Microbial Desalination Cell: An Integrated Technology for Desalination, Wastewater Treatment and Renewable Energy Generation

$20.00

Microbial Desalination Cell: An Integrated Technology for Desalination, Wastewater Treatment and Renewable Energy Generation

V.R.V. Ashwaniy, M. Perumalsamy

Conversion of seawater to potable water is necessary to meet the demands of future generations. The energy-intensive and un-sustainable desalination technologies led to the development of bio-electrochemical systems called microbial desalination cells (MDCs). MDC configuration has been developed for a decade to overcome the challenges faced in operation and other phenomena. This chapter is aimed to discuss MDCs based on different types of cathodes chemical, air, and bio-cathode and their applications. The technical challenges such as pH imbalance in the anode, membrane fouling, electrode material selection and ohmic resistance are also included.

Keywords
Microbial Desalination Cell, Chemical Cathode, Air Cathode, Bio-Cathode

Published online 2/21/2019, 28 pages

Citation: V.R.V. Ashwaniy, M. Perumalsamy, Microbial Desalination Cell: An Integrated Technology for Desalination, Wastewater Treatment and Renewable Energy Generation, Materials Research Foundations, Vol. 46, pp 221-248, 2019

DOI: https://dx.doi.org/10.21741/9781644900116-9

Part of the book on Microbial Fuel Cells

References
[1] M. Mehanna, T. Saito, J. Yan, M. Hickner, X. Cao, X. Huang, B.E. Logan, Using microbial desalination cells to reduce water salin¬ity prior to reverse osmosis, Ener. Environ. Sci. 3 (2010) 1114. https://doi.org/10.1039/c002307h
[2] A. Carmalin Sophia, V.M. Bhalambaal, E.C. Lima, M. Thirunavoukkarasu, Microbial desalination cell technology: Contribution to sustainable waste water treatment process, current status and future applications, J. Environ. Chem. Eng. 4 (2016) 3468–3478. https://doi.org/10.1016/j.jece.2016.07.024
[3] V.G. Gude, N. Nirmalakhandan, S. Deng, Renewable and sustainable approaches for desalination. Renew. Sustain. Energy Rev. 14 (2010) 2641-2654. https://doi.org/10.1016/j.rser.2010.06.008
[4] X. Cao, X. Huang, P. Liang, K. Xiao, Y. Zhou, X. Zhang, B.E. Logan, A new method for water desalination using microbial desalination cells, Environ. Sci. Technol. 43 (2009) 7148–7152. https://doi.org/10.1021/es901950j
[5] Y. Qu, Y. Feng, X. Wang, J. Liu, J. Lv, W. He, B.E. Logan, Simultaneous water desalination and electricity generation in a microbial desalination cell with electrolyte recirculation for pH control, Bioresour. Technol. 106 (2012) 89–94. https://doi.org/10.1016/j.biortech.2011.11.045
[6] K. Zuo, F. Liu, S. Ren, X. Zhang, P. Liang, X. Huang, A novel multi-stage microbial desalination cell for simultaneous desalination and enhanced organics and nitrogen removal from domestic wastewater, Environ. Sci. Water Res. Technol. 2 (2016) 832–837. https://doi.org/10.1039/C6EW00196C
[7] Q. Wen, H. Zhang, Z. Chen, Y. Li, J. Nan, Y. Feng, Using bacterial catalyst in the cathode of microbial desalination cell to improve wastewater treatment and desalination. Bioresour. Technol. 125 (2012) 108–113 https://doi.org/10.1016/j.biortech.2012.08.140
[8] B. Kokabian, V.G. Gude, Photosynthetic microbial desalination cells (PMDCs) for clean energy, water and biomass production. Environ. Sci.: Processes Impacts, 15 (2013) 2178. https://doi.org/10.1039/c3em00415e
[9] H.M. Saeed, G.A. Husseini, S. Yousef, J. Saif, S. Al-Asheh, A. Abu Fara, S. Azzam, R. Khawaga, A. Aidan, Microbial desali¬nation cell technology: A review and a case study, Desalina¬tion. 359 (2015) 1–13.
[10] H. Jingyu, D. Ewusi-Mensah, EyramNorgbey, Microbial desalination cells technology: a review of the factors affecting the process, performance and efficiency, Desal. Water Treat. 87 (2017) 140–159.
