Microbial Fuel Cells Characterization
Fatma Aydin Unal, Mehmet Harbi Calimli, Hakan Burhan, Fatma Sismanoglu, Busra Yalcın, Fatih Şen
Microbial fuel cells (MFCs) received considerable interest in recent years and represent a promising technology based on the conversion of chemical energy into electrical energy by microbial catalysis. However, their power output and stability is low due to the influence of the cathode, electrolyte, membrane, microorganism of the anode, and cell configuration. The choice of appropriate characterization techniques and methods to examine these problems, which limit the development of MFCs, is extremely important. For this reason, this chapter focuses on biochemical and electrochemical characterization techniques in order to examine a variety of surface morphology, analytical and spectroscopic details.
Keywords
Fuel Cell, Microbial Fuel Cell, Characterization, Electrochemistry, SEM
Published online 2/21/2019, 26 pages
Citation: Fatma Aydin Unal, Mehmet Harbi Calimli, Hakan Burhan, Fatma Sismanoglu, Busra Yalcın, Fatih Şen, Microbial Fuel Cells Characterization, Materials Research Foundations, Vol. 46, pp 75-100, 2019
DOI: https://dx.doi.org/10.21741/9781644900116-4
Part of the book on Microbial Fuel Cells
References
[1] B. E. Logan, B. Hamelers, R. Rozendal, U. Schröder, J. Keller, S. Freguia, P. Aelterman, W. Verstraete, & K. Rabaey, Microbial fuel cells: Methodology and technology. Environmental Science and Technology, 40 (2006) 5181–5192. https://doi.org/10.1021/es0605016.
[2] N. K. Dhami, M. S. Reddy, & A. Mukherjee, We Are Intechopen, The World’s Leading Publisher of Open Access Books Built by Scientists, For Scientists TOP 1 % Control of A Proportional Hydraulic System. Waste Water – Evaluation and Management, 2 (2012) 137–164. https://doi.org/10.5772/32009.
[3] D. V. P. Sanchez, D. Jacobs, K. Gregory, J. Huang, Y. Hu, R. Vidic, & M. Yun, Changes in Carbon Electrode Morphology Affect Microbial Fuel Cell Performance with Shewanella Oneidensis MR-1. Energies, 8 (2015) 1817–1829. https://doi.org/10.3390/en8031817.
[4] N. Uria, I. Ferrera, & J. Mas, Electrochemical Performance and Microbial Community Profiles in Microbial Fuel Cells in Relation to Electron Transfer Mechanisms. BMC Microbiology, 17 (2017) 1–12. https://doi.org/10.1186/s12866-017-1115-2.
[5] T. T. Nguyen, T. T. T. Luong, P. H. N. Tran, H. T. V. Bui, H. Q. Nguyen, H. T. Dinh, B. H. Kim, & H. T. Pham, A lithotrophic Microbial Fuel Cell Operated with Pseudomonads-Dominated Iron-Oxidizing Bacteria Enriched at The Anode. Microbial Biotechnology, 8 (2015) 579–589. https://doi.org/10.1111/1751-7915.12267.
[6] S. Ishii, S. Suzuki, T. M. Norden-Krichmar, K. H. Nealson, Y. Sekiguchi, Y. A. Gorby, & O. Bretschger, Functionally Stable and Phylogenetically Diverse Microbial Enrichments from Microbial Fuel Cells during Wastewater Treatment. PLoS ONE, 7 (2012) e30495. https://doi.org/10.1371/journal.pone.0030495.
[7] N. S. Ramaraja, P. Ramasamy, Electrochemical Impedance Spectroscopy for Microbial Fuel Cell Characterization. Journal of Microbial & Biochemical Technology, S6 (2013) 1–14. https://doi.org/10.4172/1948-5948.S6-004.
[8] A. E. Franks & K. P. Nevin, Microbial Fuel Cells, A Current Review. Energies, 3 (2010) 899–919. https://doi.org/10.3390/en3050899.
[9] A. R. Khaskheli, J. Fischer, J. Barek, V. Vyskočil, Sirajuddin, & M. I. Bhanger, Differential pulse Voltammetric Determination of Paracetamol in Tablet and Urine Samples at A Micro-Crystalline Natural Graphite-Polystyrene Composite Film Modified Electrode. Electrochimica Acta, 101 (2013) 238–242. https://doi.org/10.1016/j.electacta.2012.09.102.
