10.1016/J.TALANTA.2011.07.026
[94] J. Gong, Z. Guan, D. Song, Biosensor based on acetylcholinesterase immobilized onto layered double hydroxides for flow injection/amperometric detection of organophosphate pesticides, Biosens. Bioelectron. 39 (2013) 320–323. https://doi.org/10.1016/j.bios.2012.07.026
[95] C. Zhai, Y. Guo, X. Sun, Y. Zheng, X. Wang, An acetylcholinesterase biosensor based on graphene–gold nanocomposite and calcined layered double hydroxide, Enzyme Microb. Technol. 58–59 (2014) 8–13. https://doi.org/10.1016/J.ENZMICTEC.2014.02.004
[96] Z.M. Baccar, D. Caballero, R. Eritja, A. Errachid, Development of an impedimetric DNA-biosensor based on layered double hydroxide for the detection of long ssDNA sequences, Electrochim. Acta. 74 (2012) 123–129. https://doi.org/10.1016/J.ELECTACTA.2012.04.031
[97] D. Shan, S. Cosnier, C. Mousty, Layered double hydroxides: An attractive material for electrochemical biosensor design, Anal. Chem. 75 (2003) 3872–3879. https://doi.org/10.1021/ac030030v