[11] G. Gude, B. Kokabian, V. Gadhamshetty, Beneficial bioelectrochemical systems for energy, water, and biomass production, Microb. Biochem. Technol. 6 (2013) 1–14.
[12] X. Zhang, W. He, L. Ren, J. Stager, P.J. Evans, B.E. Logan, COD removal characteristics in air-cathode microbial fuel cells, Bioresour Technol. 176 (2015) 23–31 https://doi.org/10.1016/j.biortech.2014.11.001
[13] Y. Kim, B.E. Logan, Microbial desalination cells for energy production and desalination, Desalination, 308 (2013) 122–130. https://doi.org/10.1016/j.desal.2012.07.022
[14] X. Chen, X. Xia, P. Liang, X. Cao, H. Sun, X. Huang, Stacked microbial desalination cells to enhance water desalination effi¬ciency, Environ. Sci. Technol. 45 (2011) 2465–2470. https://doi.org/10.1021/es103406m
[15] H. Luo, P. Xu, T.M. Roane, P.E. Jenkins, Z. Ren, Microbial desalination cells for improved performance in wastewater treatment electricity production, and desalination, Bioresour. Technol. 105 (2012) 60–66. https://doi.org/10.1016/j.biortech.2011.11.098
[16] C. Forrestal, P. Xu , Z. Ren, Microbial desalination cell with capacitive adsorption for ion migration control, Bioresour. Technol. 120 (2012) 332–336. https://doi.org/10.1016/j.biortech.2012.06.044
[17] L. Yuan, X. Yang, P. Liang, L. Wang, Z.H. Huang, J. Wei, X. Huang, Capacitive deionization coupled with microbial fuel cells to desalinate low-concentration salt water, Bioresour. Technol. 110 (2012) 735–738. https://doi.org/10.1016/j.biortech.2012.01.137
[18] K.S. Jacobson, D.M. Drew, Z. He, Efficient salt removal in a continuously operated upflow microbial desalination cell with an air cathode, Bioresour. Technol. 102 (2011) 376–380. https://doi.org/10.1016/j.biortech.2010.06.030
[19] C. Huang, T. Xu, Electrodialysis with bipolar membranes for sus¬tainable development, Environ. Sci. Technol. 40 (2006) 5233–5243. https://doi.org/10.1021/es060039p
[20] B. Zhang, Z. He, Improving water desalination by hydrauli¬cally coupling an osmotic microbial fuel cell with a microbial desalination cell, J. Membr. Sci. 441 (2013) 18–24. https://doi.org/10.1016/j.memsci.2013.04.005
[21] X. Chen, P. Liang, Z. Wei, X. Zhang, X. Huang, Sustainable water desalination and electricity generation in a separator coupled stacked microbial desalination cell with buffer free electrolyte circulation, Bioresour. Technol. 119 (2012) 88-93. https://doi.org/10.1016/j.biortech.2012.05.135
[22] A. Morel, K. Zuo, X. Xia, J. Wei, X. Luo, P. Liang, X. Huang, Microbial desalination cells packed with ion-exchange resin to enhance water desalination rate, Bioresour. Technol. 118 (2012) 43–48. https://doi.org/10.1016/j.biortech.2012.04.093
[23] S. Chen, G. Liu, R. Zhang, B. Qin, Y. Luo, Y. Hou, Improved performance of the microbial electrolysis desalination and chemical-production cell using the stack structure, Bioresour. Technol. 116 (2012b) 507-511. https://doi.org/10.1016/j.biortech.2012.03.073
[24] S. Chen, G. Liu, R. Zhang, B. Qin, Y. Luo, Development of the microbial electrodialysis and chemical-production cell for desalination as well as acid and alkali productions, Environ. Sci. Technol. 46 (2012) 2467–2472. https://doi.org/10.1021/es203332g
[25] Y. Zhang, I. Angelidaki, A new method for in situ nitrate removal from groundwater using submerged microbial desalination edenitrification cell (SMDDC), Water Res. 47 (2013)1827-1836. https://doi.org/10.1016/j.watres.2013.01.005
[26] G.M. Girme, Algae powered microbial desalination cells, 58. MSc Thesis, Graduate School of the Ohio State Uni¬versity, Ohio. (2014)
[27] S. Kristen Brastad, Zhen He, Water softening using microbial desalination cell technology, Desalination. 309 (2013) 32–37 https://doi.org/10.1016/j.desal.2012.09.015