[10] P. S. Patil, S. H. Mujawar, A. I. Inamdar, & S. B. Sadale, Electrochromic Properties of Spray Deposited Tio2-Doped WO 3 Thin Films. Applied Surface Science, 250 (2005) 117–123. https://doi.org/10.1016/j.apsusc.2004.12.042.
[11] M. Hou, L. Chen, Z. Guo, X. Dong, Y. Wang, & Y. Xia, A clean and membrane-free chlor-alkali process with decoupled Cl2 and H2/NaOH production. Nature Communications, 9 (2018) 438. https://doi.org/10.1038/s41467-018-02877-x.
[12] M. Vuković, B. Pesic, N. Štrbac, I. Mihajlović, & M. Sokić, Linear Polarization Study of The Corrosion of Iron in The Presence of Thiobacillus Ferrooxidans Bacteria. International Journal of Electrochemical Science, 7 (2012) 2487–2503.
[13] I. Ieropoulos, J. Greenman, D. Lewis, & O. Knoop, Energy Production and Sanitation Improvement Using Microbial Fuel Cells. Journal of Water, Sanitation and Hygiene for Development, 3 (2013) 383-396. https://doi.org/10.2166/washdev.2013.117.
[14] J. R. Kim, G. C. Premier, F. R. Hawkes, R. M. Dinsdale, & A. J. Guwy, Development of A Tubular Microbial Fuel Cell (MFC) Employing A Membrane Electrode Assembly Cathode. Journal of Power Sources, 187 (2009) 393–399. https://doi.org/10.1016/j.jpowsour.2008.11.020.
[15] S. Cheng & H. Liu, Rapid Deblurring for Spiral fMRI. In Vivo, 13 (2005) 2426–2432. https://doi.org/10.1021/es051652w.
[16] Z. Ge, Energy-efficient Wastewater Treatment by Microbial Fuel Cells: Scaling Up and Optimization, Virginia Polytechnic Institute and State University, 2015.
[17] J. Zhang, E. Zhang, K. Scott, & J. G. Burgess, Enhanced Electricity Production by Use of Reconstituted Artificial Consortia of Estuarine Bacteria Grown As Biofilms. Environmental Science and Technology, 46 (2012) 2984–2992. https://doi.org/10.1021/es2020007.
[18] R. P. Ramasamy, V. Gadhamshetty, L. J. Nadeau, & G. R. Johnson, Impedance Spectroscopy as A Tool for Non-Intrusive Detection of Extracellular Mediators in Microbial Fuel Cells. Biotechnology and Bioengineering, 104 (2009) 882–891. https://doi.org/10.1002/bit.22469.
[19] L. Hussein, Dissertation zur Erlangung des Doktorgrades Decorated Nanostructured Carbon Materials for Abiotic and Enzymatic Biofuel Cell Applications, 2016.
[20] F. Zhao, R. C. T. Slade, & J. R. Varcoe, Techniques for The Study and Development of Microbial Fuel Cells: An Electrochemical Perspective. Chemical Society Reviews, 38 (2009) 1926–1939. https://doi.org/10.1039/b819866g.
[21] A. Mittal, L. Kurup, & J. Mittal, Freundlich and Langmuir Adsorption Isotherms and Kinetics for The Removal of Tartrazine from Aqueous Solutions Using Hen Feathers. Journal of Hazardous Materials, 146 (2007) 243–248. https://doi.org/10.1016/j.jhazmat.2006.12.012.
[22] R. Huarachi-Olivera, A. Dueñas-Gonza, U. Yapo-Pari, P. Vega, M. Romero-Ugarte, J. Tapia, L. Molina, A. Lazarte-Rivera, D. G. Pacheco-Salazar, & M. Esparza, Bioelectrogenesis with Microbial Fuel Cells (MFCs) Using The Microalga Chlorella Vulgaris and Bacterial Communities. Electronic Journal of Biotechnology, 31 (2018) 34–43. https://doi.org/10.1016/j.ejbt.2017.10.013.
[23] F. Haque, M. Rahman, E. Ahmed, P. Bakshi, & A. Shaikh, A Cyclic Voltammetric Study of the Redox Reaction of Cu(II) in Presence of Ascorbic Acid in Different pH Media. Dhaka University Journal of Science, 61 (2013) 161–166. https://doi.org/10.3329/dujs.v61i2.17064.