[28] D. BeenishSaba, A. Christy, Z. Yu, C.A. Co, A. Park, Simultaneous power generation and desalination of microbial desalination cells using nannochloropsissalina (marine algae) versus potassium ferricyanide as catholytes, Environ. Eng. Sci. 34 (2017).
[29] S. Cheng and B. E. Logan, Evaluation of catalysts and membranes for high yield biohydrogen production via electrohydrogenesis in microbial electrolysis cells (MECs), Water Sci. Technol. 58 (2008) 853–857. https://doi.org/10.2166/wst.2008.617
[30] F. Zhang, S. Cheng, D. Pant, G. V. Bogaert and B. E. Logan, Power generation using an activated carbon and metal mesh cathode in a microbial fuel cell Electrochem. Commun. 11 (2009) 2177–2179. https://doi.org/10.1016/j.elecom.2009.09.024
[31] S.M. Rismani-Yazdi, A.D. Carver, O.H. Christy, Tuovinen, Cathodic limitations in microbial fuel cell: An overview, J. Power Sour. 180 (2008) 683-694. https://doi.org/10.1016/j.jpowsour.2008.02.074
[32] K. Zuo, Z. Wang, X. Chen, X. Zhang, J. Zuo, P. Liang, X. Huang, Self-driven desalination and advanced treatment of wastewater in a modularized filtration air cathode microbial desalination cell, Environ. Sci. Technol. 50 (2016) 7254–7262. https://doi.org/10.1021/acs.est.6b00520
[33] L. Taiz, E. Zeiger, Plant Physiology, Sinauer Associate (2010).
[34] M.K. Zamanpour, H.R. Kariminia, M. Vosoughi, Electricity generation, desalination and microalgae cultivation in a biocathode-microbial desalination cell, J. Environ. Chem. Eng. 5 (2017) 843–848. https://doi.org/10.1016/j.jece.2016.12.045
[35] V.R.V. Ashwaniy, M. Perumalsamy, Reduction of organic compounds in petro-chemical industry effluent and desalination using Scenedesmus abundans algal microbial desalination cell, J. Environ Chem. Eng. 5 (2017) 5961-5967. https://doi.org/10.1016/j.jece.2017.11.017
[36] Water Quality Research Council, What makes water hard & how can it be improved, Water Rev. 5 (1990) 1–2
[37] M.A. Burris, in: Soft Water, Hard Choice? Government Engineering, (2004) 20–21.
[38] S.R. Maguin, P.C. Martyn, in: Notification of the Continued Prohibition on Brine Discharges from Self-Regenerating Water Softeners and the Imposition of New Chloride Discharge Requirements at Santa Clarita Valley Businesses, 2 (2010).
[39] R.A. Bergman, Membrane softening versus lime softening in Florida: a cost comparison update, Desalination 102 (1995) 11–24. https://doi.org/10.1016/0011-9164(95)00036-2
[40] M.A. Tofighy, T. Mohammadi, Permanent hard water softening using carbon nanotube sheets, Desalination 268 (2011) 208–213. https://doi.org/10.1016/j.desal.2010.10.028
[41] M.A. Arugula, K.S. Brastad, S.D. Minteer, Z. He, Enzyme catalyzed electricitydriven water softening system. Enzyme Microb. Technol. 51 (2012) 396-401. https://doi.org/10.1016/j.enzmictec.2012.08.009
[42] M. Hemalatha, S.K. Butti, G. Velvizhi, S. Venkata Mohan, Microbial mediated desalination for ground water softening with simultaneous power generation. Bioresour. Technol. 242 (2017) 28-35. https://doi.org/10.1016/j.biortech.2017.05.020
[43] H. Luo, P.E. Jenkins, Z. Ren, Concurrent desalination and hydrogen generation using microbial electrolysis and desalination cells. Environ. Sci. Technol. 45 (2010) 340-344. https://doi.org/10.1021/es1022202
[44] J.N. Galloway, J.D. Aber, J.W. Erisman, S.P. Seitzinger, R.W. Howarth, E.B. Cowling, B.J. Cosby, The nitrogen cascade, Bioscience 53 (2003) 341–356 https://doi.org/10.1641/0006-3568(2003)053[0341:TNC]2.0.CO;2
[45] Y. Zhang, I. Angelidaki, I, Submersible microbial desalination cell for simultaneousammonia recovery and electricity production from anaerobic reactorscontaining high levels of ammonia. Bioresour. Technol. 177 (2015) 233-239. https://doi.org/10.1016/j.biortech.2014.11.079