[24] V. Horvat-radošević, K. Kvastek, & D. Križekar, Kinetics of the [ Fe ( CN ) 6 ] 3- /[ Fe ( CN ) 6 ] 4- Redox Couple Reaction on Anodically Passivated FesoB20. 70 (1997) 537–561.
[25] M. Sindhuja, N. S. Kumar, V. Sudha, & S. Harinipriya, Equivalent Circuit Modeling of Microbial Fuel Cells Using Impedance Spectroscopy. Journal of Energy Storage, 7 (2016) 136–146. https://doi.org/10.1016/j.est.2016.06.005.
[26] Z. Lu, P. Girguis, P. Liang, H. Shi, G. Huang, L. Cai, & L. Zhang, Biological Capacitance Studies of Anodes In Microbial Fuel Cells Using Electrochemical Impedance Spectroscopy. Bioprocess and Biosystems Engineering, 38 (2015) 1325–1333. https://doi.org/10.1007/s00449-015-1373-z.
[27] K. C. Honeychurch, The voltammetric Behaviour of Lead at A Hand Drawn Pencil Electrode and Its Trace Determination in Water by Stripping Voltammetry. Analytical Methods, 7 (2015) 2437–2443. https://doi.org/10.1039/c4ay02987a.
[28] L. M. B. and A. C. Michael., An Introduction to Electrochemical Methods in Neuroscience. In B.L. Michael AC,ed., Electrochemical Methods for Neuroscience. (Boca Raton (FL): CRC Press/Taylor & Francis, 2007).
[29] M. Tachibana, K. Ishida, Y. Wada, M. Aizawa, & M. Fuse, Study of Polarization Curve Measurement Method for Type 304 Stainless Steel in BWR High Temperature-High Purity Water. Journal of Nuclear Science and Technology, 46 (2009) 132–141. https://doi.org/10.1080/18811248.2007.9711514.
[30] R. Awasthi, Madhu, & R. N. Singh, Application of Graphene in Electrochemical Devices. Handb. Funct. Nanomater., 3 (2014) 239–262.
[31] D. Molognoni, Microbial Fuel Cells Application to Wastewater Treatment : Laboratory Experience And Controlling Strategies PhD Thesis of, 2014.
[32] K. Kalle, Kalle Koivuniemi Bioelectricity Production From Simulated Mining and Forest Industry Wastewaters in Microbial Fuel, 2016.
[33] D. Hidalgo, Politecnico di Torino Politecnico Di Torino Doctor of Philosophy in Chemical Engineering Department of Applied Science and Technology Development of Innovative Materials Used in Electrochemical Devices for The Renewable Production of Hydrogen And Electric, 2015. https://doi.org/10.6092/polito/porto/2588827.
[34] H. O. Mohamed, M. A. Abdelkareem, M. Park, J. Lee, T. Kim, G. Prasad Ojha, B. Pant, S. J. Park, H. Y. Kim, & N. A. M. Barakat, Investigating The Effect of Membrane Layers on The Cathode Potential of Air-Cathode Microbial Fuel Cells. International Journal of Hydrogen Energy, 42 (2017) 24308–24318. https://doi.org/10.1016/j.ijhydene.2017.07.218.
[35] G. Massaglia, Politecnico di Torino Development of New Nanostructured Electrodes in Microbial Fuel Cells ( MFCs ), 2017. https://doi.org/10.6092/polito/porto/2676549.
[36] S. K. Kamaraj, S. M. Romano, V. C. Moreno, H. M. Poggi-Varaldo, & O. Solorza-Feria, Use of Novel Reinforced Cation Exchange Membranes for Microbial Fuel Cells. Electrochimica Acta, 176 (2015) 555–566. https://doi.org/10.1016/j.electacta.2015.07.042.
[37] V. M. Ortiz-Martínez, M. J. Salar-García, F. J. Hernández-Fernández, & A. P. de los Ríos, Development and characterization of A New Embedded Ionic Liquid Based Membrane-Cathode Assembly for Its Application in Single Chamber Microbial Fuel Cells. Energy, 93 (2015) 1748–1757. https://doi.org/10.1016/j.energy.2015.10.027.
[38] D. S. Rodrigues, Microbial Community Optimization for Electricity Generation in Microbial Fuel Cells, 2017.
[39] N. T. Trinh, J. H. Park, S. S. Kim, J. C. Lee, B. Y. Lee, & B. W. Kim, Generation Behavior of Elctricity in A Microbial Fuel Cell. Korean Journal of Chemical Engineering, 27 (2010) 546–550. https://doi.org/10.2478/s11814-010-0066-1.
[40] D. Majumder, J. P. Maity, M. J. Tseng, V. R. Nimje, H. R. Chen, C. C. Chen, Y. F. Chang, T. C. Yang, & C. Y. Chen, Electricity Generation and Wastewater Treatment of Oil Refinery in Microbial Fuel Cells Using Pseudomonas Putida. International Journal of Molecular Sciences, 15 (2014) 16772–16786. https://doi.org/10.3390/ijms150916772.
[41] I. Satar, W. R. W. Daud, B. H. Kim, M. R. Somalu, M. Ghasemi, M. H. A. Bakar, T. Jafary, & S. N. Timmiati, Performance of Titanium–Nickel (Ti/Ni) and Graphite Felt-Nickel (GF/Ni) Electrodeposited by Ni as Alternative Cathodes for Microbial Fuel Cells. Journal of the Taiwan Institute of Chemical Engineers, 89 (2018) 67–76. https://doi.org/10.1016/j.jtice.2018.04.010.
[42] G. Li & P. Miao, Electrochemical Analysis of Proteins and Cells (Berlin, Heidelberg: Springer Berlin Heidelberg, 2013). https://doi.org/10.1007/978-3-642-34252-3.
[43] S. Van Denhouwe, Combining Constructed Wetlands and Microbial Fuel Cells for Enhanced Wastewater Treatment, 2013.
[44] A. Sotres, L. Tey, A. Bonmatí, & M. Viñas, Microbial Community Dynamics in Continuous Microbial Fuel Cells Fed with Synthetic Wastewater and Pig Slurry. Bioelectrochemistry, 111 (2016) 70–82. https://doi.org/10.1016/j.bioelechem.2016.04.007.
[45] N. Ngadi, Mechanisms of Molecular Brush Inhibition of Protein Adsorption onto Steel Surface. 2009.
[46] F. Sen, Y. Karatas, M. Gulcan, & M. Zahmakiran, Amylamine Stabilized Platinum(0) Nanoparticles: Active and Reusable Nanocatalyst in The Room Temperature Dehydrogenation of Dimethylamine-Borane. RSC Advances, 4 (2014) 1526–1531. https://doi.org/10.1039/c3ra43701a.
[47] S. Eris, Z. Daşdelen, Y. Yıldız, & F. Sen, Nanostructured Polyaniline-rGO Decorated Platinum Catalyst with Enhanced Activity and Durability for Methanol Oxidation. International Journal of Hydrogen Energy, 43 (2018) 1337–1343. https://doi.org/10.1016/j.ijhydene.2017.11.051.
[48] Y. Yıldız, S. Kuzu, B. Sen, A. Savk, S. Akocak, & F. Şen, Different Ligand Based Monodispersed Pt Nanoparticles Decorated With rGO As Highly Active and Reusable Catalysts for The Methanol Oxidation. International Journal of Hydrogen Energy, 42 (2017) 13061–13069. https://doi.org/10.1016/j.ijhydene.2017.03.230.
[49] Y. Yildiz, H. Pamuk, Ö. Karatepe, Z. Dasdelen, & F. Sen, Carbon Black Hybrid Material Furnished Monodisperse Platinum Nanoparticles as Highly Efficient and Reusable Electrocatalysts for Formic Acid Electro-Oxidation. RSC Advances, 6 (2016) 32858–32862. https://doi.org/10.1039/c6ra00232c.
[50] E. Erken, Y. Yıldız, B. Kilbaş, & F. Şen, Synthesis and Characterization of Nearly Monodisperse Pt Nanoparticles for C 1 to C 3 Alcohol Oxidation and Dehydrogenation of Dimethylamine-borane (DMAB). Journal of Nanoscience and Nanotechnology, 16 (2016) 5944–5950. https://doi.org/10.1166/jnn.2016.11683.
[51] B. Çelik, E. Erken, S. Eriş, Y. Yildiz, B. Şahin, H. Pamuk, & F. Sen, Highly Monodisperse Pt(0)@AC Nps As Highly Efficient and Reusable Catalysts: The Effect of The Surfactant on Their Catalytic Activities in Room Temperature Dehydrocoupling of DMAB. Catalysis Science and Technology, 6 (2016) 1685–1692. https://doi.org/10.1039/c5cy01371b.