[46] X. Chen, D. Sun, X. Zhang, P. Liang, X. Huang, Novel self-driven microbial nutrient recovery cell with simultaneous wastewater purification, Scientific Reports 5 (2015) 15744. https://doi.org/10.1038/srep15744
[47] Y. Qu, Y. Feng, J. Liu, W. He, X. Shi, Q. Yang, J. Lv, B.E. Logan, Salt removal using multiple microbial desalination cells under continuous flow conditions, Desalination 317 (2013) 17–22. https://doi.org/10.1016/j.desal.2013.02.016
[48] K.S. Jacobson, D.M. Drew, Z. He, Use of a liter-scale microbial desalination cell as a platform to study bioelectrochemical desalination with salt solution or artificial seawater, Environ. Sci. Technol. 45 (2011) 4652–4657. https://doi.org/10.1021/es200127p
[49] Q. Ping, B. Cohen, C. Dosoretz, Z. He, Long-term investigation of fouling of cation and anion exchange membranes in microbial desalination cells, Desalination 325 (2013) 48–55. https://doi.org/10.1016/j.desal.2013.06.025
[50] D.A. Ebrahimi, G.N. Kebria, D. Youse, Effect of batch vs. continuous mode of operation on microbial desalination cell performance treating municipal wastewater, Iranian Journal of Hydrogen & Fuel Cell 4 (2016) 281-290.
[51] A. Aidan, G.A. Husseini, H. Yemendzhiev, V. Nenov, A. Rash¬eed, H. Chekkath, Y. Al-Assaf, Microbial desalination cell (MDC) in the presence of activated carbon, Adv. Sci, Eng. Med¬. 6 (2014) 1100–1104.
[52] F. Meng, J. Jiang, Q. Zhao, K. Wang, G. Zhang, Q. Fan, L. Wei, J. Ding, Z. Zheng, Bioelectrochemical desalination and electricity generation in microbial desalination cell with dewatered sludge as fuel, Bioresour Technol. 157 (2014) 120–126 https://doi.org/10.1016/j.biortech.2014.01.056
[53] G.C. Gil, I.S. Chang, B.H. Kim, M. Kim, J.K. Jang, H.S. Park, H.J. Kim, Operational parameters affecting the performance of a mediator-less microbial fuel cell., Biosens. Bioelectr.,18 (2003) 327–334. https://doi.org/10.1016/S0956-5663(02)00110-0
[54] 1Euntae Yang, Mi-Jin Choi, Kyoung-Yeol Kim, Kyu-Jung Chae, In S. Kim (2014): Effect of initial salt concentrations on cell performance and distribution of internal resistance in microbial desalination cells, Environmental Technology 36 (2015) 852-860. https://doi.org/10.1080/09593330.2014.964333
[55] S. Sevda, H. Yuan, Z. He, I.M. Abu-Reesh, Microbial desalina¬tion cells as a versatile technology: Functions, optimization and prospective, Desalination. 371 (2015) 9–17. https://doi.org/10.1016/j.desal.2015.05.021
[56] E. Yang, M.J. Choi, K.Y. Kim, I.S. Kim, Improvement of biohydrogen generation and seawater desalination in a microbial electrodialysis cell by installing the direct proton transfer pathway between the anode and cathode chambers, Desalination Water Treat. 51 (2013) 6362-6369. https://doi.org/10.1080/19443994.2013.780997
[57] T.A. Bower, A.D. Christy, O. Tuovinen, L. Zhao, Voltage Self-Amplification and Signal Conditioning for Enhanced Microbial Fuel Cell Performance, Ohio, 2013.
[58] L. Bazinet, M. Araya-Farias, Effect of calcium and carbonate concentrations on cationic membrane fouling during electrodialysis, J. Colloid Interface Sci. 281 (2005) 188–96. https://doi.org/10.1016/j.jcis.2004.08.040
[59] C. Casademont, G. Pourcelly, L. Bazinet, Effect of magnesium/calcium ratio in solutions subjected to electrodialysis: Characterization of cation-exchange membrane fouling, J. Colloid Interface Sci. 315 (2007) 544–54. https://doi.org/10.1016/j.jcis.2007.06.056
[60] F. Zhang, Z. He, Scaling up microbial desalination cell system with a post-aerobic process for simultaneous wastewater treatment and seawater desalination, Desalination 360 (2015) 28–34 https://doi.org/10.1016/j.desal.2015.01.009