[52] B. Çelik, S. Kuzu, E. Erken, H. Sert, Y. Koşkun, & F. Şen, Nearly Monodisperse Carbon Nanotube Furnished Nanocatalysts as Highly Efficient and Reusable Catalyst for Dehydrocoupling of DMAB and C1 to C3 Alcohol Oxidation. International Journal of Hydrogen Energy, 41 (2016) 3093–3101. https://doi.org/10.1016/j.ijhydene.2015.12.138.
[53] G. Baskaya, İ. Esirden, E. Erken, F. Sen, & M. Kaya, Synthesis of 5-Substituted-1H-Tetrazole Derivatives Using Monodisperse Carbon Black Decorated Pt Nanoparticles as Heterogeneous Nanocatalysts. Journal of Nanoscience and Nanotechnology, 17 (2017) 1992–1999. https://doi.org/10.1166/jnn.2017.12867.
[54] B. Sen, S. Kuzu, E. Demir, S. Akocak, & F. Sen, Polymer-Graphene Hybride Decorated Pt Nanoparticles as Highly Efficient and Reusable Catalyst for The Dehydrogenation of Dimethylamine–Borane at Room Temperature. International Journal of Hydrogen Energy, 42 (2017) 23284–23291. https://doi.org/10.1016/j.ijhydene.2017.05.112.
[55] E. Demir, B. Sen, & F. Sen, Highly efficient Pt Nanoparticles and f-MWCNT Nanocomposites Based Counter Electrodes for Dye-Sensitized Solar Cells. Nano-Structures & Nano-Objects, 11 (2017) 39–45. https://doi.org/10.1016/j.nanoso.2017.06.003.
[56] S. Eris, Z. Daşdelen, & F. Sen, Investigation of Electrocatalytic Activity and Stability of Pt@F-VC Catalyst Prepared by In-Situ Synthesis for Methanol Electrooxidation. International Journal of Hydrogen Energy, 43 (2018) 385–390. https://doi.org/10.1016/j.ijhydene.2017.11.063.
[57] S. Eris, Z. Daşdelen, & F. Sen, Enhanced Electrocatalytic Activity and Stability of Monodisperse Pt Nanocomposites for Direct Methanol Fuel Cells. Journal of Colloid and Interface Science, 513 (2018) 767–773. https://doi.org/10.1016/j.jcis.2017.11.085.
[58] B. Sen, S. Kuzu, E. Demir, T. Onal Okyay, & F. Sen, Hydrogen Liberation from The Dehydrocoupling of Dimethylamine–Borane at Room Temperature by Using Novel and Highly Monodispersed RuPtNi Nanocatalysts Decorated with Graphene Oxide. International Journal of Hydrogen Energy, 42 (2017) 23299–23306. https://doi.org/10.1016/j.ijhydene.2017.04.213.
[59] B. Çelik, Y. Yildiz, H. Sert, E. Erken, Y. Koşkun, & F. Şen, Monodispersed Palladium-Cobalt Alloy Nanoparticles Assembled on Poly(N-Vinyl-Pyrrolidone) (PVP) as A Highly Effective Catalyst for Dimethylamine Borane (DMAB) Dehydrocoupling. RSC Advances, 6 (2016) 24097–24102. https://doi.org/10.1039/c6ra00536e.
[60] B. Sen, S. Kuzu, E. Demir, E. Yıldırır, & F. Sen, Highly Efficient Catalytic Dehydrogenation of Dimethyl Ammonia Borane via Monodisperse Palladium–Nickel Alloy Nanoparticles Assembled on PEDOT. International Journal of Hydrogen Energy, 42 (2017) 23307–23314. https://doi.org/10.1016/j.ijhydene.2017.05.115.
[61] H. Göksu, B. Çelik, Y. Yıldız, F. Şen, & B. Kılbaş, Superior Monodisperse CNT-Supported CoPd (CoPd@CNT) Nanoparticles for Selective Reduction of Nitro Compounds to Primary Amines with NaBH4 in Aqueous Medium. ChemistrySelect, 1 (2016) 2366–2372. https://doi.org/10.1002/slct.201600509.
[62] Y. Yıldız, İ. Esirden, E. Erken, E. Demir, M. Kaya, & F. Şen, Microwave (Mw)-assisted Synthesis of 5-Substituted 1H-Tetrazoles via [3+2] Cycloaddition Catalyzed by Mw-Pd/Co Nanoparticles Decorated on Multi-Walled Carbon Nanotubes. ChemistrySelect, 1 (2016) 1695–1701. https://doi.org/10.1002/slct.201600265.
[63] G. Başkaya, Y. Yıldız, A. Savk, T. O. Okyay, S. Eriş, H. Sert, & F. Şen, Rapid, Sensitive, and Reusable Detection of Glucose by Highly Monodisperse Nickel Nanoparticles Decorated Functionalized Multi-Walled Carbon Nanotubes. Biosensors and Bioelectronics, 91 (2017) 728–733. https://doi.org/10.1016/j.bios.2017.01.045.
[64] B. Şen, A. Aygün, T. O. Okyay, A. Şavk, R. Kartop, & F. Şen, Monodisperse Palladium Nanoparticles Assembled on Graphene Oxide with The High Catalytic Activity and Reusability in The Dehydrogenation of Dimethylamine-Borane. International Journal of Hydrogen Energy, 3 (2018) 2–8. https://doi.org/10.1016/j.ijhydene.2018.03.175.
[65] B. Sen, S. Kuzu, E. Demir, S. Akocak, & F. Sen, Highly Monodisperse RuCo Nanoparticles Decorated on Functionalized Multiwalled Carbon Nanotube with The Highest Observed Catalytic Activity in The Dehydrogenation of Dimethylamine−Borane. International Journal of Hydrogen Energy, 42 (2017) 23292–23298. https://doi.org/10.1016/j.ijhydene.2017.06.032.
[66] Y. Yıldız, E. Erken, H. Pamuk, H. Sert, & F. Şen, Monodisperse Pt Nanoparticles Assembled on Reduced Graphene Oxide: Highly Efficient and Reusable Catalyst for Methanol Oxidation and Dehydrocoupling of Dimethylamine-Borane (DMAB). Journal of Nanoscience and Nanotechnology, 16 (2016) 5951–5958. https://doi.org/10.1166/jnn.2016.11710.
[67] S. Akocak, B. Şen, N. Lolak, A. Şavk, M. Koca, S. Kuzu, & F. Şen, One-Pot Three-Component Synthesis of 2-Amino-4H-Chromene Derivatives by Using Monodisperse Pd Nanomaterials Anchored Graphene Oxide as Highly Efficient and Recyclable Catalyst. Nano-Structures and Nano-Objects, 11 (2017) 25–31. https://doi.org/10.1016/j.nanoso.2017.06.002.
[68] Z. Daşdelen, Y. Yıldız, S. Eriş, & F. Şen, Enhanced Electrocatalytic Activity and Durability of Pt Nanoparticles Decorated on GO-PVP Hybride Material for Methanol Oxidation Reaction. Applied Catalysis B: Environmental, 219 (2017) 511–516. https://doi.org/10.1016/j.apcatb.2017.08.014.
[69] H. Goksu, Y. Yıldız, B. Çelik, M. Yazici, B. Kilbas, & F. Sen, Eco-Friendly Hydrogenation of Aromatic Aldehyde Compounds by Tandem Dehydrogenation of Dimethylamine-Borane in The Presence of A Reduced Graphene Oxide Furnished Platinum Nanocatalyst. Catalysis Science & Technology, 6 (2016) 2318–2324. https://doi.org/10.1039/C5CY01462J.
[70] H. Göksu, Y. Yıldız, B. Çelik, M. Yazıcı, B. Kılbaş, & F. Şen, Highly Efficient and Monodisperse Graphene Oxide Furnished Ru/Pd Nanoparticles for The Dehalogenation of Aryl Halides via Ammonia Borane. ChemistrySelect, 1 (2016) 953–958. https://doi.org/10.1002/slct.201600207.
[71] B. Aday, Y. Yildiz, R. Ulus, S. Eris, F. Sen, & M. Kaya, One-Pot, Efficient and Green Synthesis of Acridinedione Derivatives Using Highly Monodisperse Platinum Nanoparticles Supported with Reduced Graphene Oxide. New Journal of Chemistry, 40 (2016) 748–754. https://doi.org/10.1039/c5nj02098k.
[72] S. Bozkurt, B. Tosun, B. Sen, S. Akocak, A. Savk, M. F. Ebeoğlugil, & F. Sen, A Hydrogen Peroxide Sensor Based on TNM Functionalized Reduced Graphene Oxide Grafted with Highly Monodisperse Pd Nanoparticles. Analytica Chimica Acta, 989 (2017) 88–94. https://doi.org/10.1016/j.aca.2017.07.051.